首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blunt chest trauma resulting in pulmonary contusion is a common but poorly understood injury. We previously demonstrated that lung contusion activates localized and systemic innate immune mechanisms and recruits neutrophils to the injured lung. We hypothesized that the innate immune and inflammatory activation of neutrophils may figure prominently in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans and evaluated postinjury lung function and pulmonary neutrophil recruitment. Comparisons were made between injured mice with and without neutrophil depletion. We further examined the role of chemokines and adhesion receptors in neutrophil recruitment to the injured lung. We found that lung injury and resultant physiological dysfunction after contusion were dependent on the presence of neutrophils in the alveolar space. We show that CXCL1, CXCL2/3, and CXCR2 are involved in neutrophil recruitment to the lung after injury and that intercellular adhesion molecule 1 is locally expressed and actively participates in this process. Injured gp91-deficient mice showed improved lung function, indicating that oxidant production by neutrophil NADPH oxidase mediates lung dysfunction after contusion. These data suggest that both neutrophil presence and function are required for lung injury after lung contusion.  相似文献   

2.
Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma, such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety of inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll-like receptors 2 and 4 (TLR2 and TLR4) mediate the inflammatory response to lung injury. In this study, we used chimeric mice generated by adoptive bone marrow transfer between TLR2 or TLR4 and wild-type mice. We found that, in the lung, both bone marrow-derived and nonmyeloid cells contribute to TLR-dependent inflammatory responses after injury in a cell type-specific manner. We also show a novel TLR2-dependent injury mechanism that is associated with enhanced airway epithelial cell apoptosis and increased pulmonary FasL and Fas expression in the lungs from injured mice. Thus, in addition to cardiopulmonary physiological dysfunction, cell type-specific TLR and their differential response to injury may provide novel specific targets for management of patients with pulmonary contusion.  相似文献   

3.
Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We report that Toll-like receptor (TLR) 2 participates in the inflammatory response to lung injury. To show this, we use a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans based on histologic, morphologic, and biochemical criteria of acute lung injury. The inflammatory response to pulmonary contusion in our mouse model is characterized by pulmonary edema, neutrophil transepithelial migration, and increased expression of the innate immunity proinflammatory cytokines IL 1beta and IL 6, the adhesion intracellular adhesion molecule 1, and chemokine (CXC motif) ligand 1. Compared with wild-type animals, contused Tlr2(-/-) mice have significantly reduced pulmonary edema and neutrophilia. These findings are associated with decreased levels of circulating chemokine (CXC motif) ligand 1. In contrast, systemic IL 6 levels remain elevated in the TLR2-deficient phenotype. These results show that TLR2 has a primary role in the neutrophil response to acute lung injury. We suggest that an unidentified noninfectious ligand generated by pulmonary contusion acts via TLR2 to generate inflammatory responses.  相似文献   

4.
Inflammatory arthritis is associated with the release of a network of key cytokines. In T cell receptor transgenic K/BxN mice interleukin (IL)-1 plays a key role in joint swelling and destruction, as suggested by the ability of anti-IL-1receptor (IL-1R) antibody treatment to delay the onset and slow the progression of this disease. This mechanism is dependent on the signaling pathway intermediary myeloid differentiation factor 88 (MyD88), such that neither IL-1R nor MyD88-deficient mice developed visually detectable synovitis after transfer of arthritogenic sera. The Toll-like receptors (TLRs) share the same signaling pathway through MyD88 as the IL-1R. The administration of a TLR-4 ligand, lipopolysaccharide, concomitant with arthritogenic serum in IL-1 receptor-deficient mice resulted in acute paw swelling, but not in MyD88-deficient mice. Also, serum transferred arthritis was not sustained in TLR-4 mutant mice compared with controls. These results suggest that innate immune functions via TLR-4 might perpetuate inflammatory mechanisms and bypass the need for IL-1 in chronic joint inflammation.  相似文献   

5.
Activation of NF-κB and 5-lipoxygenase-mediated (5-LO-mediated) biosynthesis of the lipid mediator leukotriene B4 (LTB4) are pivotal components of host defense and inflammatory responses. However, the role of LTB4 in mediating innate immune responses elicited by specific TLR ligands and cytokines is unknown. Here we have shown that responses dependent on MyD88 (an adaptor protein that mediates signaling through all of the known TLRs, except TLR3, as well as IL-1β and IL-18) are reduced in mice lacking either 5-LO or the LTB4 receptor BTL1, and that macrophages from these mice are impaired in MyD88-dependent activation of NF-κB. This macrophage defect was associated with lower basal and inducible expression of MyD88 and reflected impaired activation of STAT1 and overexpression of the STAT1 inhibitor SOCS1. Expression of MyD88 and responsiveness to the TLR4 ligand LPS were decreased by Stat1 siRNA silencing in WT macrophages and restored by Socs1 siRNA in 5-LO-deficient macrophages. These results uncover a pivotal role in macrophages for the GPCR BLT1 in regulating activation of NF-κB through Stat1-dependent expression of MyD88.  相似文献   

6.
Remote and systemic inflammatory responses after long bone fractures have been well described, but the mechanisms underlying these changes remain unexplained. We hypothesized that bone components locally exposed to injured soft tissue are capable of inducing a systemic inflammatory response associated with acute lung injury, and that this inflammatory cascade requires Toll-like receptor 4 (TLR-4) signaling. Accordingly, male C3H/HeOuJ (TLR-4-competent) and C3H/HeJ (TLR-4-mutant) mice were injected with various bone components (bone marrow cells, bone marrow supernatant, and bone suspension, respectively) in bilaterally injured thigh muscles and euthanized after 6 h. Serum TNF-alpha, IL-6, and IL-10 levels, and pulmonary myeloperoxidase activity was measured using specific enzyme-linked immunosorbent assay kits. Pulmonary permeability changes were assessed with bronchoalveolar lavage. Local exposure of bone components to injured soft tissue induced systemic inflammation and acute lung injury in TLR-4-competent, but not in TLR-4-mutant, animals. These findings suggest that bone components contribute to systemic inflammation and acute lung injury after long bone fractures via TLR-4 signaling and support the notion of a central role for TLR-4 in sensing tissue damage.  相似文献   

7.
TIR domain--containing adaptors regulate TLR-mediated signaling pathways   总被引:1,自引:0,他引:1  
Recognition of pathogens by Toll-like receptors (TLRs) triggers innate immune responses via signaling pathways mediated by several Toll/IL-1R (TIR) domain-containing adaptors such as MyD88, TIRAP, and TRIF. MyD88 is a common adaptor that is essential for proinflammatory cytokine production, whereas TRIF mediates the MyD88-independent pathway from TLR3 and TLR4 that is responsible for type I interferon production in response to double-stranded RNA and LPS, respectively. TIRAP specifically participates in the MyD88-dependent pathways shared by TLR2 and TLR4, and TRAM is essential for the TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors play an important role in the TLR mediated signaling pathways.  相似文献   

8.
MyD88 is a common Toll-like receptor (TLR) adaptor molecule found to be essential for induction of adaptive Th1 immunity. Conversely, innate control of adaptive Th2 immunity has been shown to occur in a MyD88-independent manner. In this study, we show that MyD88 is an essential innate component in the induction of TLR4-dependent Th2 responses to intranasal antigen; thus we demonstrate what we believe to be a novel role for MyD88 in pulmonary Th2 immunity. Induction of the MyD88-independent type I IFN response to LPS is defective in the pulmonary environment. Moreover, in the absence of MyD88, LPS-induced upregulation of costimulatory molecule expression on pulmonary DCs is defective, in contrast to what has been observed with bone marrow-derived DCs (BMDCs). Reconstitution of Th2 responses occurs upon adoptive pulmonary transfer of activated BMDCs to MyD88-deficient recipients. Furthermore, the dependence of Th2 responses on MyD88 is governed by the initial route of antigen exposure; this demonstrates what we believe are novel site-specific innate mechanisms for control of adaptive Th2 immunity.  相似文献   

9.
The administration of recombinant adeno-associated viral vectors (rAAV) for gene transfer induces strong humoral responses through mechanisms that remain incompletely characterized. To investigate the links between innate and adaptive immune responses to the vector, rAAVs were injected intravenously into mice deficient in cell-intrinsic components of innate responses (Toll-like receptors (TLRs), type-1 interferon (IFN) or inflammasome signaling molecules) and AAV-specific antibodies were measured. Of all molecules tested, only MyD88 was critically needed to mount immunoglobulin G (IgG) responses since MyD88−/− mice failed to develop high levels of AAV-specific IgG2 and IgG3, regardless of capsid serotype injected. None of the TLRs tested was essential here, but TLR9 ensured a Th1-biased antibody responses. Indeed, capsid-specific Th1 cells were induced upon injection of rAAV1, as directly confirmed with an epitope-tagged capsid, and the priming and development of these Th1 cells required T cell-extrinsic MyD88. Cell transfer experiments showed that autonomous MyD88 signaling in B cells, but not T cells, was sufficient to produce Th1-dependent IgGs. Therefore, rAAV triggers innate responses, at least via B cells, controlling the development of capsid-specific Th1-driven antibodies. MyD88 emerges as a critical and pivotal regulator of both T- and B-cell adaptive immunity against AAV.  相似文献   

10.
Toll-like receptors (TLRs) such as TLR2 and TLR4 have been implicated in host response to mycobacterial infection. Here, mice deficient in the TLR adaptor molecule myeloid differentiation factor 88 (MyD88) were infected with Mycobacterium tuberculosis (MTB). While primary MyD88(-/-) macrophages and DCs are defective in TNF, IL-12, and NO production in response to mycobacterial stimulation, the upregulation of costimulatory molecules CD40 and CD86 is unaffected. Aerogenic infection of MyD88(-/-) mice with MTB is lethal within 4 weeks with 2 log(10) higher CFU in the lung; high pulmonary levels of cytokines and chemokines; and acute, necrotic pneumonia, despite a normal T cell response with IFN-gamma production to mycobacterial antigens upon ex vivo restimulation. Vaccination with Mycobacterium bovis bacillus Calmette-Guerin conferred a substantial protection in MyD88(-/-) mice from acute MTB infection. These data demonstrate that MyD88 signaling is dispensable to raise an acquired immune response to MTB. Nonetheless, this acquired immune response is not sufficient to compensate for the profound innate immune defect and the inability of MyD88(-/-) mice to control MTB infection.  相似文献   

11.
Immune tolerance to transplanted organs is impaired when the innate immune system is activated in response to the tissue necrosis that occurs during harvesting and implantation procedures. A key molecule in this immune pathway is the intracellular TLR signal adaptor known as myeloid differentiation primary response gene 88 (MyD88). After transplantation, MyD88 induces DC maturation as well as the production of inflammatory mediators, such as IL-6 and TNF-α. However, upstream activators of MyD88 function in response to transplantation have not been identified. Here, we show that haptoglobin, an acute phase protein, is an initiator of this MyD88-dependent inflammatory process in a mouse model of skin transplantation. Necrotic lysates from transplanted skin elicited higher inflammatory responses in DCs than did nontransplanted lysates, suggesting DC-mediated responses are triggered by factors released during transplantation. Analysis of transplanted lysates identified haptoglobin as one of the proteins upregulated during transplantation. Expression of donor haptoglobin enhanced the onset of acute skin transplant rejection, whereas haptoglobin-deficient skin grafts showed delayed acute rejection and antidonor T cell priming in a MyD88-dependent graft rejection model. Thus, our results show that haptoglobin release following skin necrosis contributes to accelerated transplant rejection, with potential implications for the development of localized immunosuppressive therapies.  相似文献   

12.
Toll-like receptors (TLRs) on host cells are chronically engaged by microbial ligands during homeostatic conditions. These signals do not cause inflammatory immune responses in unperturbed mice, even though they drive innate and adaptive immune responses when combating microbial infections. A20 is a ubiquitin-modifying enzyme that restricts exogenous TLR-induced signals. We show that MyD88-dependent TLR signals drive the spontaneous T cell and myeloid cell activation, cachexia, and premature lethality seen in A20-deficient mice. We have used broad spectrum antibiotics to demonstrate that these constitutive TLR signals are driven by commensal intestinal flora. A20 restricts TLR signals by restricting ubiquitylation of the E3 ligase tumor necrosis factor receptor-associated factor 6. These results reveal both the severe proinflammatory pathophysiology that can arise from homeostatic TLR signals as well as the critical role of A20 in restricting these signals in vivo. In addition, A20 restricts MyD88-independent TLR signals by inhibiting Toll/interleukin 1 receptor domain-containing adaptor inducing interferon (IFN) beta-dependent nuclear factor kappaB signals but not IFN response factor 3 signaling. These findings provide novel insights into how physiological TLR signals are regulated.  相似文献   

13.
We previously demonstrated that Toll-like receptor/myeloid differentiation primary response gene 88 (MyD88) signaling is required for maximal innate and acquired [T helper cell type 1 (Th1)] immune responses following systemic administration of helper-dependent adenoviral vectors (HDAds). However, MyD88-deficient mice injected with HDAdLacZ exhibited only partial reduction of innate immune cytokine expression compared with wild-type mice, suggesting MyD88-independent pathways also respond to HDAds. We now show that NOD2, a nucleotide-binding and oligomerization domain (NOD)-like receptor known to detect muramyl dipeptides in bacterial peptidoglycans, also contributes to innate responses to HDAds, but not to humoral or Th1 immune responses. We established NOD2/MyD88 double-deficient mice that, when challenged with HDAds, showed a significant reduction of the innate response compared with mice deficient for either gene singly, suggesting that NOD2 signaling contributes to the innate response independently of MyD88 signaling following systemic administration of HDAds. In addition, NOD2-deficient mice exhibited significantly higher transgene expression than did wild-type mice at an early time point (before development of an acquired response), but not at a later time point (after development of an acquired response). These results indicate that the intracellular sensor NOD2 is required for innate responses to HDAds and can limit transgene expression during early phases of infection.  相似文献   

14.
The innate immune system relies on evolutionally conserved Toll-like receptors (TLRs) to recognize diverse microbial molecular structures. Most TLRs depend on a family of adaptor proteins termed MyD88s to transduce their signals. Critical roles of MyD88-1-4 in host defense were demonstrated by defective immune responses in knockout mice. In contrast, the sites of expression and functions of vertebrate MyD88-5 have remained elusive. We show that MyD88-5 is distinct from other MyD88s in that MyD88-5 is preferentially expressed in neurons, colocalizes in part with mitochondria and JNK3, and regulates neuronal death. We prepared MyD88-5/GFP transgenic mice via a bacterial artificial chromosome to preserve its endogenous expression pattern. MyD88-5/GFP was detected chiefly in the brain, where it associated with punctate structures within neurons and copurified in part with mitochondria. In vitro, MyD88-5 co-immunoprecipitated with JNK3 and recruited JNK3 from cytosol to mitochondria. Hippocampal neurons from MyD88-5-deficient mice were protected from death after deprivation of oxygen and glucose. In contrast, MyD88-5-null macrophages behaved like wild-type cells in their response to microbial products. Thus, MyD88-5 appears unique among MyD88s in functioning to mediate stress-induced neuronal toxicity.  相似文献   

15.
Toll-like receptors (TLRs) can detect endogenous danger molecules released upon tissue injury resulting in the induction of a proinflammatory response. One of the TLR family members, TLR4, is constitutively expressed at RNA level on renal epithelium and this expression is enhanced upon renal ischemia/reperfusion (I/R) injury. The functional relevance of this organ-specific upregulation remains however unknown. We therefore investigated the specific role of TLR4 and the relative contribution of its two downstream signaling cascades, the MyD88-dependent and TRIF-dependent cascades in renal damage by using TLR4−/−, MyD88−/− and TRIF-mutant mice that were subjected to renal ischemia/reperfusion injury. Our results show that TLR4 initiates an exaggerated proinflammatory response upon I/R injury, as reflected by lower levels of chemokines and infiltrating granulocytes, less renal damage and a more preserved renal function in TLR4−/− mice as compared to wild type mice. In vitro studies demonstrate that renal tubular epithelial cells can coordinate an immune response to ischemic injury in a TLR4-dependent manner. In vivo we found that epithelial- and leukocyte-associated functional TLR4 contribute in a similar proportion to renal dysfunction and injury as assessed by bone marrow chimeric mice. Surprisingly, no significant differences were found in renal function and inflammation in MyD88−/− and TRIF-mutant mice compared with their wild types, suggesting that selective targeting of TLR4 directly may be more effective for the development of therapeutic tools to prevent I/R injury than targeting the intracellular pathways used by TLR4. In conclusion, we identified TLR4 as a cellular sentinel for acute renal damage that subsequently controls the induction of an innate immune response.  相似文献   

16.
A replication-incompetent adenoviral (Ad) vector is generating interest for both gene therapy and immunotherapy. A major limitation of the use of Ad vectors is the innate immune response, which causes inflammatory cytokine production and tissue damage; however, the precise mechanism of the innate immune response remains to be clarified. Here, we show that serotype 5 human Ad vectors elicit innate immune responses through a myeloid differentiating factor 88 (MyD88)/Toll-like receptor (TLR)-9-dependent and/or -independent manner according to cell type. After stimulation with Ad vectors, the production of interleukin (IL)-6 and IL-12 was significantly decreased in MyD88- or TLR9-deficient dendritic cells (DCs), compared with wild-type DCs. In addition, the surface expression of maturation marker proteins, such as CD40, CD80, CD86, and MHC class II, in MyD88- or TLR9-deficient granulocyte-macrophage colony-stimulating factor (GM-CSF)-DCs was similar to that in wild-type DCs. On the other hand, MyD88- or TLR9-deficient peritoneal macrophages produced the same level of IL-6 as wild-type macrophages after infection with Ad vectors. We did not find any differences in the mRNA expression levels of the molecules involved in innate immunity, such as MyD88, TLR3, TLR7, and TLR9, between DCs and macrophages. The intravenous injection of luciferase-expressing Ad vectors into MyD88- or TLR9-deficient mice resulted in almost comparable levels of IL-6 and IL-12 production and luciferase expression with wild-type mice. These results suggest that Ad vectors can activate innate immunity via MyD88/TLR9-dependent and -independent mechanisms.  相似文献   

17.
Innate immunity critically depends on signaling by Toll-like receptors (TLRs) that rely heavily on an intracellular adapter protein called myeloid differentiation factor 88 (MyD88). Adaptive immune defenses are generally thought to be orchestrated by innate immune responses and so should require intact TLR-MyD88 signaling pathways. But a surprising new study in MyD88-null mice infected with Mycobacterium tuberculosis challenges this view and instead suggests that MyD88 may not be absolutely required for a normal adaptive immune response.  相似文献   

18.
TLR4 activation mediates kidney ischemia/reperfusion injury   总被引:14,自引:1,他引:14       下载免费PDF全文
Ischemia/reperfusion injury (IRI) may activate innate immunity through the engagement of TLRs by endogenous ligands. TLR4 expressed within the kidney is a potential mediator of innate activation and inflammation. Using a mouse model of kidney IRI, we demonstrated a significant increase in TLR4 expression by tubular epithelial cells (TECs) and infiltrating leukocytes within the kidney following ischemia. TLR4 signaling through the MyD88-dependent pathway was required for the full development of kidney IRI, as both TLR4(-/-) and MyD88(-/-) mice were protected against kidney dysfunction, tubular damage, neutrophil and macrophage accumulation, and expression of proinflammatory cytokines and chemokines. In vitro, WT kidney TECs produced proinflammatory cytokines and chemokines and underwent apoptosis after ischemia. These effects were attenuated in TLR4(-/-) and MyD88(-/-) TECs. In addition, we demonstrated upregulation of the endogenous ligands high-mobility group box 1 (HMGB1), hyaluronan, and biglycan, providing circumstantial evidence that one or more of these ligands may be the source of TLR4 activation. To determine the relative contribution of TLR4 expression by parenchymal cells or leukocytes to kidney damage during IRI, we generated chimeric mice. TLR4(-/-) mice engrafted with WT hematopoietic cells had significantly lower serum creatinine and less tubular damage than WT mice reconstituted with TLR4(-/-) BM, suggesting that TLR4 signaling in intrinsic kidney cells plays the dominant role in mediating kidney damage.  相似文献   

19.
Alginate-based microcapsules are used for immunoisolation of cells to release therapeutics on a minute-to-minute basis. Unfortunately, alginate-based microcapsules are suffering from varying degrees of success, which is usually attributed to differences in tissue responses. This results in failure of the therapeutic cells. In the present study we show that commercial, crude alginates may contain pathogen-associated molecular patterns (PAMPs), which are recognized by the sensors of the innate immune system. Known sensors are Toll-like receptors (TLRs), NOD receptors, and C-type lectins. By using cell-lines with a non-functional adaptor molecule essential in Toll-like receptor signaling, i.e. MyD88, we were able to show that alginates signal mainly via MyD88. This was found for low-G, intermediate-G, and high-G alginates applied in calcium-beads, barium-beads as well as in alginate–PLL–alginate capsules. These alginates did stimulate TLRs 2, 5, 8, and 9 but not TLR4 (LPS receptor). Upon implantation in rats these alginates provoked a strong inflammatory response resulting in fibrosis of the capsules. Analysis demonstrated that commercial alginates contain the PAMPs peptidoglycan, lipoteichoic acid, and flagellin. By applying purification procedures, these PAMPs were largely removed. This was associated with deletion of the inflammatory tissue responses as confirmed by an implantation experiment in rats. Our data also show that alginate itself does not provoke TLR mediated responses. We were able to unravel the sensor mechanism by which contaminants in alginates may provoke inflammatory responses.  相似文献   

20.
The molecular mechanisms of acute lung injury resulting in inflammation and fibrosis are not well established. Here we investigate the roles of the IL-1 receptor 1 (IL-1R1) and the common adaptor for Toll/IL-1R signal transduction, MyD88, in this process using a murine model of acute pulmonary injury. Bleomycin insult results in expression of neutrophil and lymphocyte chemotactic factors, chronic inflammation, remodeling, and fibrosis. We demonstrate that these end points were attenuated in the lungs of IL-1R1– and MyD88-deficient mice. Further, in bone marrow chimera experiments, bleomycin-induced inflammation required primarily MyD88 signaling from radioresistant resident cells. Exogenous rIL-1β recapitulated a high degree of bleomycin-induced lung pathology, and specific blockade of IL-1R1 by IL-1 receptor antagonist dramatically reduced bleomycin-induced inflammation. Finally, we found that lung IL-1β production and inflammation in response to bleomycin required ASC, an inflammasome adaptor molecule. In conclusion, bleomycin-induced lung pathology required the inflammasome and IL-1R1/MyD88 signaling, and IL-1 represented a critical effector of pathology and therapeutic target of chronic lung inflammation and fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号