首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DCs) are critical for initiating a pathogen-specific T-cell response. During chronic infections the pool of tissue DCs must be renewed by recruitment of both circulating DC progenitors and in loco differentiating monocytes. However, the interaction of monocytes with pathogens could affect their differentiation. Mycobacterium tuberculosis has been shown to variably interfere with the generation and function of antigen-presenting cells (APCs). In this study we found that when alpha interferon (IFN-alpha) is used as an inductor of monocyte differentiation, M. tuberculosis inhibits the generation of DCs, forcing the generation of immunoprivileged macrophage-like cells instead. Cells derived from M. tuberculosis-infected monocyte-derived macrophages (M. tuberculosis-infected MoMphi) retained CD14 without acquiring CD1 molecules and partially expressed B7.2 but did not up-regulate B7.1 and major histocompatibility complex (MHC) class I and II molecules. They synthesized tumor necrosis factor alpha and interleukin-10 (IL-10) but not IL-12. They also showed a reduced ability to induce proliferation and functional polarization of allogeneic T lymphocytes. Thus, in the presence of IFN-alpha, M. tuberculosis may hamper the renewal of potent APCs, such as DCs, generating a safe habitat for intracellular growth. M. tuberculosis-infected MoMphi, in fact, showed reduced expression of both signal 1 (CD1, MHC classes I and II) and signal 2 (B7.1 and B7.2), which are essential for mycobacterium-specific T-lymphocyte priming and/or activation. These data further suggest that M. tuberculosis has the ability to specifically interfere with monocyte differentiation. This ability may represent an effective M. tuberculosis strategy for eluding immune surveillance and persisting in the host.  相似文献   

2.
Hepatitis C virus (HCV) chronic infection is characterized by low-level or undetectable cellular immune response against HCV antigens. HCV proteins affect various intracellular events and modulate immune responses, although the mechanisms that mediate these effects are not fully understood. In this study, we examined the effect of HCV proteins on the differentiation of human peripheral blood monocytes to dendritic cells (DCs). The HCV core (HCVc) and non-structural 3 (NS3) proteins inhibited the expression of CD1a, CD1b and DC-SIGN during monocyte differentiation to DCs, while increasing some markers characteristic of macrophages (CD14 and HLA-DR) and also PD-L1 expression. Meanwhile, HCVc and NS3 could induce differentiating monocytes to secrete IL-10. However, anti-IL-10 mAb could not reverse HCVc and NS3 inhibition of monocyte differentiation into DCs. The HCVc and NS3 proteins increased IL-6 secretion both in immature and in fully differentiated DCs and also promoted CD4+ T-cell IL-17 production. Since T(h) 17 cells are active in many examples of immunopathology, these effects may contribute to HCV autoimmune responses in chronically infected patients.  相似文献   

3.
Human monocytes can differentiate into dendritic cells (DCs) according to the nature of environmental signals. We tested here whether the infection with the live tuberculosis vaccine bacillus Calmette-Guerin (BCG), which is known to be limited in preventing pulmonary tuberculosis, modulates monocyte and DC differentiation. We found that monocytes infected with BCG differentiate into CD1a- DCs (BCG-DCs) in the presence of granulocyte macrophage-colony stimulating factor and interleukin (IL)-4 and acquired a mature phenotype in the absence of maturation stimuli. In addition, BCG-DCs produced proinflammatory cytokines (tumor necrosis factor alpha, IL-1beta, IL-6) and IL-10 but not IL-12. BCG-DCs were able to stimulate allogeneic T lymphocytes to a similar degree as DCs generated in the absence of infection. However, BCG-DCs induced IL-4 production when cocultured with human cord-blood mononuclear cells. The induction of IL-4 production by DCs generated by BCG-infected monocytes could explain the failure of the BCG vaccine to prevent pulmonary tuberculosis.  相似文献   

4.
Myeloid dendritic cells (DC) and macrophages evolve from a common precursor. However, factors controlling monocyte differentiation toward DC or macrophages are poorly defined. We report that the surface density of the GM-CSF receptor (GM-CSFR) alpha subunit in human peripheral blood monocytes varies among donors. Although no correlation was found between the extent of GM-CSFR and monocyte differentiation into DC driven by GM-CSF and IL-4, GM-CSFR expression strongly influenced the generation of CD1a(+) dendritic-like cells in the absence of IL-4. CD1a(+) cells generated in the presence of GM-CSF express CD40, CD80, MHC class I and II, DC-SIGN, MR, CCR5, and partially retain CD14 expression. Interestingly, they spontaneously induce the expansion of CD4(+) and CD8(+) allogeneic T lymphocytes producing IFN-gamma, and migrate toward CCL4 and CCL19. Upon stimulation with TLR ligands, they acquire the phenotypic features of mature DC. In contrast, the allostimulatory capacity is not further increased upon LPS activation. However, by blocking LPS-induced IL-10, a higher T cell proliferative response and IL-12 production were observed. Interestingly, IL-23 secretion was not affected by endogenous IL-10. These results highlight the importance of GM-CSFR expression in monocytes for cytokine-induced DC generation and point to GM-CSF as a direct player in the generation of functionally distinct DC.  相似文献   

5.
Blockade of the CD40/CD40L pathway of monocyte/macrophage activation represents a promising strategy for the treatment of several inflammatory disorders. So far, most pharmacological agents developed for that purpose target CD40L (CD154) expressed on activated T cells. Herein, we provide evidence that triazolopyrimidine, a chemical compound primarily developed for the prevention of arterial thrombosis, strongly inhibits the response of human monocytes to CD40 ligation. First, we found that triazolopyrimidine inhibits the production of IL-12, TNF-alpha, and IL-6 by monocytes activated by coculture with fibroblasts transfected with the CD40L gene as well as the induction of procoagulant activity at their membrane. This was related to a decreased expression of CD40 on monocytes exposed to triazolopyrimidine, an effect that was already apparent at the mRNA level. Furthermore, the addition of triazolopyrimidine to monocytes cultured with IL-4 and GM-CSF prevented their differentiation into fully competent dendritic cells (DC) as DC differentiated in the presence of triazolopyrimidine expressed less CD40 at their surface and were profoundly deficient in the production of IL-12 upon exposure to CD40L transfectants. We conclude that triazolopyrimidine strongly inhibits the CD40 pathway of monocyte activation at least in part by downregulating the gene expression of CD40.  相似文献   

6.
CD2+/CD14+ monocytes rapidly differentiate into CD83+ dendritic cells   总被引:1,自引:0,他引:1  
Since denditric cells (DC) represent the main players linking innate and adaptive immunity, their prompt generation from blood cells would be instrumental for an efficient immune response to infections. Consistent with this, CD2+ monocytes were found to express the DC maturation marker CD83, along with acquisition of high antigen-presenting activity, after a surprisingly short time in culture. This rapid process is associated with expression of IFN-alpha/beta genes and secretion of low levels of pro-inflammatory cytokines. Exposure of monocytes to IFN-alpha, but not to IL-4, induced persistence of CD2+/CD83+ cells, which were fully competent in stimulating primary responses by naive T cells. These results unravel the natural pathway by which infection-induced signals rapidly transform pre-armed monocytes into active DC.  相似文献   

7.
We showed previously that about half of purified CD14(+) peripheral blood monocytes cultured under serum-free conditions and treated with GM-CSF and bacterial LPS rapidly (2 - 4 day) differentiate into CD83(+) dendritic cells (DC). The remaining cells retain the CD14(+)/CD83(-) monocyte/macrophage phenotype. In order to identify factors that influence whether monocytes differentiate into DC or remain on the monocyte/macrophage developmental pathway, we evaluated the effects of exogenously added IFN-gamma and endogenously produced IL-10 on the proportion and function of CD14(+) monocytes that adopt DC characteristics in response to LPS. IFN-gamma priming dramatically increased the proportion of monocytes that adopted stable DC characteristics in response to LPS, improved their T cell allosensitizing capacity, and enhanced levels of secreted IL-12 heterodimer. IFN-gamma priming also suppressed the production of IL-10, a cytokine known to have inhibitory effects on DC differentiation. When monocytes were treated with LPS plus IL-10-neutralizing antibodies, dramatically enhanced DC differentiation, IL-12 secretion, and T cell allosensitizing capacity were observed, mimicking in many respects the effects of IFN-gamma priming. IFN-gamma primed cells still displayed appreciable sensitivity to exogenously added IL-10, suggesting that attenuated IL-10 secretion is partially responsible for the enhancing effects of IFN-gamma. These studies therefore identify IFN-gamma as a DC differentiation co-factor for CD14(+) monocytes, and IL-10 as an autocrine/paracrine inhibitor of DC differentiation, linking these agents for the first time as mutually opposed regulators that govern whether CD14(+) cells differentiate into DC upon contact with LPS or remain on the monocyte/macrophage developmental pathway.  相似文献   

8.
We studied the in vitro effects of butyric acid on differentiation, maturation and function of dendritic cells (DC) and macrophages (M(Phi)) generated from human monocytes. A non-toxic dose of butyrate was shown to alter the phenotypic differentiation process of DC as assessed by a persistence of CD14, and a decreased CD54, CD86 and HLA class II expression. The more immature differentiation stage of treated cells was confirmed further by their increased phagocytic capability, their altered capacity to produce IL-10 and IL-12, and their weak allostimulatory abilities. Butyrate also altered DC terminal maturation, regardless of the maturation inducer, as demonstrated by a strong down-regulation of CD83, a decreased expression of CD40, CD86 and HLA class II. Similarly, butyrate altered M(Phi) differentiation, down-regulating the expression of the restricted membrane antigens and reducing the phagocytic capacity of treated cells. To investigate further the mechanism by which butyrate hampers the monocyte dual differentiation pathway, we studied the effects of 1,25(OH)2D3 alone or in combination with butyrate on the phenotypic features of DC. Unlike 1,25(OH)2D3, butyrate inhibited DC -differentiation without redirecting it towards M(Phi). Combined treatment gave rise to a new cell subset (CD14(high), CD86 and HLA-DR(low)) phenotypically distinct from monocytes. These results reveal an alternative mechanism of inhibition of DC and M(Phi) differentiation. Altogether, our data demonstrate a novel immune suppression property of butyrate that may modulate both inflammatory and immune responses and support further the interest for butyrate and its derivatives as new immunotherapeutic agents.  相似文献   

9.
J Pryjma  B Mytar  H Loppnow  M Ernst  M Zembala    H D Flad 《Immunology》1992,75(2):355-360
Monocyte subpopulations which differ in the expression of Fc receptor for human IgG (FcRI) differentially regulate the T-cell-dependent, pokeweed mitogen (PWM)-induced, polyclonal B-cell response. We, thus, studied the cytokine production in human peripheral blood monocyte and T-lymphocyte cultures activated with this lectin. Monocytes or their FcR+ and FcR- subpopulations stimulated with PWM were cultured with or without T lymphocytes or their CD4+ and CD8+ subsets. Both monocyte subpopulations cultured alone produced similar amounts of tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), but FcR- monocytes showed significantly enhanced ability to secrete interleukin-1 (IL-1). T cells, especially CD4+, added to monocyte cultures enhanced IL-1 production. This enhancement was presumably due to interferon-gamma (IFN-gamma) release by T lymphocytes, since this lymphokine enhanced IL-1 secretion when added to PWM-stimulated cultures of monocytes. Addition of monocytes, in particular the FcR+ subpopulation, greatly enhanced production of IFN-gamma by T lymphocytes. Although both T-cell subsets produced IFN-gamma, the CD4+ cells were more efficient. These results indicate that in PWM-stimulated cultures subpopulations of monocytes differ in secretion of cytokines, which might explain their differential effect on T-cell-dependent immune responses in vitro.  相似文献   

10.
Dendritic cells (DC) can be derived from monocytes in vitro by culture with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). It is unknown whether this regimen reflects DC differentiation from blood precursors under physiological conditions. Induction of DC development from monocytes by interferon-alpha (IFN-alpha) may occur in vivo during infection or inflammation and thus may represent a more physiological approach to DC differentiation in vitro. Here, we show that incubation of GM-CSF-cultured monocytes with IFN-alpha does not induce DC differentiation: cells maintain their original phenotype and cytokine secretion pattern. Even after stimulation with pro-inflammatory or T-cell-derived activation signals, IFN-alpha-treated monocytes do not develop DC characteristics. Addition of IL-4 during stimulation of IFN-alpha-treated monocytes results in the rapid development of DC-like cells expressing co-stimulatory molecules, CD83 and chemokine receptor CCR7, indicating that some degree of developmental plasticity is preserved. However, DC pre-activated with IFN-alpha are less effective in inducing allogeneic or antigen-specific autologous T-cell proliferation, produce less IL-12 and express lower levels of CCR7 compared to DC generated by culture with GM-CSF and IL-4. Incubating GM-CSF-cultured monocytes simultaneously with IFN-alpha and IL-4 does not affect phenotypic maturation of DC, but reduces IL-12 production upon pro-inflammatory activation. We conclude that: (1) IFN-alpha fails to induce DC differentiation and thus cannot replace IL-4 in generating DC from monocytes in vitro; and (2) the presence of IFN-alpha prior to or during differentiation of DC from monocyte precursors alters their response to maturation stimuli and may affect their capacity to stimulate T helper type 1 immune responses in vivo.  相似文献   

11.
Monocytes having phagocytosed mycobacteria are known to present the bacterial 65-kD heat shock protein (hsp) on their cell surface to alpha beta and gamma delta T lymphocytes. Cytotoxic CD4+ cells may then lyse monocytes expressing mycobacterial 65-kD hsp. However, it is not known whether 65-kD hsp directly stimulates monocyte functions other than antigen presentation. This study has demonstrated that following extraction of bacterial lipopolysaccharide, purified recombinant mycobacterial 65-kD hsp may directly activate THP-1 cells, a human monocytic line, to accumulate mRNA for and secrete tumour necrosis factor (TNF), a cytokine important in granuloma formation, the characteristic host immune response to mycobacterial infection. TNF gene expression and secretion following stimulation by hsp was dose-dependent and abolished by heat-induced proteolysis. Subsequently, THP-1 cells secreted IL-6 and IL-8, cytokines involved in recruitment and differentiation of T lymphocytes. The data indicate that secretion of proinflammatory cytokines from monocytes activated by mycobacterial 65-kD hsp may be important in the host immune response and in the development of antigen-specific T cell-mediated immunity.  相似文献   

12.
In the present study, we investigated the functional differences between cluster of differentiation (CD)14(++) CD16(-) and CD14(+) CD16(+) monocytes during anti-Candida host defense. CD14(++) CD16(-) are the "classical" monocytes and represent the majority of circulating monocytes in humans, while CD14(+) CD16(+) monocytes patrol the vasculature for maintenance of tissue integrity and repair. Both monocyte subsets inhibited the germination of live Candida albicans, and there was no difference in their capacity to phagocytose and kill Candida. Although production of IL-6 and IL-10 induced by C. albicans was found to be similar between monocyte subsets, IL-1β and prostaglandin E2 (PGE2) production was higher in CD14(++) CD16(-) compared with CD14(+) CD16(+) monocytes. In line with the increased production of IL-1β and PGE2, central mediators for inducing Th17 responses, CD14(++) CD16(-) monocytes induced greater Th17 responses upon stimulation with heat-killed C. albicans yeast. The percentage of cells that expressed mannose receptor (MR) was higher in the CD14(++) CD16(-) monocyte subset, and MR-specific stimulation induced higher Th17 responses only in co-cultures of CD14(++) CD16(-) monocytes and CD4 lymphocytes. In conclusion, both monocyte subsets have potent innate antifungal properties, but only CD14(++) CD16(-) monocytes are capable of inducing a potent Th17 response to C. albicans, an important component of antifungal host defense.  相似文献   

13.
Dendritic cells (DC) are pivotal for initiation and regulation of innate and adaptive immune responses evoked by vaccination and natural infection. After infection, mycobacterial pathogens first encounter monocytes, which produce pro-inflammatory cytokines, including IL-1beta, TNF-alpha and IL-6. The role of these cytokines in DC maturation remains incompletely understood. Here, we show that maturation of DC from monocytes was impaired by pretreatment of monocytes with low doses of IL-1beta. Under these conditions, Mycobacterium leprae-infected DC failed to stimulate antigen-specific T cell responses. Expression of CD86 and CD83 and production of IL-12 in response to lipopolysaccharide and peptidoglycan were diminished. In contrast, these DC functions were not impaired by pretreatment with TNF-alpha, IL-6 or IL-10. When monocytes were infected with M. bovis Bacillus Calmette-Guérin, and subsequently differentiated to DC, the activity of these DC was suppressed as well. Thus, IL-1beta acts at early stages of differentiation of DC and impairs biological functions of DC at later stages. Therefore, production of IL-1beta by mycobacteria-infected antigen-presenting cells counteracts effective stimulation of innate and adaptive immune responses.  相似文献   

14.
Differentiation of tissue monocytes into DCs is a critical phase in the development of a competent immune system. We show that in a nicotinic environment, while human monocytes differentiate into DCs (henceforth called nicDCs) with a typical morphology, they display unique phenotype and cytokine profile that adversely affect their function. Despite an increased capacity for receptor-dependent antigen uptake, nicDCs do not express CD1a and fail to fully up-regulate MHCs, molecules essential for their antigen-presenting function. Additionally, in response to bacterial antigen LPS, maturing nicDCs hardly express the chemotactic cytokine receptor 7 required for their entry into lymphatic vessels. Furthermore, in parallel with their differential expression of costimulatory molecules CD80 and CD86 and lack of IL-12, nicDCs display profoundly reduced Th1 promoting capacity. These findings thus indicate that nicotine impedes the development of cell-mediated immunity by skewing DC differentiation. These effects of nicotinic environment on DC differentiation may contribute to the increased risks of respiratory tract infection and various cancers in smokers.  相似文献   

15.
Sphingosine 1‐phosphate (S1P) is a lipidic messenger known to exert several physiological functions within the cell. We tested here whether the stimulation of human monocytes with different doses of S1P might interfere with their differentiation into competent dendritic cells (DC). Monocytes cultured with granulocyte macrophage colony stimulating factor, interleukin‐4 (IL‐4) and S1P differentiated into a DC population lacking CD1a molecules on the surface and acquired some aspects of mature DC (mDC), though in the absence of maturation stimuli. When stimulated with lipopolisaccharide (LPS), CD1a DC produce high amounts of tumour necrosis factor‐α and IL‐10, but not IL‐12. Accordingly, these CD1a DC were not capable of stimulating allogenic T lymphocytes so well as CD1a+ DC generated from untreated monocytes and maturated with LPS. S1P monocyte‐derived DC lost their polarizing capacity abrogating the production of γ‐interferon/IL‐4 by co‐cultured naïve CD4+CD45RA+ T cells. Our findings suggest a mechanism through which S1P can favour the development of immune‐related pathological states.  相似文献   

16.
PROBLEM: Macrophages are one of the first immune cells observed at the implantation site. Their presence has been explained as the result of an immune response toward paternal antigens. The mechanisms regulating monocyte migration and differentiation at the implantation site are largely unknown. In the present study, we demonstrate that trophoblast cells regulate monocyte migration and differentiation. We propose that trophoblast cells 'educate' monocytes/macrophages to create an adequate environment that promote trophoblast survival. METHOD OF STUDY: CD14(+) monocytes were isolated from peripheral blood using magnetic beads. Co-culture experiments were conducted using a two-chamber system. Monocytes were stimulated with lipopolysaccharide (LPS) and cytokine levels were determined using multiplex cytokine detecting assay. RESULTS: Trophoblast cells increase monocyte migration and induce a significant increase in the secretion and production of the pro-inflammatory cytokines [interleukin-6 (IL-6), IL-8, tumor necrosis factor-alpha] and chemokines (growth-related oncogen-alpha, monocyte chemoattractant protein-1, macrophage inflammatory protein-1beta, RANTES). Furthermore, the response of monocytes to LPS was different in monocytes pre-exposed to trophoblast cells. CONCLUSION: The results of this study suggest that trophoblast cells are able to recruit and successfully educate monocytes to produce and secrete a pro-inflammatory cytokine and chemokine profile supporting its growth and survival. Furthermore we demonstrate that trophoblast cells can modulate monocytes response to bacterial stimuli.  相似文献   

17.
Nonantigen specific CD8+ suppressor T lymphocytes (CD8+ Ts) inhibit T-cell proliferation of antigen-specific T lymphocytes. The impossibility to generate in vitro these cells has been correlated with the appearance of relapses in patients affected by autoimmune diseases, suggesting the involvement of these cells in immune regulation. This study was aimed to identify circulating precursors and to characterize the phenotype and mechanism of action of CD8+ Ts. We found that CD8+ Ts can be generated in vitro from CD8+CD28- T lymphocytes, but not from CD8+CD28+ T cells. A key role in their generation is played by monocytes that secrete interleukin-10 (IL-10) after granulocyte macrophage-colony-stimulating factor (GM-CSF) stimulation. Cell-to-cell direct interaction between CD8+CD28- T cells and monocytes does not play a role in the generation of CD8+ Ts. CD8+ Ts have a CD45RA+, CD27-, CCR7-, IL-10Ralpha+ phenotype and a TCR Vbeta chain repertoire overlapping that of autologous circulating CD8+ T cells. This phenotype is typical of T lymphocytes previously expanded due to antigen stimulation. Their suppressive effect on T-cell proliferation targets both antigen presenting cells, such as dendritic cells, and antigen-specific T lymphocytes, and is mediated by IL-10. CD8+ Ts suppress also the antigen-specific cytotoxic activity of CTL decreasing the expression of HLA class I molecules on target cells through IL-10 secretion. These findings can be helpful for the better understanding of immune regulatory circuits and for the definition of new pathogenic aspects in autoimmunity and tumor immunology.  相似文献   

18.
19.
Platelet factor 4 (PF4) is a CXC chemokine secreted by activated platelets. PF4 has been shown to promote monocyte survival and induce the differentiation of monocytes into macrophages. However, the effect of PF4 on differentiation of monocytes into dendritic cells (DC) has yet to be determined. As reported previously, monocytes cultured in RPMI medium containing FCS, granulocyte macrophage colony stimulating factor and IL-4 differentiated into CD1a+ DC. When PF4 was added, the expression of CD1a on DC was inhibited. This inhibitory effect was not observed with the other platelet-derived CXC chemokine, beta-thromboglobulin. The relative number of CD1a- DC increased from 17 to 92% when the PF4 concentration was increased from 0 to 10 micro g/ml. The inhibitory effect of PF4 on CD1a expression was reversed by 50 U/ml heparin. DC developed in the PF4-containing media appeared more adhesive to plastic culture wells and had higher light side scatter by flow cytometry. Immunophenotypically, monocyte-derived DC in the presence of increasing concentrations of PF4 proportionally expressed higher CD86 and lower HLA-DR. The levels of CD11c, CD40 and CD80 remained unchanged with or without PF4. Both CD1a+ DC and CD1a- DC were negative for CD14, CD68 and CD83. Functionally, DC developed in the presence of PF4 had their secretion of tumor necrosis factor-alpha and IL-12 reduced by 75 +/- 10 and 79 +/- 13% respectively when they were stimulated by 100 ng/ml lipopolysaccharide and 50 ng/ml IFN-gamma. CD1a- DC developed in the presence of PF4 were not as active as the control CD1a+ DC in stimulating allogeneic T cells to proliferate. In addition, CD1a- DC were less potent in priming naive CD4+ T cells to secrete both type 1 and 2 cytokines. These results indicate that PF4 can influence differentiation and function of monocyte-derived DC.  相似文献   

20.
Human T-cell leukemia virus type I (HTLV-I), a causative agent of adult T-cell leukemia (ATL), is transmitted from mother to child, predominantly by breastfeeding. Oral HTLV-I infection and infection early in life are associated with a subsequent risk of ATL. Although the pathogenic mechanisms of ATL remain largely unknown, the host immune system seems to play an important role in HTLV-I pathogenesis. Previous studies have shown that monocytes from ATL patients had reduced capacity for dendritic cell (DC) differentiation. Therefore, we performed the present study to clarify the mechanisms responsible for the impairment of DC differentiation using HTLV-I-infected breast milk macrophages (HTLV-BrMM?). We found that when CD14? monocytes were cultured with GM-CSF and IL-4 in the presence of HTLV-BrMM?, they altered the surface phenotype of immature DCs and the stimulatory capacity of T-cell proliferation. The presence of HTLV-BrMM? significantly blocked the increased expression of CD1a, CD1b, CD11b, DC-SIGN, and HLA-DR; however, increased expression of CD1d and CD86 was observed. These effects could be partially replicated by incubation with culture supernatants from HTLV-BrMM?. The impairment of monocyte differentiation might be not due to HTLV-I infection of monocytes, but might be due to unknown soluble factors. Since other HTLV-I-infected cells exhibited similar inhibitory effects on monocyte differentiation to DCs, we speculated that HTLV-I infection might cause the production of some inhibitory cytokines in infected cells. Identifying the factors responsible for the impairment of monocyte differentiation to DCs may be helpful to understand HTLV-I pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号