首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies indicate that obesity is not protective against fracture in postmenopausal women and increases the risk of fracture at some sites. Risk factors for fracture in obese women may differ from those in the nonobese. We aimed to compare the ability of FRAX with and without bone mineral density (BMD) to predict fractures in obese and nonobese older postmenopausal women who were participants in the Study of Osteoporotic Fractures. Data for FRAX clinical risk factors and femoral neck BMD were available in 6049 women, of whom 18.5% were obese. Hip fractures, major osteoporotic fractures, and any clinical fractures were ascertained during a mean follow‐up period of 9.03 years. Receiving operator curve (ROC) analysis, model calibration, and decision curve analysis were used to compare fracture prediction in obese and nonobese women. ROC analysis revealed no significant differences between obese and nonobese women in fracture prediction by FRAX, with or without BMD. Predicted hip fracture risk was lower than observed risk in both groups of women, particularly when FRAX + BMD was used, but there was good calibration for FRAX + BMD in prediction of major osteoporotic fracture in both groups. Decision curve analysis demonstrated that both FRAX models were useful for hip fracture prediction in obese and nonobese women for threshold 10‐year fracture probabilities in the range of 4% to 10%, although in obese women FRAX + BMD was superior to FRAX alone. For major osteoporotic fracture, both FRAX models were useful in both groups of women for threshold probabilities in the range of 10% to 30%. For all clinical fractures, the FRAX models were not useful at threshold probabilities below 30%. We conclude that FRAX is of value in predicting hip and major osteoporotic fractures in obese postmenopausal women, particularly when used with BMD. © 2013 American Society for Bone and Mineral Research  相似文献   

2.
This prospective case‐cohort study aimed to map the distribution of bone density in the proximal femur and examine its association with hip fracture. We analyzed baseline quantitative computed tomography (QCT) scans in 250 men aged 65 years or older, which comprised a randomly‐selected subcohort of 210 men and 40 cases of first hip fracture during a mean follow‐up period of 5.5 years. We quantified cortical, trabecular, and integral volumetric bone mineral density (vBMD), and cortical thickness (CtTh) in four quadrants of cross‐sections along the length of the femoral neck (FN), intertrochanter (IT), and trochanter (TR). In most quadrants, vBMDs and CtTh were significantly (p < 0.05) lower in cases compared to the subcohort and these deficits were present across the entire proximal femur. To examine the association of QCT measurements with hip fracture, we merged the two quadrants in the medial and lateral aspects of the FN, IT, and TR. At most sites, QCT measurements were associated significantly (p < 0.001) with hip fracture, the hazard ratio (HR) adjusted for age, body mass index (BMI), and clinical site for a 1‐SD decrease ranged between 2.28 (95% confidence interval [CI], 1.44–3.63) to 6.91 (95% CI, 3.11–15.53). After additional adjustment for total hip (TH) areal BMD (aBMD), trabecular vBMDs at the FN, TR, and TH were still associated with hip fracture significantly (p < 0.001), the HRs ranged from 3.21 (95% CI, 1.65–6.24) for the superolateral FN to 6.20 (95% CI, 2.71–14.18) for medial TR. QCT measurements alone or in combination did not predict fracture significantly (p > 0.05) better than TH aBMD. With an area under the receiver operating characteristic curve (AUC) of 0.901 (95% CI, 0.852–0.950), the regression model combining TH aBMD, age, and trabecular vBMD predicted hip fracture significantly (p < 0.05) better than TH aBMD alone or TH aBMD plus age. These findings confirm that both cortical and trabecular bone contribute to hip fracture risk and highlight trabecular vBMD at the FN and TR as an independent risk factor. © 2012 American Society for Bone and Mineral Research.  相似文献   

3.
Racial/ethnic origin plays an important role in fracture risk. Racial/ethnic differences in fracture rates cannot be fully explained by bone mineral density (BMD). Studies examining the influence of bone geometry and strength on fracture risk have focused primarily on older adults and have not included people from diverse racial/ethnic backgrounds. Our goal was to explore racial/ethnic differences in hip geometry and strength in a large sample of midlife women. We performed hip structure analysis (HSA) on hip dual‐energy X‐ray absorptiometry (DXA) scans from 1942 premenopausal and early perimenopausal women. The sample included white (50%), African American (27%), Chinese (11%), and Japanese (12%) women aged 42 to 52 years. HSA was performed using software developed at Johns Hopkins University. African American women had higher conventional (8.4% to 9.7%) and HSA BMD (5.4% to 19.8%) than other groups with the exception being Japanese women, who had the highest HSA BMD (9.7% to 31.4%). HSA indices associated with more favorable geometry and greater strength and resistance to fracture were more prevalent in African American and Japanese women. Femurs of African American women had a smaller outer diameter, a larger cross‐sectional area and section modulus, and a lower buckling ratio. Japanese women presented a different pattern with a higher section modulus and lower buckling ratio, similar to African American women, but a wider outer diameter; this was offset by a greater cross‐sectional area and a more centrally located centroid. Chinese women had similar conventional BMD as white women but a smaller neck region area and HSA BMD at both regions. They also had a smaller cross‐sectional area and section modulus, a more medially located centroid, and a higher buckling ratio than white women. The observed biomechanical differences may help explain racial/ethnic variability in fracture rates. Future research should explore the contribution of hip geometry to fracture risk across all race/ethnicities. © 2013 American Society for Bone and Mineral Research.  相似文献   

4.
The diagnosis of fracture risk relies almost solely on quantifying bone mass, yet bone strength is governed by factors at multiple scales including composition and structure that contribute to fracture resistance. Furthermore, aging and conditions such as diabetes mellitus alter fracture incidence independently of bone mass. Therefore, it is critical to incorporate other factors that contribute to bone strength in order to improve diagnostic specificity of fracture risk. We examined the correlation between femoral neck fracture strength in aging female cadavers and areal bone mineral density, along with other clinically accessible measures of bone quality including whole‐bone cortical porosity (Ct.Po), bone material mechanical behavior measured by reference point indentation (RPI), and accumulation of advanced glycation end‐products (AGEs). All measurements were found to be significant predictors of femoral neck fracture strength, with areal bone mineral density (aBMD) being the single strongest correlate (aBMD: r = 0.755, p < 0.001; Ct.Po: r = –0.500, p < 0.001; RPI: r = –0.478, p < 0.001; AGEs: r = –0.336, p = 0.016). RPI‐derived measurements were not correlated with tissue mineral density or local cortical porosity as confirmed by micro–computed tomography (μCT). Multiple reverse stepwise regression revealed that the inclusion of aBMD and any other factor significantly improve the prediction of bone strength over univariate predictions. Combining bone assays at multiple scales such as aBMD with tibial Ct.Po (r = 0.835; p < 0.001), tibial difference in indentation depth between the first and 20th cycle (IDI) (r = 0.883; p < 0.001), or tibial AGEs (r = 0.822; p < 0.001) significantly improves the prediction of femoral neck strength over any factor alone, suggesting that this personalized approach could greatly enhance bone strength and fracture risk assessment with the potential to guide clinical management strategies for at‐risk populations. © 2015 American Society for Bone and Mineral Research.  相似文献   

5.
Sclerostin regulates bone formation by inhibiting Wnt pathway signaling. Low circulating sclerostin levels cause high bone mass. We hypothesized that postmenopausal women with increased sclerostin levels have a greater risk for osteoporosis‐related fractures. We examined the association between circulating sclerostin together with bone turnover markers and osteoporosis‐related fracture risk in 707 postmenopausal women, in a population‐based study with a mean follow‐up period of 5.2 ± 1.3 years. Multivariate Cox proportional hazards regression models were used to analyze fracture risk, adjusted for age, body mass index, and other confounding risk factors. High sclerostin levels were strongly associated with increased fracture risk. After adjustment for age and other confounders, the relative fracture risk was more than sevenfold among postmenopausal women for each 1‐SD increment increase in sclerostin level. Women in the highest quartile of sclerostin levels had about a 15‐fold increase in fracture risk. Results were similar when we compared sclerostin at the 1‐year visit to an average of two to three annual measurements. Fracture risk attributable to sclerostin levels was 56.6% in the highest quartile. Only high levels of bone resorption markers (plasma cross‐linked C‐terminal telopeptide of type 1 collagen [p‐CTx], urinary CTx [u‐CTx], and urinary N‐telopeptide of type 1 collagen [u‐NTx]) were predictive of osteoporosis‐related fractures but at much lower hazard ratio (HR) values than that of serum sclerostin. Associations between sclerostin levels and fracture risk were independent of bone mineral density and other confounding risk factors. High sclerostin levels are a strong and independent risk factor for osteoporosis‐related fractures among postmenopausal women. © 2012 American Society for Bone and Mineral Research.  相似文献   

6.
The selective cathepsin K inhibitor odanacatib (ODN) progressively increased bone mineral density (BMD) and decreased bone‐resorption markers during 2 years of treatment in postmenopausal women with low BMD. A 1‐year extension study further assessed ODN efficacy and safety and the effects of discontinuing therapy. In the base study, postmenopausal women with BMD T‐scores between ?2.0 and ?3.5 at the lumbar spine or femur received placebo or ODN 3, 10, 25, or 50 mg weekly. After 2 years, patients (n = 189) were rerandomized to ODN 50 mg weekly or placebo for an additional year. Endpoints included BMD at the lumbar spine (primary), total hip, and hip subregions; levels of bone turnover markers; and safety assessments. Continued treatment with 50 mg of ODN for 3 years produced significant increases from baseline and from year 2 in BMD at the spine (7.9% and 2.3%) and total hip (5.8% and 2.4%). Urine cross‐linked N‐telopeptide of type I collagen (NTx) remained suppressed at year 3 (?50.5%), but bone‐specific alkaline phosphatase (BSAP) was relatively unchanged from baseline. Treatment discontinuation resulted in bone loss at all sites, but BMD remained at or above baseline. After ODN discontinuation at month 24, bone turnover markers increased transiently above baseline, but this increase largely resolved by month 36. There were similar overall adverse‐event rates in both treatment groups. It is concluded that 3 years of ODN treatment resulted in progressive increases in BMD and was generally well tolerated. Bone‐resorption markers remained suppressed, whereas bone‐formation markers returned to near baseline. ODN effects were reversible: bone resorption increased transiently and BMD decreased following treatment discontinuation. © 2011 American Society for Bone and Mineral Research.  相似文献   

7.
We present final results of a study comparing teriparatide 20 μg every day (QD) with risedronate 35 mg once per week (QW) started within 2 weeks after surgery for a pertrochanteric hip fracture. Patients with BMD T‐score ≤ –2.0 and 25OHD ≥9.2 ng/mL were randomized to receive 26‐week double‐dummy treatment plus calcium and vitamin D, followed by 52‐week open‐label treatment with the same assigned active drug. Primary endpoint was change from baseline in lumbar spine (LS) BMD at 78 weeks. Secondary and exploratory endpoints were change in BMD at the proximal femur, function, hip pain (Charnley score and 100 mm Visual Analog Scale [VAS]), quality of life (Short Form‐36), radiology outcomes, and safety. Data were analyzed with mixed models for repeated measures (MMRM) and logistic regression. Totally, 224 patients were randomized; 171 (teriparatide: 86) contributed to the efficacy analyses (mean ± SD age: 77 ± 7.7 years, 77% females). Mean baseline LS, femoral neck (FN), and total hip (TH) T‐scores were –2.16, –2.63, and –2.51, respectively. At 78 weeks, BMD increased significantly more with teriparatide compared to risedronate at the LS (+11.08% versus +6.45%; p < 0.001) and FN (+1.96% versus –1.19%; p = 0.003), with no significant between‐group difference in TH BMD. Timed up‐and‐go (TUG) test was significantly faster with teriparatide at 6, 12, 18, and 26 weeks (differences: –3.2 to –5.9 s; p = 0.045 for overall difference). Hip pain during TUG test by 100 mm VAS was significantly lower with teriparatide at 18 weeks (adjusted difference: –11.3 mm, p = 0.033; –10.0 and –9.3 mm at 12 and 26 weeks, respectively; p = 0.079 for overall difference). Other secondary and exploratory outcomes were not different. Teriparatide group showed two new hip fractures versus seven with risedronate (p = 0.171) and more frequent hypercalcemia and hyperuricemia. In conclusion, 78‐week treatment with teriparatide showed significantly greater increases in LS and FN BMD, less pain, and a faster TUG test versus risedronate. © 2016 American Society for Bone and Mineral Research.  相似文献   

8.
This randomized, double‐blind, placebo‐controlled, dose‐response late phase 2 study evaluated the efficacy and safety of bazedoxifene in postmenopausal Japanese women 85 years of age or younger with osteoporosis. Eligible subjects received daily treatment with oral doses of bazedoxifene 20 or 40 mg or placebo for 2 years. Efficacy assessments included bone mineral density (BMD) at the lumbar spine and other skeletal sites, bone turnover marker levels, lipid parameters, and incidence of new fractures. Of 429 randomized subjects, 387 were evaluable for efficacy, and 423 were included in the safety analyses (mean age, 64 years). At 2 years, the mean percent changes from baseline in lumbar spine BMD were significantly greater with bazedoxifene 20 and 40 mg (2.43% and 2.74%, respectively) than with placebo (?0.65%, p < .001 for both). Both bazedoxifene doses significantly improved BMD at the total hip, femoral neck, and greater trochanter compared with placebo (p < .001 for all). Decreases in bone turnover markers were observed with bazedoxifene 20 and 40 mg as early as 12 weeks (p < .05 for all) and were sustained throughout the study. Total and low‐density lipoprotein cholesterol levels were significantly decreased from baseline with both bazedoxifene doses compared with placebo (p < .05 for all). Incidences of new vertebral and nonvertebral fractures were similar among the bazedoxifene and placebo groups. Overall, the incidence of adverse events with bazedoxifene 20 and 40 mg was similar to that with placebo. Bazedoxifene significantly improved BMD, reduced bone turnover, and was well tolerated in postmenopausal Japanese women with osteoporosis. © 2011 American Society for Bone and Mineral Research.  相似文献   

9.
The 3-year FREEDOM trial assessed the efficacy and safety of 60 mg denosumab every 6 months for the treatment of postmenopausal women with osteoporosis. Participants who completed the FREEDOM trial were eligible to enter an extension to continue the evaluation of denosumab efficacy and safety for up to 10 years. For the extension results presented here, women from the FREEDOM denosumab group had 2 more years of denosumab treatment (long-term group) and those from the FREEDOM placebo group had 2 years of denosumab exposure (cross-over group). We report results for bone turnover markers (BTMs), bone mineral density (BMD), fracture rates, and safety. A total of 4550 women enrolled in the extension (2343 long-term; 2207 cross-over). Reductions in BTMs were maintained (long-term group) or occurred rapidly (cross-over group) following denosumab administration. In the long-term group, lumbar spine and total hip BMD increased further, resulting in 5-year gains of 13.7% and 7.0%, respectively. In the cross-over group, BMD increased at the lumbar spine (7.7%) and total hip (4.0%) during the 2-year denosumab treatment. Yearly fracture incidences for both groups were below rates observed in the FREEDOM placebo group and below rates projected for a "virtual untreated twin" cohort. Adverse events did not increase with long-term denosumab administration. Two adverse events in the cross-over group were adjudicated as consistent with osteonecrosis of the jaw. Five-year denosumab treatment of women with postmenopausal osteoporosis maintained BTM reduction and increased BMD, and was associated with low fracture rates and a favorable risk/benefit profile.  相似文献   

10.
In assessing osteoporotic fractures of the proximal femur, the main objective of this in vivo case‐control study was to evaluate the performance of quantitative computed tomography (QCT) and a dedicated 3D image analysis tool [Medical Image Analysis Framework—Femur option (MIAF‐Femur)] in differentiating hip fracture and non–hip fracture subjects. One‐hundred and seven women were recruited in the study, 47 women (mean age 81.6 years) with low‐energy hip fractures and 60 female non–hip fracture control subjects (mean age 73.4 years). Bone mineral density (BMD) and geometric variables of cortical and trabecular bone in the femoral head and neck, trochanteric, and intertrochanteric regions and proximal shaft were assessed using QCT and MIAF‐Femur. Areal BMD (aBMD) was assessed using dual‐energy X‐ray absorptiometry (DXA) in 96 (37 hip fracture and 59 non–hip fracture subjects) of the 107 patients. Logistic regressions were computed to extract the best discriminates of hip fracture, and area under the receiver characteristic operating curve (AUC) was calculated. Three logistic models that discriminated the occurrence of hip fracture with QCT variables were obtained (AUC = 0.84). All three models combined one densitometric variable—a trabecular BMD (measured in the femoral head or in the trochanteric region)—and one geometric variable—a cortical thickness value (measured in the femoral neck or proximal shaft). The best discriminant using DXA variables was obtained with total femur aBMD (AUC = 0.80, p = .003). Results highlight a synergistic contribution of trabecular and cortical components in hip fracture risk and the utility of assessing QCT BMD of the femoral head for improved understanding and possible insights into prevention of hip fractures. © 2011 American Society for Bone and Mineral Research.  相似文献   

11.
12.
This study compared microscopic magnetic resonance imaging (μMRI) parameters of trabecular microarchitecture between postmenopausal women with and without fracture who have normal or osteopenic bone mineral density (BMD) on dual-energy X-ray absorptiometry (DXA). It included 36 postmenopausal white women 50 years of age and older with normal or osteopenic BMD (T-scores better than -2.5 at the lumbar spine, proximal femur, and one-third radius on DXA). Eighteen women had a history of low-energy fracture, whereas 18 women had no history of fracture and served as an age, race, and ultradistal radius BMD-matched control group. A three-dimensional fast large-angle spin-echo (FLASE) sequence with 137 μm × 137 μm × 400 μm resolution was performed through the nondominant wrist of all 36 women using the same 1.5T scanner. The high-resolution images were used to measure trabecular bone volume fraction, trabecular thickness, surface-to-curve ratio, and erosion index. Wilcoxon signed-rank tests were used to compare differences in BMD and μMRI parameters between postmenopausal women with and without fracture. Post-menopausal women with fracture had significantly lower (p < 0.05) trabecular bone volume fraction and surface-to-curve ratio and significantly higher (p < 0.05) erosion index than postmenopausal women without fracture. There was no significant difference between postmenopausal women with and without fracture in trabecular thickness (p = 0.80) and BMD of the spine (p = 0.21), proximal femur (p = 0.19), one-third radius (p = 0.47), and ultradistal radius (p = 0.90). Postmenopausal women with normal or osteopenic BMD who had a history of low-energy fracture had significantly different (p < 0.05) μMRI parameters than an age, race, and ultradistal radius BMD-matched control group of postmenopausal women with no history of fracture. Our study suggests that μMRI can be used to identify individuals without a DXA-based diagnosis of osteoporosis who have impaired trabecular microarchitecture and thus a heretofore-unappreciated elevated fracture risk.  相似文献   

13.
Sclerostin is synthesized by osteocytes and inhibits bone formation. We measured serum sclerostin levels in 710 men aged 50 years and older. Bone mineral density (BMD) was measured at the lumbar spine, hip, and distal forearm. Serum sclerostin increased with age (unadjusted r = 0.30, p < 0.001). After adjustment for age, weight, and bioavailable 17β‐estradiol, serum sclerostin correlated positively with BMD (r = 0.24 to 0.35, p < 0.001) and negatively with the levels of bone turnover markers (r = ? 0.09 to ? 0.23, p < 0.05 to 0.001). During a 10‐year follow‐up, 75 men sustained fragility fractures. Fracture risk was lower in the two upper quintiles of sclerostin combined versus three lower quintiles combined (6.1 versus 13.5%, p < 0.01). We compared fracture risk in the two highest quintiles combined versus three lower quintiles combined using the Cox model adjusted for age, weight, leisure physical activity, BMD, bone width (tubular bones), prevalent fracture, prevalent falls, ischemic heart disease, and severe abdominal aortic calcification. Men with higher sclerostin concentration had lower fracture risk (adjusted for hip BMD, hazard ratio [HR] = 0.55, 95% confidence interval [CI] 0.31 to 0.96, p < 0.05). The results were similar in 47 men with major fragility fractures (adjusted for lumbar spine BMD: HR = 0.39, 95% CI 0.17 to 0.90, p < 0.05). Men who had higher sclerostin and higher BMD (two highest quintiles) had lower risk of fracture compared with men who had lower BMD and lower sclerostin levels (three lower quintiles) (HR = 0.24, 95% CI 0.10 to 0.62, p < 0.005). Circulating sclerostin was not associated with mortality rate or the incidence of major cardiovascular events. Thus, in older men, higher serum sclerostin levels are associated with lower risk of fracture, higher BMD, and lower bone turnover rate. © 2013 American Society for Bone and Mineral Research.  相似文献   

14.
Despite extensive experimental and animal evidence about the detrimental effects of iron and its overload on bone metabolism, there have been no clinical studies relating iron stores to bone loss, especially in nonpathologic conditions. In the present study, we performed a large longitudinal study to evaluate serum ferritin concentrations in relation to annualized changes in bone mineral density (BMD) in healthy Koreans. A total of 1729 subjects (940 postmenopausal women and 789 middle‐aged men) aged 40 years or older who had undergone comprehensive routine health examinations with an average 3 years of follow‐up were enrolled. BMD in proximal femur sites (ie, the total femur, femur neck, and trochanter) was measured with dual‐energy X‐ray absorptiometry using the same equipment at baseline and follow‐up. The mean age of women and men in this study was 55.8 ± 6.0 years and 55.5 ± 7.8 years, respectively, and serum ferritin levels were significantly higher in men than in women (p < 0.001). The overall mean annualized rates of bone loss in the total femur, femur neck, and trochanter were ?1.14%/year, ?1.17%/year, and ?1.51%/year, respectively, in women, and ?0.27%/year, ?0.34%/year, and ?0.41%/year, respectively, in men. After adjustment for potential confounders, the rates of bone loss in all proximal femur sites in both genders were significantly accelerated in a dose‐response fashion across increasing ferritin quartile categories (p for trend = 0.043 to <0.001). Consistently, compared with subjects in the lowest ferritin quartile category, those in the third and/or highest ferritin quartile category showed significantly faster bone loss in the total femur and femur neck in both genders (p = 0.023 to <0.001). In conclusion, these data provide the first clinical evidence that increased total body iron stores could be an independent risk factor for accelerated bone loss, even in healthy populations. © 2012 American Society for Bone and Mineral Research.  相似文献   

15.
Genetic factors likely contribute to the risk for vertebral fractures; however, there are few studies on the genetic contributions to vertebral fracture (VFrx), vertebral volumetric bone mineral density (vBMD), and geometry. Also, the heritability (h2) for VFrx and its genetic correlation with phenotypes contributing to VFrx risk have not been established. This study aims to estimate the h2 of vertebral fracture, vBMD, and cross‐sectional area (CSA) derived from quantitative computed tomography (QCT) scans and to estimate the extent to which they share common genetic association in adults of European ancestry from three generations of Framingham Heart Study (FHS) families. Members of the FHS families were assessed for VFrx by lateral radiographs or QCT lateral scout views at 13 vertebral levels (T4 to L4) using Genant's semiquantitative (SQ) scale (grades 0 to 3). Vertebral fracture was defined as having at least 25% reduction in height of any vertebra. We also analyzed QCT scans at the L3 level for integral (In.BMD) and trabecular (Tb.BMD) vBMD and CSA. Heritability estimates were calculated, and bivariate genetic correlation analysis was performed, adjusting for various covariates. For VFrx, we analyzed 4099 individuals (148 VFrx cases) including 2082 women and 2017 men from three generations. Estimates of crude and multivariable‐adjusted h2 were 0.43 to 0.69 (p < 1.1 × 10?2). A total of 3333 individuals including 1737 men and 1596 women from two generations had VFrx status and QCT‐derived vBMD and CSA information. Estimates of crude and multivariable‐adjusted h2 for vBMD and CSA ranged from 0.27 to 0.51. In a bivariate analysis, there was a moderate genetic correlation between VFrx and multivariable‐adjusted In.BMD (?0.22) and Tb.BMD (?0.29). Our study suggests vertebral fracture, vertebral vBMD, and CSA in adults of European ancestry are heritable, underscoring the importance of further work to identify the specific variants underlying genetic susceptibility to vertebral fracture, bone density, and geometry. © 2012 American Society for Bone and Mineral Research.  相似文献   

16.
Measurements of change in bone mineral density (BMD) are thought to be weak predictors of treatment effect on the reduction of fracture risk. In this study we report an alternative year-on-year approach for the estimation of treatment effect explained by BMD in which we examine the relationship between fracture risk and the most recent change in BMD. We studied 7736 postmenopausal women (ages 65 to 89 years) who were participants in the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly-Pivotal Fracture Trial (HORIZON-PFT) and were randomized to either intravenous administration of zoledronic acid or placebo. The percentage of treatment effect explained by change in total hip BMD was estimated using the alternative year-on-year approach and the standard approach of looking at change over 3 years. We also studied a subset of 1132 women in whom procollagen type 1 amino-terminal propeptide (PINP) was measured at baseline and 12 months, to estimate the percentage of treatment effect explained by change in PINP. Regardless of the method used, the change in total hip BMD explained a large percentage of the effect of zoledronic acid in reducing new vertebral fracture risk (40%; 95% CI, 30% to 54%; for the 3-year analysis). The treatment effects for nonvertebral fracture were not statistically significant for the year-on-year analysis but 3-year change in BMD explained 61% (95% CI, 24% to 156%) of treatment effect. Change in PINP explained 58% (95% CI, 15% to 222%) of the effect of zoledronic acid in reducing new vertebral fracture risk. We conclude that our estimates of the percentage of treatment effect explained may be higher than in previous studies because of high compliance with zoledronic acid (due to its once-yearly intravenous administration). Previous studies may have underestimated the relationship between BMD change and the effect of treatment on fracture risk.  相似文献   

17.
Advanced glycation end products (AGE) in bone tissue are associated with impaired biomechanical properties and increased fracture risk. Here we examine whether serum levels of the AGE carboxy‐methyl‐lysine (CML) are associated with risk of hip fracture. We followed 3373 participants from the Cardiovascular Health Study (age 78 years; range, 68–102 years; 39.8% male) for a median of 9.22 years (range, 0.01–12.07 years). Rates of incident hip fracture were calculated by quartiles of baseline CML levels, and hazard ratios were adjusted for covariates associated with hip fracture risk. A subcohort of 1315 participants had bone mineral density (BMD) measurement. There were 348 hip fractures during follow‐up, with incidence rates of hip fracture by CML quartiles of 0.94, 1.34, 1.18, and 1.69 per 100 participant‐years. The unadjusted hazard ratio of hip fracture increased with each 1 SD increase (189 ng/mL) of CML level (hazard ratio, 1.27; 95% confidence interval [CI], 1.16–1.40]; p < 0.001). Sequential adjustment for age, gender, race/ethnicity, body mass index (BMI), smoking, alcohol consumption, prevalent coronary heart disease (CHD), energy expenditure, and estimated glomerular filtration rate (based on cystatin C), moderately attenuated the hazard ratio for fracture (1.17; 95% CI, 1.05–1.31; p = 0.006). In the cohort with BMD testing, total hip BMD was not significantly associated with CML levels. We conclude that increasing levels of CML are associated with hip fracture risk in older adults, independent of hip BMD. These results implicate AGE in the pathogenesis of hip fractures. © 2014 American Society for Bone and Mineral Research.  相似文献   

18.
Although a large number of studies have addressed the age‐related changes in bone mineral density (BMD), there is a paucity of data for the assessment of femoral strength loss with age in both genders. We determined the variation of strength with age in femurs of women and men by mechanical tests on a cohort of 100 cadaveric femurs. In addition, the age‐related neck BMD loss in our cadaveric cohort was found to be similar with BMD loss of four published population‐based studies. Given the strong correlation found in our cadaveric study between BMD and femoral strength, we also estimated the femoral strength of the four populations based on their reported neck BMDs. Our study showed that men's femurs in our cadaveric cohort were stronger than women's femurs by about 800 N at the same BMD level, and by 1750 N at the same age. The strength differences were not explained satisfactorily by the size difference between men's and women's bones. Similar to the findings of clinical studies, the BMD values of men at all ages were larger than that of women. The age‐related loss rates in BMD and strength were not statistically different between the two genders of our cadaveric cohort. After normalization, strength decreased more than 40% faster than BMD. On average, men reached a certain BMD value about 16 years later than women, and for strength about 23 years later, which may explain the higher rate of hip fracture in postmenopausal women. In patient population cohorts men reached a similar BMD value about 16 to 25 years later than women, whereas for estimated strength, sometimes more than 40 years later. © 2015 American Society for Bone and Mineral Research.  相似文献   

19.
In the randomized, placebo-controlled, double-blind phase 3 ACTIVE study (NCT01343004), 18 months of abaloparatide 80 μg daily (subcutaneous injection) in postmenopausal women at risk of osteoporotic fracture significantly reduced the risk of vertebral, nonvertebral, clinical, and major osteoporotic fractures and significantly increased bone mineral density (BMD) versus placebo regardless of baseline risk factors. Women from the abaloparatide and placebo groups who completed ACTIVE were eligible for ACTIVExtend (NCT01657162), in which all enrollees received sequential, open-label monotherapy with alendronate 70 mg once weekly for up to 24 months. This prespecified analysis evaluated whether fracture risk reductions and bone mineral density (BMD) gains associated with abaloparatide during ACTIVE persisted through the full 43-month ACTIVE–ACTIVExtend study period in nine prespecified baseline risk subgroups. Baseline risk subgroups included BMD T-score at the lumbar spine, total hip, and femoral neck (≤ − 2.5 versus > − 2.5 and ≤ −3.0 versus > − 3.0), history of nonvertebral fracture (yes/no), prevalent vertebral fracture (yes/no), and age (<65 versus 65 to <75 versus ≥75 years). Forest plots display treatment effect. Treatment-by-subgroup interactions were tested using the Breslow-Day test, Cox proportional hazards model, and ANCOVA model. After the combined ACTIVE–ACTIVExtend study period, reductions in relative risk for new vertebral, nonvertebral, clinical, and major osteoporotic fractures were greater among patients in the abaloparatide/alendronate group than among those in the placebo/alendronate group across all nine baseline risk subgroups. BMD gains at the lumbar spine, total hip, and femoral neck were greater in the abaloparatide/alendronate group versus the placebo/alendronate group. No clinically meaningful interaction between treatment assignment and any baseline risk variable was observed. The sequence of abaloparatide for 18 months followed by alendronate for up to 24 months appears to be an effective treatment option for a wide range of postmenopausal women at risk for osteoporotic fractures. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.  相似文献   

20.
Abaloparatide‐SC is a novel 34–amino acid peptide created to be a potent and selective activator of the parathyroid hormone receptor type 1 (PTHR1) signaling pathway. In the Abaloparatide Comparator Trial in Vertebral Endpoints (ACTIVE) Phase 3 trial (NCT01343004), abaloparatide reduced new morphometric vertebral fractures by 86% compared with placebo (p < 0.001) and nonvertebral fractures by 43% (p = 0.049) in postmenopausal women with osteoporosis. Abaloparatide‐SC increased bone mineral density (BMD) 3.4% at the total hip, 2.9% at the femoral neck, and 9.2% at the lumbar spine at 18 months (all p < 0.001 versus placebo). The analysis reported here was designed to evaluate whether fracture risk reductions and BMD accrual were consistent across different levels of baseline risk. Risk factor subgroups were predefined categorically for BMD T‐score of the lumbar spine, total hip, and femoral neck (≤–2.5 versus >–2.5 and ≤–3.0 versus >–3.0), history of nonvertebral fracture (yes versus no), prevalent vertebral fracture (yes versus no), and age (<65 versus 65 to <75 versus ≥75 years) at baseline. Forest plots show that there were no clinically meaningful interactions between any of the baseline risk factors and the treatment effect of abaloparatide‐SC on new morphometric vertebral fractures, nonvertebral fractures, or BMD increases. Abaloparatide provides protection against fractures consistently across a wide variety of ages and baseline risks, including those with and without prior fractures, and it has potential utility for a broad group of postmenopausal women with osteoporosis. © 2016 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号