共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Structural diversity in the 45-kilodalton merozoite surface antigen of Plasmodium falciparum 总被引:14,自引:0,他引:14
J A Smythe M G Peterson R L Coppel A J Saul D J Kemp R F Anders 《Molecular and biochemical parasitology》1990,39(2):227-234
An integral membrane protein associated with the merozoite surface of Plasmodium falciparum termed merozoite surface antigen 2 (the 45-kDa merozoite surface antigen), occurs in antigenically diverse forms. Here we report the sequences of the MSA 2 gene from two other isolates of P. falciparum. The 43 N-terminal residues and the 74 C-terminal residues of all three MSA 2 sequences are highly conserved, but between these conserved regions there are dramatic differences among the alleles. Instead of the two copies of a 32-amino-acid repeat present in the MSA 2 of isolate FC27, MSA 2 from clone 3D7 and isolate Indochina 1 contain 5 and 12 copies respectively of the four amino acid sequence Gly Gly Ser Ala. The sequences flanking the repeats also differ among the three antigens. The repeats in MSA 2 appear to be immunodominant during natural infection, and antibodies to the repeat regions of different alleles react with a restricted number of parasite isolates. 相似文献
3.
4.
Trucco C Fernandez-Reyes D Howell S Stafford WH Scott-Finnigan TJ Grainger M Ogun SA Taylor WR Holder AA 《Molecular and biochemical parasitology》2001,112(1):91-101
A complex of non-covalently bound polypeptides is located on the surface of the merozoite form of the human malaria parasite Plasmodium falciparum. Four of these polypeptides are derived by proteolytic processing of the merozoite surface protein 1 (MSP-1) precursor. Two components, a 22 and a 36 kDa polypeptide are not derived from MSP-1. The N-terminal sequence of the 36 kDa polypeptide has been determined, the corresponding gene cloned, and the protein characterised. The 36 kDa protein consists of 211 amino acids and is derived from a larger precursor of 371 amino acids. The precursor merozoite surface protein 6 (MSP-6) has been designated, and the 36 kDa protein, MSP-6(36). Mass spectrometric analysis of peptides released from the polypeptide by tryptic digestion confirmed that the gene identified codes for MSP-6(36). Antibodies were produced to a recombinant protein containing the C-terminal 45 amino acid residues of MSP-6(36). In immunofluorescence studies these antibodies bound to antigen at the parasite surface or in the parasitophorous vacuole within schizonts, with a pattern indistinguishable from that of antibodies to MSP-1. MSP-6(36) was present in the MSP-1 complex immunoprecipitated from the supernatant of in vitro parasite cultures, but was also immunoprecipitated from this supernatant in a form not bound to MSP-1. Examination of the MSP-6 gene in three parasite lines detected no sequence variation. The sequence of MSP-6(36) is related to that of the previously described merozoite surface protein 3 (MSP-3). The MSP-6(36) amino acid sequence has 50% identity and 85% similarity with the C-terminal region of MSP-3. The proteins share a specific sequence pattern (ILGWEFGGG-[AV]-P) and a glutamic acid-rich region. The remainder of MSP-6 and MSP-3 are unrelated, except at the N-terminus. Both MSP-6(36) and MSP-3 are partially associated with the parasite surface and partially released as soluble proteins on merozoite release. MSP-6(36) is a hydrophilic negatively charged polypeptide, but there are two clusters of hydrophobic amino acids at the C-terminus, located in two amphipathic helical structures identified from secondary structure predictions. It was suggested that this 35 residue C-terminal region may be involved in MSP-6(36) binding to MSP-1 or other molecules; alternatively, based on the secondary structure and coil formation predictions, the region may form an intramolecular anti-parallel coiled-coil structure. 相似文献
5.
Pearce JA Triglia T Hodder AN Jackson DC Cowman AF Anders RF 《Infection and immunity》2004,72(4):2321-2328
Merozoite surface protein 1 (MSP1) is a highly polymorphic Plasmodium falciparum merozoite surface protein implicated in the invasion of human erythrocytes during the asexual cycle. It forms a complex with MSP6 and MSP7 on the merozoite surface, and this complex is released from the parasite around the time of erythrocyte invasion. MSP1 and many other merozoite surface proteins contain dimorphic elements in their protein structures, and here we show that MSP6 is also dimorphic. The sequences of eight MSP6 genes indicate that the alleles of each dimorphic form of MSP6 are highly conserved. The smaller 3D7-type MSP6 alleles are detected in parasites from all malarious regions of the world, whereas K1-type MSP6 alleles have only been detected in parasites from mainland Southeast Asia. Cleavage of MSP6, which produces the p36 fragment in 3D7-type MSP6 and associates with MSP1, also occurs in K1-type MSP6 but at a different site in the protein. Anti-3D7 MSP6 antibodies weakly inhibited erythrocyte invasion by homologous 3D7 merozoites but did not inhibit a parasite line expressing the K1-type MSP6 allele. Antibodies from hyperimmune individuals affinity purified on an MSP3 peptide cross-reacted with MSP6; therefore, MSP6 may also be a target of antibody-dependent cellular inhibition. 相似文献
6.
Black CG Wu T Wang L Topolska AE Coppel RL 《Molecular and biochemical parasitology》2005,144(1):27-35
MSP8 is a recently identified merozoite surface protein that shares similar structural features with the leading vaccine candidate MSP1. Both proteins contain two C-terminal epidermal growth factor (EGF)-like domains, a glycosylphosphatidylinositol (GPI) anchor attachment sequence and undergo proteolytic processing. By double recombination, we have disrupted the MSP8 gene in P. falciparum 3D7 parasites, and confirmed integration by southern hybridisation and PCR. Western blot analysis of lysates from asynchronous cultures and isolated merozoites demonstrated the absence of MSP8 in two cloned knockout lines. There was no significant difference in growth rate observed between 3D7 and the cloned DeltaMSP8 lines. Thus, unlike MSP1, MSP8 is not required for asexual stage parasite growth and replication in vitro. Further analysis of the cloned lines showed that loss of MSP8 had no effect on the levels of expression of other merozoite surface proteins including MSP1-5, 7 and 10. Stage-specific immunoblots showed that MSP8 expression commences in late rings and extends throughout the rest of the erythrocytic life cycle in the 3D7 parent line, but is absent from all stages in the DeltaMSP8 transfectants. 相似文献
7.
8.
Characterization of the merozoite surface protein 4/5 gene of Plasmodium berghei and Plasmodium yoelii 总被引:1,自引:0,他引:1
The genes encoding merozoite surface protein 4/5 (MSP4/5) from Plasmodium berghei and Plasmodium yoelii have been cloned and completely sequenced. Comparisons of the predicted protein sequences with those of Plasmodium chabaudi MSP4/5 and Plasmodium falciparum MSP4 and MSP5 show general structural similarities. All predicted proteins contain hydrophobic signal sequences, potential GPI attachment sequences and a single epidermal growth factor (EGF)-like domain at the C-terminus. The amino acid sequence of the EGF-like motif is highly conserved in rodent malaria species and also shows a considerable degree of similarity with the EGF-like domains found in the P. falciparum proteins. Both the P. yoelii and P. berghei genes show evidence of both spliced and unspliced mRNA at steady state. This phenomenon is similar to that seen for the P. chabaudi MSP4/5 gene, and is believed to be involved in regulation of protein expression. We describe here the construction of clones expressing full length recombinant protein. Antibodies directed against recombinant MSP4/5 proteins recognize a single polypeptide on parasite material and show crossreactivity between MSP4/5 from different murine malaria species, but do not crossreact with either MSP4 or MSP5 from P. falciparum. The various antisera show reactivity against reduction sensitive epitopes as well as reduction insensitive epitopes. 相似文献
9.
Structural and antigenic properties of merozoite surface protein 4 of Plasmodium falciparum
下载免费PDF全文

Merozoite surface protein 4 (MSP4) of Plasmodium falciparum is a glycosylphosphatidylinositol-anchored integral membrane protein of 272 residues that possesses a single epidermal growth factor (EGF)-like domain near the carboxyl terminus. We have expressed both full-length MSP4 and a number of fragments in Escherichia coli and have used these recombinant proteins to raise experimental antisera. All recombinant proteins elicited specific antibodies that reacted with parasite-derived MSP4 by immunoblotting. Antibody reactivity was highly dependent on the protein conformation. For example, reduction and alkylation of MSP4 almost completely abolished the reactivity of several antibody preparations, including specificities directed to regions of the protein that do not contain cysteine residues and are far removed from the cysteine-containing EGF-like domain. This indicated the presence of conformation-dependent epitopes in MSP4 and demonstrated that proper folding of the EGF-like domain influenced the antigenicity of the entire molecule. The recombinant proteins were used to map epitopes recognized by individuals living in areas where malaria is endemic, and at least four distinct regions are naturally antigenic during infection. Binding of human antibodies to the EGF-like domain was essentially abrogated after reduction of the recombinant protein, indicating the recognition of conformational epitopes by the human immune responses. This observation led us to examine the importance of conformation dependence in responses to other integral membrane proteins of asexual stages. We analyzed the natural immune responses to a subset of these antigens and demonstrated that there is diminished reactivity to several antigens after reduction. These studies demonstrate the importance of reduction-sensitive structures in the maintenance of the antigenicity of several asexual-stage antigens and in particular the importance of the EGF-like domain in the antigenicity of MSP4. 相似文献
10.
11.
Identification of the Plasmodium chabaudi homologue of merozoite surface proteins 4 and 5 of Plasmodium falciparum
下载免费PDF全文

Previous studies of Plasmodium falciparum have identified a region of chromosome 2 in which are clustered three genes for glycosylphosphatidylinositol (GPI)-anchored merozoite surface proteins, MSP2, MSP5, and MSP4, arranged in tandem. MSP4 and MSP5 both encode proteins 272 residues long that contain hydrophobic signal sequences, GPI attachment signals, and a single epidermal growth factor (EGF)-like domain at their carboxyl termini. Nevertheless, the remainder of their protein coding regions are quite dissimilar. The locations and similar structural features of these genes suggest that they have arisen from a gene duplication event. Here we describe the identification of the syntenic region of the genome in the murine malaria parasite, Plasmodium chabaudi adami DS. Only one open reading frame is present in this region, and it encodes a protein with structural features reminiscent of both MSP4 and MSP5, including a single EGF-like domain. Accordingly, the gene has been designated PcMSP4/5. The homologue of the P. falciparum MSP2 gene could not be found in P. chabaudi; however, the amino terminus of the PcMSP4/5 protein shows similarity to that of MSP2. The PcMSP4/5 gene encodes a protein with an apparent molecular mass of 36 kDa, and this protein is detected in mature stages of the parasite. The protein partitions in the detergent-enriched phase after Triton X-114 fractionation and is localized to the surfaces of trophozoites and developing and free merozoites. The PcMSP4/5 gene is transcribed in both ring and trophozoite stages but appears to be spliced in a stage-specific manner such that the central intron is spliced from the mRNA in the parasitic stage in which the protein is expressed. 相似文献
12.
Allelic diversity and antibody recognition of Plasmodium falciparum merozoite surface protein 1 during hypoendemic malaria transmission in the Brazilian amazon region.
下载免费PDF全文

L A Da Silveira M L Dorta E A Kimura A M Katzin F Kawamoto K Tanabe M U Ferreira 《Infection and immunity》1999,67(11):5906-5916
The polymorphic merozoite surface protein (MSP-1) of Plasmodium falciparum is a major asexual blood-stage malaria vaccine candidate. The impact of allelic diversity on recognition of MSP-1 during the immune response remains to be investigated in areas of hypoendemicity such as the Brazilian Amazon region. In this study, PCR was used to type variable regions, blocks 2, 4, and 10, of the msp-1 gene and to characterize major gene types (unique combinations of allelic types in variable blocks) in P. falciparum isolates collected across the Amazon basin over a period of 12 years. Twelve of the 24 possible gene types were found among 181 isolates, and 68 (38%) of them had more than one gene type. Temporal, but not spatial, variation was found in the distribution of MSP-1 gene types in the Amazon. Interestingly, some gene types occurred more frequently than expected from random assortment of allelic types in different blocks, as previously found in other areas of endemicity. We also compared the antibody recognition of polymorphic (block 2), dimorphic (block 6), and conserved (block 3) regions of MSP-1 in Amazonian malaria patients and clinically immune Africans, using a panel of recombinant peptides. Results were summarized as follows. (i) All blocks were targeted by naturally acquired cytophilic antibodies of the subclasses IgG1 and IgG3, but the balance between IgG1 and IgG3 depended on the subjects' cumulative exposure to malaria. (ii) The balance between IgG1 and IgG3 subclasses and the duration of antibody responses differed in relation to distinct MSP-1 peptides. (iii) Antibody responses to variable blocks 2 and 6 were predominantly type specific, but variant-specific antibodies that target isolate-specific repetitive motifs within block 2 were more frequent in Amazonian patients than in previously studied African populations. 相似文献
13.
Black CG Barnwell JW Huber CS Galinski MR Coppel RL 《Molecular and biochemical parasitology》2002,120(2):215-224
Merozoite surface proteins of Plasmodium falciparum are one major group of antigens currently being investigated and tested as malaria vaccine candidates. Two recently described P. falciparum merozoite surface antigens, MSP4 and MSP5, are GPI-anchored proteins that each contain a single EGF-like domain and appear to have arisen by an ancient gene duplication event. The genes are found in tandem on chromosome 2 of P. falciparum and the syntenic region of the genome was identified in the rodent malarias P. chabaudi, P. yoelii and P. berghei. In these species, there is only a single gene, designated MSP4/5 encoding a single EGF-like domain similar to the EGF-like domain in both PfMSP4 and PfMSP5. Immunization of mice with PyMSP4/5 provides mice with high levels of protection against lethal challenge with blood stage P. yoelii. In this study, we show that in P. vivax, which is quite phylogenetically distant from P. falciparum, both MSP4 and MSP5 homologues can be found with their relative arrangements with respect to the surrounding genes mostly preserved. However, the gene for MSP2, found between MSP5 and adenylosuccinate lyase (ASL) in P. falciparum, is absent from P. vivax. The PvMSP4 and PvMSP5 genes have a two-exon structure and encode proteins with potential signal and GPI anchor sequences and a single EGF-like domain near the carboxyl-terminus. Rabbit antisera raised against purified recombinant proteins show that each of the antisera react with distinct proteins of 62 kDa for PvMSP4 and 86 kDa for PvMSP5 in parasite lysates. Indirect immunofluorescence assays (IFA) localized PvMSP4 over the entire surface of P. vivax merozoites, as expected, whereas, the MSP5 homologue was found to be associated with an apical organellar location consistent with micronemes or over the polar prominence. 相似文献
14.
Franks S Baton L Tetteh K Tongren E Dewin D Akanmori BD Koram KA Ranford-Cartwright L Riley EM 《Infection and immunity》2003,71(6):3485-3495
Diversity in the surface antigens of malaria parasites is generally assumed to be a mechanism for immune evasion, but there is little direct evidence that this leads to evasion of protective immunity. Here we show that alleles of the highly polymorphic merozoite surface protein 2 (MSP-2) can be grouped (within the known dimorphic families) into distinct serogroups; variants within a serogroup show extensive serological cross-reactivity. Cross-reactive epitopes are immunodominant, and responses to them may be boosted at the expense of responses to novel epitopes (original antigenic sin). The data imply that immune selection explains only some of the diversity in the msp-2 gene and that MSP-2 vaccines may need to include only a subset of the known variants in order to induce pan-reactive antibodies. 相似文献
15.
Molecular cloning and sequence analysis of the gene encoding the major merozoite surface antigen of Plasmodium chabaudi chabaudi IP-PC1 总被引:1,自引:0,他引:1
W Deleersnijder D Hendrix N Bendahman J Hanegreefs L Brijs C Hamers-Casterman R Hamers 《Molecular and biochemical parasitology》1990,43(2):231-244
The complete nucleotide sequence of the gene encoding the precursor to the major merozoite surface antigens of Plasmodium chabaudi chabaudi strain IP-PC1 has been determined. A single open reading frame was detected, that coded for a protein of 199 kDa. The encoded protein (p199) contains putative signal and membrane anchor sequences and shows a clustering of Cys residues in the last 120 amino acids. Incompletely conserved tandem repeat oligopeptides are present at different positions in the molecule. P199 shows 69% overall homology to the analogous antigen in Plasmodium yoelii yoelii strain YM. The divergence between these antigens is largely confined to 4 areas where a number of insertions and/or deletions have occurred. All repeats occur in these divergent regions. The overall homology with both alleles of Plasmodium falciparum PMMSA is 33%. 相似文献
16.
The C-terminal 19-kDa domain of merozoite surface protein 1 (MSP1??) is the target of protective antibodies but alone is poorly immunogenic. Previously, using the Plasmodium yoelii murine model, we fused P. yoelii MSP1?? (PyMSP1??) with full-length P. yoelii merozoite surface protein 8 (MSP8). Upon immunization, the MSP8-restricted T cell response provided help for the production of high and sustained levels of protective PyMSP1??- and PyMSP8-specific antibodies. Here, we assessed the vaccine potential of MSP8 of the human malaria parasite, Plasmodium falciparum. Distinct from PyMSP8, P. falciparum MSP8 (PfMSP8) contains an N-terminal asparagine and aspartic acid (Asn/Asp)-rich domain whose function is unknown. Comparative analysis of recombinant full-length PfMSP8 and a truncated version devoid of the Asn/Asp-rich domain, PfMSP8(ΔAsn/Asp), showed that both proteins were immunogenic for T cells and B cells. All T cell epitopes utilized mapped within rPfMSP8(ΔAsn/Asp). The dominant B cell epitopes were conformational and common to both rPfMSP8 and rPfMSP8(ΔAsn/Asp). Analysis of native PfMSP8 expression revealed that PfMSP8 is present intracellularly in late schizonts and merozoites. Following invasion, PfMSP8 is found distributed on the surface of ring- and trophozoite-stage parasites. Consistent with a low and/or transient expression of PfMSP8 on the surface of merozoites, PfMSP8-specific rabbit IgG did not inhibit the in vitro growth of P. falciparum blood-stage parasites. These studies suggest that the further development of PfMSP8 as a malaria vaccine component should focus on the use of PfMSP8(ΔAsn/Asp) and its conserved, immunogenic T cell epitopes as a fusion partner for protective domains of poor immunogens, including PfMSP1??. 相似文献
17.
Natural immune response to the C-terminal 19-kilodalton domain of Plasmodium falciparum merozoite surface protein 1. 总被引:5,自引:2,他引:5
下载免费PDF全文

Y P Shi U Sayed S H Qari J M Roberts V Udhayakumar A J Oloo W A Hawley D C Kaslow B L Nahlen A A Lal 《Infection and immunity》1996,64(7):2716-2723
We have characterized the natural immune responses to the 19-kDa domain of merozoite surface protein 1 in individuals from an area of western Kenya in which malaria is holoendemic. We used the three known natural variant forms of the yeast-expressed recombinant 19-kDa fragment that are referred to as the E-KNG, Q-KNG, and E-TSR antigens. T-cell proliferative responses in individuals older than 15 years and the profile of immunoglobulin G (IgG) antibody isotypes in individuals from 2 to 74 years old were determined. Positive proliferative responses to the Q-KNG antigen were observed for 54% of the individuals, and 37 and 35% of the individuals responded to the E-KNG and E-TSR constructs, respectively. Considerable heterogeneity in the T-cell proliferative responses to these three variant antigens was observed in different individuals, suggesting that the 19-kDa antigen may contain variant-specific T epitopes. Among responses of the different isotypes of the IgG antibody, IgG1 and IgG3 isotype responses were predominant, and the prevalence and levels of the responses increased with age. We also found that a higher level of IgG1 antibody response correlated with lower parasite density among young age groups, suggesting that IgG1 antibody response may play a role in protection against malaria. However, there was no correlation between the IgG3 antibody level and protection. Furthermore, we observed that although the natural antibodies cross-reacted with all three variant 19-kDa antigens, IgG3 antibodies in 12 plasma samples recognized only the E-KNG and Q-KNG constructs and not the E-TSR antigen. This result suggests that the fine specificity of IgG3 antibodies differentiates among variant-specific natural B-cell determinants in the second epidermal growth factor domain (KNG and TSR) of the antigen. 相似文献
18.
Parra M Hui G Johnson AH Berzofsky JA Roberts T Quakyi IA Taylor DW 《Infection and immunity》2000,68(5):2685-2691
Vaccines for P. falciparum will need to contain both T- and B-cell epitopes. Conserved epitopes are the most desirable, but they are often poorly immunogenic. The major merozoite surface protein 1 (MSP-1) is currently a leading vaccine candidate antigen. In this study, six peptides from conserved or partly conserved regions of MSP-1 were evaluated for immunogenicity in B10 congenic mice. Following immunization with the peptides, murine T cells were tested for the ability to proliferate in vitro and antibody responses to MSP-1 were evaluated in vivo. The results showed that one highly conserved sequence (MSP-1#1, VTHESYQELVKKLEALEDAV; located at amino acid positions 20 to 39) and one partly conserved sequence (MSP-1#23, GLFHKEKMILNEEEITTKGA; located at positions 44 to 63) contained both T- and B-cell epitopes. Immunization of mice with these peptides resulted in T-cell proliferation and enhanced production of antibody to MSP-1 upon exposure to merozoites. MSP-1#1 stimulated T-cell responses in three of the six strains of mice evaluated, whereas MSP-1#23 was immunogenic in only one strain. Immunization with the other four peptides resulted in T-cell responses to the peptides, but none of the resulting peptide-specific T cells recognized native MSP-1. These results demonstrate that two sequences located in the N terminus of MSP-1 can induce T- and B-cell responses following immunization in a murine model. Clearly, these sequences merit further consideration for inclusion in a vaccine for malaria. 相似文献
19.
Stubbs J Olugbile S Saidou B Simpore J Corradin G Lanzavecchia A 《Infection and immunity》2011,79(3):1143-1152
It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines. 相似文献
20.
We have undertaken a systematic search for T cell epitopes within the sequence of the major merozoite surface antigen (GP190) of Plasmodium falciparum. Recombinant polypeptides expressed in E. coli were used to evaluate the reactivity of peripheral blood mononuclear cells (PBMC) from both inhabitants of a rural community of West Africa exposed to P. falciparum transmission and from German patients with diagnosis of acute malaria. Although the proliferative response of the PBMC was in most cases very low, several T cell clones could be established. Deletion analysis of each gp190-derived polypeptide allowed the identification of six different T cell epitopes. Epitopes could be mapped within the dimorphic region of gp190, which also contains the sequences most frequently recognized by sera from adult individuals living in endemic areas. 相似文献