首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT) are distinct clinical entities caused by germline mutations in genes encoding members of the TGFbeta/BMP superfamily: BMPR2 in PAH and ACVRL1, ENG, or SMAD4 in HHT. When PAH and HHT occasionally co-exist within the same family, ACVRL1 mutations predominate. We report a 36-year-old woman initially diagnosed with PAH at age 24. At 35, following massive hemoptysis, multiple pulmonary arteriovenous malformations were discovered, prompting evaluation for HHT. She met the Cura?ao diagnostic criteria for suspected HHT based on additional findings of nasal telangiectases and epistaxis. Mutation analysis of ACVRL1, ENG, and SMAD4 was normal, but a germline nonsense mutation in BMPR2 was identified. This is the first known report of HHT features, particularly pulmonary AVMs, associated with a BMPR2 mutation. It adds further weight to a common molecular pathogenesis in PAH and HHT, and highlights that BMPR2 gene analysis is indicated in patients affected with both HHT and PAH.  相似文献   

2.
Juvenile polyposis (JP) is characterized by the development of multiple hamartomatous polyps and is inherited as an autosomal dominant trait. Germline mutations of the SMAD4 gene have been reported in JP. We have previously identified three SMAD4 germline mutations in five Korean JP patients. Recently, germline mutations of the BMPR1A (ALK3) gene were reported in JP cases without SMAD4 mutations. In order to determine whether BMPR1A could be involved in the development of JP, we screened all five patients using denaturing high-performance liquid chromatography (DHPLC) analysis. We found that one patient had a BMPR1A germline mutation without a SMAD4 mutation. This patient harbored a novel missense mutation (M470T) in exon 10. After close clinico-pathological examination, one patient who was previously diagnosed to have JP was excluded from the JP group. In total, all four Korean JP patients had either the SMAD4 or the BMPR1A mutation, with three having SMAD4 germline mutations and one carrying a BMPR1A germline mutation.  相似文献   

3.
Two main colorectal polyposis syndromes have been described, familial adenomatous polyposis and MUTYH-associated polyposis syndromes. Some polyposis remains unexplained: 20% of adenomatous polyposis and serrated polyposis. The aim of this study was to evaluate in a cohort of patients with unexplained polyposis whether a genetic defect could be detected. Individuals presenting polyposis with more than 40 adenomas or more than 20 serrated polyps (hyperplastic, sessile serrated and mixed), without causative mutation identified, were included. Complementary explorations on APC or MUTYH were performed: search for APC mosaicism, splicing-affecting mutations, large genomic rearrangement of MUTYH. Four genes of Wnt pathway (AXIN2, PPP2R1B, WIF1, SFRP1) and two genes of transforming growth factor-β (TGF-β) pathway (SMAD4, BMPR1A) were screened for germline mutation. Twenty-five patients had an unexplained adenomatous polyposis (familial or sporadic). Five pathogenic mutations were found: four in APC gene (with one case of mosaicism) and one in BMPR1A gene. The exploration of APC mosaicism was better performed from adenoma DNA with high-resolution melting. The screening of the candidate genes did not find any causative mutation. Thirteen individuals had an unexplained serrated polyposis and a frameshift on SMAD4 gene was identified. All mutations were identified in familial cases of polyposis. After new pathological examination, both BMPR1A and SMAD4 cases were found to be associated with a juvenile polyposis while the polyposis was initially described as adenomatous or undetermined. In 17% (6/38) of the patients the causative mutation of the polyposis was identified. Genetic causes were heterogeneous. Sporadic polyposis patients must be considered as potential APC mosaicism. The histological classification of polyposis is strongly important in direct genetic exploration.  相似文献   

4.
Juvenile polyposis syndrome is a hamartomatous intestinal polyposis associated with malignant changes in 20% of patients at an early age. Germline mutations mostly involve two genes, SMAD4 and BMPR1, with no strong evidence of phenotype-genotype correlation, which could be predictive of the specific long-term evolution. In contrast, PTEN mutations are more commonly associated with Cowden and related diseases. Forty-two unrelated patients affected by juvenile polyposis syndrome were analyzed for germline alterations in the BMPR1A and SMAD4 genes, and for clinical and histological features. Deleterious mutations were found in 14/42 (33%) patients: 5 in BMPR1A and 9 in SMAD4. Low-grade adenomas were present in both SMAD4 and BMPR1A mutation carriers; only patients with SMAD4 mutations harbored carcinoma lesions (5/9). Malformative vessels were present in all SMAD4 related polyps when the mutation involved codons prior to position 423. No gastric polyps were observed in BMPR1A mutation carriers. SMAD4 germline mutations are responsible for a more aggressive digestive phenotype in patients with juvenile polyposis. The presence of malformative vessels within the stromal component might be a useful tool to drive the subsequent genetic and clinical management.  相似文献   

5.
Juvenile polyposis syndrome (JPS) is a rare autosomal dominant disorder predisposing to gastrointestinal hamartomatous polyps and cancer with a pathogenic SMAD4 or BMPR1A germline mutation (1st‐hit) being identified in about 40–50% of patients. Little is known, however, about the occurrence and nature of somatic alterations (2nd‐hit) in SMAD4‐/BMPR1A‐related juvenile polyps. In this study, we screened 25 polyps from three patients carrying either a pathogenic SMAD4 (c.1244‐1247delACAG) or BMPR1A (c.583C>T; p.Gln195*) germline mutation for somatic alterations. The SMAD4‐related polyps were also analyzed for SMAD4 protein expression by immunohistochemistry. Despite comprehensive screening for loss of heterozygosity (LOH), mutations in the coding sequence, chromosomal rearrangements, and promoter methylation, no somatic alterations could be identified in 14 SMAD4‐related polyps. SMAD4 protein expression, however, was lost in 8 (57%) of 14 juvenile polyps with 6 showing concomitant loss in both, the epithelial and stromal, compartments. In the BMPR1A‐related polyps, five out of nine (56%) displayed LOH. Further analysis of selected polyps revealed that LOH was gene copy number neutral and had occurred in the epithelial compartment. The heterogeneity of genetic mutations and protein expression levels indicates that different modes of gene inactivation can be operational in SMAD4 ‐ and BMPR1A‐related polyp formation. Our observation, that about half of BMPR1A‐related polyps displayed LOH, predominantly in the epithelial compartment, is compatible with BMPR1A acting as a tumour suppressor gene. Still, it remains to be determined whether juvenile polyp development generally requires loss of BMPR1A expression or, as observed in some SMAD4‐related polyps, can occur despite normal protein expression. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
《Genetics in medicine》2023,25(11):100925
PurposePulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia–, and congenital heart disease–associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing.MethodsAn international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence.ResultsTwelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time.ConclusionWe recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.  相似文献   

7.
8.
A substantial proportion of patients with pulmonary arterial hypertension (PAH) have mutations in the Bone Morphogenetic Protein Receptor type‐2 (BMPR2) gene. PAH due to BMPR2 mutations is inherited as an autosomal dominant trait with several unique features, including a wide variety of mutations, reduced penetrance, a skewed gender ratio, variable expressivity and genetic anticipation. To address the genetic background of these unique features of BMPR2 mutation, we conducted a systematic analysis of 15 PAH families with BMPR2 mutation. The exonic protein coding sequence of BMPR2 was amplified by polymerase chain reaction and the products were sequenced directly to detect point mutations in BMPR2. Parental identification was carried out to confirm the parental relationship using multiplex 15 loci analysis. Combining mutation detection in family members with parental identification, we described three cases of de novo mutation in the BMPR2 gene by different modes in a PAH family. These de novo mutations may account for the wide variety of mutations in BMPR2. Taken together with the juvenile onset of the disease, there is possibly some balance of de novo mutations and untransmittable mutations which keeps the frequency of PAH low in the general population.  相似文献   

9.
Juvenile polyposis (JPS) is an autosomal dominant syndrome that predisposes individuals to develop gastrointestinal polyps and cancer. Germline point mutations in SMAD4 and BMPR1A have been identified as causing JPS in approximately 40–60% of patients, but few studies have looked at the rate of large deletions. In this study, we determined the overall prevalence of genetic changes of SMAD4 and BMPR1A by sequencing and by screening for larger deletions. DNA was extracted from 102 JPS probands, and each exon and intron–exon boundary of SMAD4 and BMPR1A were sequenced. Coding and non-coding exons of SMAD4 and BMPR1A were screened for deletions with multiplex ligation-dependent probe amplification (MLPA). By sequencing, 20 probands had point mutations of SMAD4 and 22 of BMPR1A . By MLPA, one proband had deletion of most of SMAD4 , one of both BMPR1A and PTEN , one of the 5' end of BMPR1A , and another of the 5' end of SMAD4 . The overall prevalence of SMAD4 and BMPR1A point mutations and deletions in JPS was 45% in the largest series of patients to date. Large deletions are less frequent in JPS patients, but represent other heritable causes of JPS, which should be screened for in pre-symptomatic genetic testing.  相似文献   

10.
Pulmonary arterial hypertension (PAH) is an often fatal disorder resulting from several causes including heterogeneous genetic defects. While mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are the single most common causal factor for hereditary cases, pathogenic mutations have been observed in approximately 25% of idiopathic PAH patients without a prior family history of disease. Additional defects of the transforming growth factor beta pathway have been implicated in disease pathogenesis. Specifically, studies have confirmed activin A receptor type II‐like 1 (ACVRL1), endoglin (ENG), and members of the SMAD family as contributing to PAH both with and without associated clinical phenotypes. Most recently, next‐generation sequencing has identified novel, rare genetic variation implicated in the PAH disease spectrum. Of importance, several identified genetic factors converge on related pathways and provide significant insight into the development, maintenance, and pathogenetic transformation of the pulmonary vascular bed. Together, these analyses represent the largest comprehensive compilation of BMPR2 and associated genetic risk factors for PAH, comprising known and novel variation. Additionally, with the inclusion of an allelic series of locus‐specific variation in BMPR2, these data provide a key resource in data interpretation and development of contemporary therapeutic and diagnostic tools.  相似文献   

11.
Mutations of the BMPR2 gene predispose to pulmonary arterial hypertension (PAH), a serious, progressive disease of the pulmonary vascular system. However, despite the fact that most PAH families are consistent with linkage to the BMPR2 locus, sequencing only identifies mutations in some 55% of familial cases and between 10% and 40% of cases without a family history (idiopathic or IPAH). We therefore conducted a systematic analysis for larger gene rearrangements in panels of both familial and idiopathic PAH cases that were negative on sequencing of coding regions. Analysis of exon dosage across the entire gene using Multiplex Ligation-dependent Probe Amplification identified nine novel rearrangements and enabled full characterization at the exon level of previously reported deletions. Overall, BMPR2 rearrangements were identified in 7 of 58 families and 6 of 126 IPAH cases, suggesting that gross rearrangements underlie around 12% of all FPAH cases and 5% of IPAH. Importantly, two deletions encompassed all functional protein domains and are predicted to result in null mutations, providing the strongest support yet that the predominant molecular mechanism for disease predisposition is haploinsufficiency. Dosage analysis should now be considered an integral of part of the molecular work-up of PAH patients.  相似文献   

12.

Background

In patients with juvenile polyposis syndrome (JPS) the frequency of large genomic deletions in the SMAD4 and BMPR1A genes was unknown.

Methods

Mutation and phenotype analysis was used in 80 unrelated patients of whom 65 met the clinical criteria for JPS (typical JPS) and 15 were suspected to have JPS.

Results

By direct sequencing of the two genes, point mutations were identified in 30 patients (46% of typical JPS). Using MLPA, large genomic deletions were found in 14% of all patients with typical JPS (six deletions in SMAD4 and three deletions in BMPR1A). Mutation analysis of the PTEN gene in the remaining 41 mutation negative cases uncovered a point mutation in two patients (5%). SMAD4 mutation carriers had a significantly higher frequency of gastric polyposis (73%) than did patients with BMPR1A mutations (8%) (p<0.001); all seven cases of gastric cancer occurred in families with SMAD4 mutations. SMAD4 mutation carriers with gastric polyps were significantly older at gastroscopy than those without (p<0.001). In 22% of the 23 unrelated SMAD4 mutation carriers, hereditary hemorrhagic telangiectasia (HHT) was also diagnosed clinically. The documented histologic findings encompassed a wide distribution of different polyp types, comparable with that described in hereditary mixed polyposis syndromes (HMPS).

Conclusions

Screening for large deletions raised the mutation detection rate to 60% in the 65 patients with typical JPS. A strong genotype‐phenotype correlation for gastric polyposis, gastric cancer, and HHT was identified, which should have implications for counselling and surveillance. Histopathological results in hamartomatous polyposis syndromes must be critically interpreted.Juvenile polyposis syndrome (JPS, OMIM 174900) is an autosomal dominant disorder characterised by the occurrence of multiple juvenile polyps in the gastrointestinal tract, specifically in the stomach, small intestine, colon and rectum.1,2,3 Pathogenic germline mutations in the SMAD4 (MADH4) gene have been identified in around 20% of patients with JPS, and another 20% of patients were found to exhibit a mutation in the BMPR1A gene.1,4,5,6 A higher frequency of gastric polyposis in carriers of SMAD4 mutations compared with carriers of BMPR1A mutations has been reported.6,7,8 Most SMAD4 or BMPR1A germline mutations published to date are small insertions/deletions and single base substitutions leading to nonsense, splice‐site or missense mutations (Human Gene Mutation Database). Recently, germline deletions encompassing the contiguous genes BMPR1A and PTEN on chromosome 10q have been reported in five cases of juvenile polyposis of infancy.9,10 These deletions have been found by absence of parental alleles in the children, quantitative PCR or fluorescence in situ analysis.Large genomic deletions or duplications encompassing ⩾1 exons have been found in several genes using the multiplex ligation‐dependent probe amplification (MLPA) assay.11,12,13,14,15 Using the recently developed MLPA test kit for quantitative evaluation of genes involved in JPS, we examined whether large SMAD4 or BMPR1A deletions or duplications are present in patients with JPS with as yet unknown germline mutations, and verified the genotype–phenotype correlation with respect to gastric polyposis.  相似文献   

13.
Primary pulmonary hypertension (PPH) is a potentially lethal disorder, in which heterozygous mutations within the bone morphogenetic protein type II receptor (BMPR2) gene (BMPR2) have been identified. We conducted a molecular study of BMPR2 mutations in 4 Japanese families with familial PPH and 30 Japanese patients with sporadic PPH, and found 13 different mutations, of which 10 were novel, including missense (n=2), nonsense (n=4), frameshift (n=3), and splice-donor site (n=1) mutations. In total, BMPR2 mutations were found in all 4 familial PPH cases and 12 (40%) of the sporadic PPH cases. Further, a majority of the mutations found were predicted to cause premature termination, as previously reported. In the 9 mutations found in the sporadic cases, 2 were shown to be de novo, 2 were shared in multiple cases, 1 was shared with an FPPH case, and 1 was the same as previously reported in Caucasian FPPH. These results indicate that a substantial portion of Japanese PPH patients carry BMPR2 mutations with considerable heterogeneity.  相似文献   

14.
15.
《Genetics in medicine》2008,10(5):359-365
PurposeWe hypothesized that functional TGFβ1 SNPs increase TGFβ/BMP signaling imbalance in BMPR2 mutation heterozygotes to accelerate the age at diagnosis, increase the penetrance and SMAD2 expression in familial pulmonary arterial hypertension.MethodsSingle nucleotide polymorphism genotypes of BMPR2 mutation heterozygotes, age at diagnosis, and penetrance of familial pulmonary arterial hypertension were compared and SMAD2 expression was studied in lung sections.ResultsBMPR2 mutation heterozygotes with least active -509 or codon 10 TGFβ1 SNPs had later mean age at diagnosis of familial pulmonary arterial hypertension (39.5 and 43.2 years) than those with more active genotypes (31.6 and 33.1 years, P = 0.03 and 0.02, respectively). Kaplan-Meier analysis also showed that those with the less active single nucleotide polymorphisms had later age at diagnosis. BMPR2 mutation heterozygotes with nonsense-mediated decay resistant BMPR2 mutations and the least, intermediate and most active -509 TGFβ1 SNP genotypes had penetrances of 33, 72, and 80%, respectively (P = 0.003), whereas those with 0–1, 2, or 3–4 active single nucleotide polymorphism alleles had penetrances of 33, 72, and 75% (P = 0.005). The relative expression of TGFβ1 dependent SMAD2 was increased in lung sections of those with familial pulmonary arterial hypertension compared with controls.ConclusionsThe TGFβ1 SNPs studied modulate age at diagnosis and penetrance of familial pulmonary arterial hypertension in BMPR2 mutation heterozygotes, likely by affecting TGFβ/BMP signaling imbalance. This modulation is an example of Synergistic Heterozygosity.  相似文献   

16.
Pulmonary arterial hypertension (PAH) is a rare and severe disorder characterized by progressive pulmonary vasculopathy. Growth differentiation factor (GDF)2 encodes the pro-protein bone morphogenetic protein (BMP) 9, activated after cleavage by endoproteases into an active mature form. BMP9, together with BMP10, are high-affinity ligands of activin receptor-like kinase 1 (ALK1) and BMP receptor type II (BMPR2). GDF2 mutations have been reported in idiopathic PAH with most patients being heterozygous carriers although rare homozygous cases have been described. The link between PAH occurrence and BMP9 or 10 expression level is still unclear. In this study, we describe a pediatric case of PAH also presenting with telangiectasias and epistaxis. The patient carries the novel homozygous GDF2 c.946A > G mutation, replacing the first arginine of BMP9's cleavage site (R316) by a glycine. We show that this mutation leads to an absence of circulating mature BMP9 and mature BMP9-10 heterodimers in the patient's plasma although pro-BMP9 is still detected at a similar level as controls. In vitro functional studies further demonstrated that the mutation R316G hampers the correct processing of BMP9, leading to the secretion of inactive pro-BMP9. The heterozygous carriers of the variant were asymptomatic, similarly to previous reports, reinforcing the hypothesis of modifiers preventing/driving PAH development in heterozygous carriers.  相似文献   

17.
18.
《Genetics in medicine》2020,22(9):1524-1532
PurposeJuvenile polyposis syndrome (JPS) is a rare, autosomal-dominantly inherited cancer predisposition caused in approximately 50% of cases by pathogenic germline variants in SMAD4 and BMPR1A. We aimed to gather detailed clinical and molecular genetic information on JPS disease expression to provide a basis for management guidelines and establish open access variant databases.MethodsWe performed a retrospective, questionnaire-based European multicenter survey on and established a cohort of SMAD4/BMPR1A pathogenic variant carriers from the medical literature.ResultsWe analyzed questionnaire-based data on 221 JPS patients (126 kindreds) from ten European centers and retrieved literature-based information on 473 patients. Compared with BMPR1A carriers, SMAD4 carriers displayed anemia twice as often (58% vs. 26%), and exclusively showed overlap symptoms with hemorrhagic telangiectasia (32%) and an increased prevalence (39% vs. 13%) of gastric juvenile polyps. Cancer, reported in 15% of JPS patients (median age 41 years), mainly occurred in the colorectum (overall: 62%, SMAD4: 58%, BMPR1A: 88%) and the stomach (overall: 21%; SMAD4: 27%, BMPR1A: 0%).ConclusionThis comprehensive retrospective study on genotype–phenotype correlations in 694 JPS patients corroborates previous observations on JPS in general and SMAD4 carriers in particular, facilitates recommendations for clinical management, and provides the basis for open access variant SMAD4 and BMPR1A databases.  相似文献   

19.
经典型苯丙酮尿症苯丙氨酸羟化酶基因的新突变鉴定   总被引:2,自引:0,他引:2  
目的研究经典型苯丙酮尿症(phenylketonuria, PKU)基因突变.方法应用聚合酶链反应,单链构象多态分析和DNA直接测序等技术,对内蒙古地区32个PKU家系苯丙氨酸羟化酶(phenylalanine hydroxylase, PAH)基因第3~12外显子进行了鉴定分析. 结果检出14种PAH基因点突变R243Q (12/64)、Y356X(6/64)、Y204C(5/64)、R261Q(2/64)、Y161S(2/64)、R252Q(1/64)、R111X(2/64)、D282G(1/64)、S303P(1/64)、G239D(1/64)、R413P(1/64)、IVS7nt+2(2/64)、IVS4nt+3(1/64)、IVS9nt+34(2/64),经检索国际PAH基因突变数据统计库(截至到2004年7月),确认IVS4nt+3(G>C)、IVS9nt+34(G>A)为国际首次发现的新突变,S303P(T>C) 、D282G(A>G)为国内首次报道的新突变.结论内蒙古人群苯丙氨酸羟化酶基因存在突变的多样性,R243Q、Y356X、Y204C是PAH基因的突变热点.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号