首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chronicity of hepatitis C virus (HCV) infection raises the question of how HCV is able to persist in hepatic cells. We show that human primary hepatocytes and human hepatic cell lines (Huh7 and HepG2) spontaneously produce interferon (IFN)-alpha that is inhibited in the HCV replicon cells (Huh.8 and FCA-1). Silencing IFN-alpha gene expression by IFN-alpha small interfering RNA (siRNA) in the HCV replicon cells resulted in increased HCV replicon expression. The activation of IFN-alpha expression by interferon regulatory factor (IRF-7) led to the inhibition of HCV replicon expression, whereas the anti-IFN-alpha receptor antibody could partially block IRF-7-mediated HCV replicon inhibition. In addition, the blockade of IFN-alpha receptor by anti-IFN-alpha receptor antibody on the replicon cells increased HCV replicon expression. Among the HCV nonstructural (NS) proteins tested, NS5A is the most potent inhibitor of IFN-alpha expression by the hepatic cells. Investigation of the mechanism of HCV action on IFN-alpha showed that IRF-7-induced IFN-alpha promoter activation was inhibited in the HCV replicon cells. Furthermore, IRF-7 expression was restricted in the HCV replicon cells. In conclusion, we provide direct evidence that HCV undermines the intracellular innate immunity of the target cells, which may account for HCV persistence in hepatic cells.  相似文献   

2.
3.
4.
5.
Aim: The hepatitis C virus (HCV) strain JFH‐1 was cloned from a patient with fulminant hepatitis. A JFH‐1 subgenomic replicon and full‐length JFH‐1 RNA efficiently replicate in cultured cells. In this study, an infectious, selectable HCV replicon containing full‐length JFH‐1 cDNA was constructed. Methods: The full‐genome replicon was constructed using the neomycin‐resistant gene, EMCV IRES and wild‐type JFH‐1 cDNA. Huh7 cells were transfected with RNA synthesized in vitro, and then cultured with G418. Independent colonies were cloned to establish cell lines that replicate the full‐length HCV replicon. Results: HCV RNA replication was detected in each isolated cell line. HCV proteins and HCV RNA were secreted into culture medium, and exhibited identical density profiles. Interestingly, culture supernatants of the replicon cells were infectious for naïve Huh7 cells. Long‐term culture did not affect replication of replicon RNA in the replicon cells, but it reduced core protein secretion and infectivity of culture supernatant. Culture supernatant obtained after serial passage of replicon virus was infectious for Huh7 cells. Conclusions: Selectable infection was established using HCV replicon containing full‐length genotype 2a JFH‐1 cDNA. This system might be useful for HCV research.  相似文献   

6.

Background:

Macrophages play critical roles in innate immune response in the liver. Whether macrophages participate in liver innate immunity against HCV replication is poorly understood

Objectives:

The aim of this study was to investigate the role of macrophages in liver innate immunity against HCV replication.

Materials and Methods:

Freshly isolated monocytes were purified from peripheral blood of healthy adult donors. Macrophages refer to 7-day-cultured monocytes in vitro. A hepatoma cell line (Huh7) was infected with HCV JFH-1 to generate in vitro HCV infectious system. RT-PCR was used to determine HCV RNA and mRNA levels of genes expression. ELISA was used to measure the protein level of interferon-α (IFN-α) and western blot was used to determine protein expression level of Toll-like receptor 3 (TLR3).

Results:

HCV dsRNA induced the expression of type I IFN (IFN-α/β) in monocyte-derived macrophages. HCV dsRNA also induced the expression of TLR3 and IFN regulatory factor-7 (IRF-7), the key regulators of the IFN signaling pathway. When HCV JFH-1-infected Huh7 cells were co-cultured with macrophages activated with HCV dsRNA or incubated in media conditioned with supernatant (SN) from HCV dsRNA-activated macrophages, HCV replication was significantly suppressed. This macrophage SN action on HCV inhibition was mediated through type I IFN, which was evidenced by the observation that antibody to type I IFN receptor could neutralize the macrophages-mediated anti-HCV effect. The role of type I IFN in macrophages-mediated anti-HCV activity is further supported by the observation that HCV dsRNA-activated macrophages SN treatment induced the expression of several IFN-stimulated genes (ISGs), ISG15, ISG56, OAS-1, OAS-2, MxA and Viperin in HCV-infected Huh7 cells.

Conclusions:

Macrophages may play an important role in liver innate immunity against HCV replication through a type I IFN-dependent mechanism.  相似文献   

7.
Studies of the hepatitis C virus (HCV) life-cycle rely heavily on Huh7.5 cells, but the reasons why these cells are exceptionally permissive for HCV replication are not clear. Based on recent clinical observations, we hypothesized that the Hedgehog (Hh) pathway, which has not been previously associated with HCV replication, may be involved in the Huh7.5 phenotype of increased permissiveness. We tested this hypothesis by comparing levels of a variety of Hh-related cellular markers in Huh7.5 cells with the parental Huh7 cells, which are far less permissive. Here we demonstrate that Huh7.5 cells, when compared with Huh7 cells, have substantially decreased expression of epithelial markers, increased levels of mesenchymal markers, and markedly up-regulated Hh pathway activity: Shh, >100-fold, Gli1, >30-fold, Ptc, 2-fold. In Huh7.5 cells, we found that cyclopamine, an Hh pathway antagonist, reduced HCV RNA levels by 50% compared with vehicle and inactive isomer controls. Moreover, in Huh7 cells treatment with recombinant Shh ligand and SAG, both Hh pathway agonists, stimulated HCV replication by 2-fold and 4-fold, respectively. These effects were observed with both viral infections and a subgenomic replicon. Finally, we demonstrated that GDC-0449 decreased HCV RNA levels in a dose-response manner. CONCLUSION: We have identified a relationship between HCV and Hh signaling where up-regulated pathway activity during infection promotes an environment conducive to replication. Given that Hh activity is very low in most hepatocytes, these findings may serve to further shift the model of HCV liver infection from modest widespread replication in hepatocytes to one where a subset of cells support high-level replication. These findings also introduce Hh pathway inhibitors as potential anti-HCV therapeutics.  相似文献   

8.
9.
Aim: Hepatitis C virus (HCV), which infects an estimated 170 million people worldwide, is a major cause of chronic liver disease. The current standard therapy for chronic hepatitis C is based on pegylated interferon (IFN)alpha in combination with ribavirin. However, the success rate remains at approximately 50%. Therefore, alternative agents are needed for the treatment of HCV infection. Methods: Using an HCV-1b subgenomic replicon cell culture system (Huh7/Rep-Feo), we found that griseofulvin, an oral antifungal agent, suppressed HCV-RNA replication and protein expression in a dose-dependent manner. We also found that griseofulvin suppressed the replication of infectious HCV JFH-1. A combination of IFNalpha and griseofulvin exhibited a synergistic inhibitory effect in Huh7/Rep-Feo cells. Results: We found that griseofulvin blocked the cell cycle at the G(2)/M phase in the HCV subgenomic replicon cells, but did not inhibit HCV internal ribosome entry site-dependent translation. Conclusion: Our results suggest that griseofulvin may represent a new approach to the development of a novel therapy for HCV infection.  相似文献   

10.
Background and Aim:  We have reported previously that synthetic small interfering RNA (siRNA) and DNA-based siRNA expression vectors efficiently and specifically suppress hepatitis C virus (HCV) replication in vitro . In this study, we investigated the effects of the siRNA targeting HCV-RNA in vivo .
Methods:  We constructed recombinant retrovirus and adenovirus expressing short hairpin RNA (shRNA), and transfected into replicon-expressing cells in vitro and transgenic mice in vivo .
Results:  Retroviral transduction of Huh7 cells to express shRNA and subsequent transfection of an HCV replicon into the cells showed that the cells had acquired resistance to HCV replication. Infection of cells expressing the HCV replicon with an adenovirus expressing shRNA resulted in efficient vector delivery and expression of shRNA, leading to suppression of the replicon in the cells by ∼10−3. Intravenous delivery of the adenovirus expressing shRNA into transgenic mice that can be induced to express HCV structural proteins by the Cre/ lox P switching system resulted in specific suppression of virus protein synthesis in the liver.
Conclusion:  Taken together, our results support the feasibility of utilizing gene targeting therapy based on siRNA and/or shRNA expression to counteract HCV replication, which might prove valuable in the treatment of hepatitis C.  相似文献   

11.
There is limited information about the role of hepatic stellate cells (HSC) in liver innate immunity against hepatitis C virus (HCV). We thus examined whether HSC can produce antiviral factors that inhibit HCV replication in human hepatocytes. HSC expressed functional Toll‐like receptor 3 (TLR‐3), which could be activated by its ligand, polyinosine‐polycytidylic acid (poly I:C), leading to the induction of interferon‐λ (IFN‐λ) at both mRNA and protein levels. TLR‐3 signalling of HSC also induced the expression of IFN regulatory factor 7 (IRF‐7), a key regulator of IFN signalling pathway. When HCV JFH‐1‐infected Huh7 cells were co‐cultured with HSC activated with poly I:C or incubated in media conditioned with supernatant (SN) from poly I:C‐activated HSC, HCV replication was significantly suppressed. This HSC SN action on HCV inhibition was mediated through IFN‐λ, which was evidenced by the observation that antibody to IFN‐λ receptors could neutralize the HSC‐mediated anti‐HCV effect. The role of IFN‐λ in HSC‐mediated anti‐HCV activity is further supported by the observation that HSC SN treatment induced the expression of IRF‐7 and IFN‐stimulated genes (ISGs), OAS‐1 and MxA in HCV‐infected Huh7 cells. These observations indicate that HSC may be a key regulatory bystander, participating in liver innate immunity against HCV infection using an IFN‐λ‐dependent mechanism.  相似文献   

12.
Background: Hepatitis C virus (HCV) is a major public health problem with 170 million chronically infected people throughout the world. Currently, the only treatment available consists of a combination of pegylated interferon (INF-a) and ribavirin, but only half of the patients treated show a sufficient antiviral response. Thus there is a great need for the development of new treatments for HCV infections. RNA interference (RNAi) represents a new promising approach to develop effective antiviral drugs and has been extremely effective against HCV gene expression in short-term cell culture. Our aim was to determine the effect of RNAi directed against the NS5B-HCV region on HCV expression in a human hepatoma cell line that expresses HCV-subgenomic replicon (Huh7 HCV replicon cells). Methods: We transfected Huh7 HCV replicon cells with different concentrations of RNAi (100-200 nM) targeting the NS5B region of the viral genome. 2-6 days post-transfection HCV-RNA was quantified by semiquantitative and real-time RT-PCR, and HCV NS5B protein levels were assayed by western blot. Cell viability was also quantified by MTT assay. Results: Our results indicate that the NS5B-siRNAs used in this study can specifically inhibit HCV-RNA replication and protein expression (more than 90%) compared to control cells. Conclusions: Synthetic siRNA against NS5B-HCV inhibited HCV replication and viral proteins levels and thereby becomes a powerful strategy to combat hepatitis C virus.  相似文献   

13.
Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNβ and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs.  相似文献   

14.
AIM: To examine the effect of hepatitis C virus (HCV) structural mimics of regulatory regions of the genome on HCV replication.METHODS: HCV RNA structural mimics were constructed and tested in a HCV genotype 1b aBB7 replicon,and a Japanese fulminant hepatitis-1 (JFH-1) HCV genotype 2a infection model.All sequences were computer-predicted to adopt stem-loop structures identical to the corresponding elements in full-length viral RNA.Huh7.5 cells bearing the BB7 replicon or infected with JFH-1 virus were trans...  相似文献   

15.
BACKGROUND/AIMS: Infection with hepatitis C virus (HCV) is associated with alterations in body iron homeostasis by poorly defined mechanisms. To seek for molecular links, we employed an established cell culture model for viral replication, and assessed how the expression of an HCV subgenomic replicon affects iron metabolism in host Huh7 hepatoma cells. METHODS: The expression of iron metabolism genes and parameters defining the cellular iron status were analyzed and compared between parent and replicon Huh7 cells. RESULTS: By using the IronChip microarray platform, we observed replicon-induced changes in expression profiles of iron metabolism genes. Notably, ceruloplasmin mRNA and protein expression were decreased in replicon cells. In addition, transferrin receptor 1 (TfR1) was also downregulated, while ferroportin levels were elevated, resulting in reduced iron uptake and increased iron release capacity of replicon cells. These responses were associated with an iron-deficient phenotype, manifested in decreased levels of the "labile iron pool" and concomitant induction of IRE-binding activity and IRP2 expression. Furthermore, hemin-treated replicon cells exhibited a defect in retaining iron. The clearance of the replicon by prolonged treatment with interferon-alpha only partially reversed the iron-deficient phenotype but almost completely restored the capacity of cured cells to retain iron. CONCLUSIONS: We propose that Huh7 cells undergo genetic reprogramming to permit subgenomic viral replication that results in reduction of intracellular iron levels. This response may provide a mechanism to bypass iron-mediated inactivation of the viral RNA polymerase NS5B.  相似文献   

16.
BACKGROUNDS: Interferon (IFN)-alpha is represented by several structurally related subtypes that show different antiviral and anti-tumor effects. Here, we analyzed differential effects of IFN-alpha subtypes on intracellular hepatitis C virus (HCV) replication using HCV subgenomic replicon system as a model. METHODS: Huh7 and HeLa cells supporting expression of HCV replicon were treated with various concentrations of five recombinant human IFN-alpha subtypes 1, 2, 5, 8, and 10, and with IFN-alpha con1. The effects of IFNs on various cell-signaling pathways were assayed by using ISRE-, GAS-, AP1-, NF-kappa B-, CRE-, and SRE-luciferase reporter plasmids. RESULTS: Each IFN-alpha subtype suppressed HCV replication in a dose-dependent manner. Among them, IFN-alpha8 was the most effective, while IFN-alpha1 was the least effective with 50% inhibitory concentrations of 0.123IU/ml versus 0.375IU/ml, respectively. These differential effects against HCV replication did not correlate with levels of the IFN-responsive ISRE or GAS reporter activities, nor they did activate the other reporters, AP1, NF-kappa B, CRE and SRE. CONCLUSION: There were divergent effects of IFN-alpha subtypes against HCV replication that may be through JAK-STAT-independent pathways. Exploring further mechanisms of action may elucidate IFN-mediated cellular antiviral mechanisms.  相似文献   

17.
18.
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus of the Flaviviridae family. HCV-infected hepatocytes are known to produce reactive oxygen species (ROS), which initiate lipid peroxidation, a reaction that converts polyunsaturated fatty acids, such as arachidonate, into reactive carbonyls that inactivate proteins. To study the effect of lipid peroxidation on HCV replication, we administered arachidonate to Huh7 cells that harbor an HCV replicon (Huh7-K2040 cells). After incubation in medium supplemented with arachidonate but deprived of lipid-soluble antioxidants, the cellular amount of malondialdehyde (MDA), a product of lipid peroxidation, increased markedly in Huh7-K2040 cells but not in parental Huh7 cells that do not harbor an HCV replicon. This increase was followed by a sharp reduction (>95%) in HCV RNA. Both of these events were prevented when cells were treated with vitamin E, a lipid-soluble antioxidant. After prolonged incubation of Huh7-K2040 cells with arachidonate in the absence of lipid-soluble antioxidants, the amount of MDA decreased after the reduction in the amount of HCV RNA. Thus, in the presence of arachidonate and in the absence of lipid-soluble antioxidants, HCV replication induces lipid peroxidation that reduces the amount of HCV RNA. Our results provide a mechanism for the previous observation that polyunsaturated fatty acids inhibit HCV replication [Kapadia SB, Chisari FV (2005) Proc Natl Acad Sci USA 102:2561-2566], and they suggest that these agents may be effective in inhibiting HCV replication in vivo.  相似文献   

19.

Background

Hepatitis C virus (HCV) replication is affected by several host factors. Here, we screened host genes and molecular pathways that are involved in HCV replication by comprehensive analyses using two genotypes of HCV replicon-expressing cells, their cured cells and naïve Huh7 cells.

Methods

Huh7 cell lines that stably expressed HCV genotype 1b or 2a replicon were used. The cured cells were established by treating HCV replicon cells with interferon-alpha. Expression of 54,675 cellular genes was analyzed by GeneChip DNA microarray. The data were analyzed by using the KEGG Pathway database.

Results

Hierarchical clustering analysis showed that the gene-expression profiles of each cell group constituted clear clusters of naïve, HCV replicon-expressed, and cured cell lines. The pathway process analysis between the replicon-expressing and the cured cell lines identified significantly altered pathways, including MAPK, steroid biosynthesis and TGF-beta signaling pathways, suggesting that these pathways were affected directly by HCV replication. Comparison of cured and naïve Huh7 cells identified pathways, including steroid biosynthesis and sphingolipid metabolism, suggesting that these pathways were required for efficient HCV replication. Cytoplasmic lipid droplets were obviously increased in replicon-expressing and cured cells as compared to naïve cells. HCV replication was significantly suppressed by peroxisome proliferator-activated receptor (PPAR)-alpha agonists but augmented by PPAR-gamma agonists.

Conclusion

Comprehensive gene expression and pathway analyses show that lipid biosynthesis pathways are crucial to support proficient virus replication. These metabolic pathways could constitute novel antiviral targets against HCV.  相似文献   

20.
Chronic hepatitis C is characterized by iron accumulation in the liver, and excessive iron is hepatotoxic. However, the mechanism by which hepatitis C virus (HCV) regulates iron metabolism is poorly understood. Hepcidin plays a pivotal role as a negative regulator of iron absorption. The aim of the current study was to elucidate the mechanisms that govern hepcidin expression by HCV. Huh 7 cells, Huh7.5 cells, full-length HCV replicon cells established from Huh7.5 cells, and adenoviruses expressing HCV-core or HCV nonstructural proteins 3 through 5 (NS3-5) were used. Hepcidin expression was significantly lower in HCV replicon cells and in HCV core-expressing Huh7 cells. The expression was inversely correlated with the amount of reactive oxygen species (ROS) production. Anti-oxidants restored hepcidin expression in HCV replicon cells and Huh7 cells expressing HCV core. In HCV replicon cells, histone deacetylase (HDAC) activity was elevated at baseline and after exposure to hydrogen peroxide. Anti-oxidants reduced HDAC activity in a dose-dependent manner. HDAC inhibition increased hepcidin expression without affecting ROS production in HCV replicon cells. HCV-induced ROS stabilized the expression of two negative hepcidin regulators, HIF1alpha and HIF2alpha, and its expression was decreased by a HDAC inhibitor or an anti-oxidant. HCV-induced ROS also caused hypoacetylation of histones and inhibited binding of two positive regulators, C/EBPalpha and STAT3, to the hepcidin promoter, whereas anti-oxidant treatment of cells recovered C/EBPalpha and STAT3 binding to the hepcidin promoter. In addition, an HDAC inhibitor restored their binding to the hepcidin promoter via acetylation of histones. CONCLUSION: HCV-induced oxidative stress suppresses hepcidin expression through increased HDAC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号