首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate receptors in the basolateral complex of the amygdala (BLA) are essential for the acquisition, expression and extinction of Pavlovian fear conditioning in rats. Recent work has revealed that glutamate receptors in the central nucleus of the amygdala (CEA) are also involved in the acquisition of conditional fear, but it is not known whether they play a role in fear extinction. Here we examine this issue by infusing glutamate receptor antagonists into the BLA or CEA prior to the extinction of fear to an auditory conditioned stimulus (CS) in rats. Infusion of the α‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazole‐propionate (AMPA) receptor antagonist, 2,3‐dihydroxy‐6‐nitro‐7‐sulfamoyl‐benzo[f]quinoxaline‐2,3‐dione (NBQX), into either the CEA or BLA impaired the expression of conditioned freezing to the auditory CS, but did not impair the formation of a long‐term extinction memory to that CS. In contrast, infusion of the N‐methyl‐d ‐aspartate (NMDA) receptor antagonist, d,l ‐2‐amino‐5‐phosphonopentanoic acid (APV), into the amygdala, spared the expression of fear to the CS during extinction training, but impaired the acquisition of a long‐term extinction memory. Importantly, only APV infusions into the BLA impaired extinction memory. These results reveal that AMPA and NMDA receptors within the amygdala make dissociable contributions to the expression and extinction of conditioned fear, respectively. Moreover, they indicate that NMDA receptor‐dependent processes involved in extinction learning are localized to the BLA. Together with previous work, these results reveal that NMDA receptors in the CEA have a selective role acquisition of fear memory.  相似文献   

2.
Several lines of evidence suggest that the N-methyl-D-aspartate (NMDA) receptor plays a significant role in fear conditioning and extinction. However, our knowledge of the role of d-serine, an endogenous ligand for the glycine site of the NMDA receptor, in fear extinction is quite limited compared to that of d-cycloserine, an exogenous partial agonist for the same site. In the current study, we examined the effects of d-serine on fear extinction and phosphorylation of extracellular signal-regulated kinase (ERK) in the hippocampus, basolateral amygdala (BLA), and medial prefrontal cortex (mPFC) during the process of fear extinction. Systemic administrations of d-serine (2.7 g/kg, i.p.) with or without the ERK inhibitor SL327 (30 mg/kg, i.p.) to C57BL/6 J mice were performed before fear extinction in a cued fear conditioning and extinction paradigm. Cytosolic and nuclear ERK 1/2 phosphorylation in the hippocampus, BLA, and mPFC were measured 1 h after extinction (E1h), 24 h after extinction (E24h), and 1 h after recall (R1h) by Western blotting. We found that d-serine enhanced the extinction of fear memory, and the effects of d-serine were reduced by the ERK phosphorylation inhibitor SL327. The Western blot analyses showed that d-serine significantly increased cytosolic ERK 2 phosphorylation at E1h in the hippocampus and cytosolic ERK 1/2 phosphorylation at R1h in the BLA. The present study suggested that d-serine might enhance fear extinction through NMDA receptor-induced ERK signaling in mice, and that d-serine has potential clinical importance for the treatment of anxiety disorders.  相似文献   

3.
Reinforcing effects of addictive drugs can be evaluated with the conditioned place preference (CPP) test which involves both the action of drugs and environmental cues. However, the encoded neural circuits and underlying signaling mechanism are not fully understood. In this study, we have used morphine-CPP model in the rat and characterized the role of N-methyl-d-aspartate (NMDA) receptor and the phosphorylation of extracellular signal-regulated kinase (ERK) in the central nuclei of amygdala (CeA) in the expression of morphine-induced CPP. We have found that morphine repeated pairing treatment causes a significant preference for compartment paired with morphine after 1 day or 7 days post-training, which is associated with increased ERK1/2 phosphorylation (p-ERK1/2, a measure of ERK activity) in the CeA. More than 80% of the positive p-ERK1/2 neurons express NMDA receptor subunit NR1 by double immunofluorescence studies. The infusion of either MEK inhibitor U0126 or NMDA receptor antagonist MK-801 in the CeA not only suppresses the activation of ERK1/2 in the CeA but also abolishes the expression of CPP. These results suggest that the activation of the NMDA receptor–ERK signaling pathway in the CeA is required for the expression of morphine-induced place preference in the rat.  相似文献   

4.
Explicit memory may depend on the hippocampus, whereas the amygdala may be part of an emotional memory system. Priming stimulation of the basolateral group of the amygdala (BLA) resulted in an enhanced long-term potentiation (LTP) in the dentate gyrus (DG) to perforant path (PP) stimulation 30, 90, 150, and 180 min after high-frequency stimulation (HFS). Exposure of rats to a behavioral stress is reported to inhibit DG LTP. Because the amygdala is thought to mediate emotional responses, we examined the apparent discrepancy between the effects of behavioral stress induced 1 hr before HFS to the PP and of amygdala priming on hippocampal plasticity by stimulating the BLA 1 hr before HFS to the PP. The two delayed protocols inhibited the expression of LTP to PP stimulation, whereas priming the BLA immediately before HFS to the PP enhanced DG LTP. Moreover, exposure to the behavioral stress blocked the enhancing effects of BLA priming on LTP. We propose that the activation of the BLA (either by behavioral stress or by direct electrical stimulation) has a biphasic effect on hippocampal plasticity: an immediate excitatory effect and a longer-lasting inhibitory effect.  相似文献   

5.
We previously demonstrated that N‐methyl‐d ‐aspartate (NMDA) treatment (50 μm , 3 h) induced astrocytic production of monocyte chemoattractant protein‐1 (MCP‐1, CCL2), a CC chemokine implicated in ischemic and excitotoxic brain injury, in rat corticostriatal slice cultures. In this study, we investigated the signaling mechanisms for NMDA‐induced MCP‐1 production in slice cultures. The results showed a close correlation between NMDA‐induced neuronal injury and MCP‐1 production, and an abrogation of NMDA‐induced MCP‐1 production in NMDA‐pretreated slices where neuronal cells had been eliminated. These results collectively indicate that NMDA‐induced neuronal injury led to astrocytic MCP‐1 production. NMDA‐induced MCP‐1 production was significantly inhibited by U0126, an inhibitor of extracellular signal‐regulated kinase (ERK). Immunostaining for phosphorylated ERK revealed that transient neuronal ERK activation was initially induced and subsided within 30 min, followed by sustained ERK activation in astrocytes. Treatment with U0126 during only the early phase (U0126 was washed out at 15 or 30 min after NMDA administration) suppressed early activation of ERK in neuronal cells, but not later activation of ERK in astrocytes. In this case, MCP‐1 production was not suppressed, suggesting that activation of neuronal ERK is not necessary for MCP‐1 production. In contrast, delayed application of U0126 at 3 h after the beginning of NMDA treatment inhibited MCP‐1 production to the same degree as that observed when U0126 was applied from 3 h before NMDA administration. These findings suggest that sustained activation of the ERK signaling pathway in astrocytes plays a key role in neuronal injury‐induced MCP‐1 production.  相似文献   

6.
Whereas the neuronal substrates underlying the acquisition of auditory fear conditioning have been widely studied, the substrates and mechanisms mediating the acquisition of fear extinction remain largely elusive. Previous reports indicate that consolidation of fear extinction depends on the mitogen-activated protein kinase/extracellular-signal regulated kinase (MAPK/ERK) signalling pathway and on protein synthesis in the medial prefrontal cortex (mPFC). Based on experiments using the fear-potentiated startle paradigm suggesting a role for neuronal plasticity in the basolateral amygdala (BLA) during fear extinction, we directly addressed whether MAPK/ERK signalling in the basolateral amygdala is necessary for the acquisition of fear extinction using conditioned freezing as a read-out. First, we investigated the regional and temporal pattern of MAPK/ERK activation in the BLA following extinction learning in C57Bl/6J mice. Our results indicate that acquisition of extinction is associated with an increase of phosphorylated MAPK/ERK in the BLA. Moreover, we found that inhibition of the MAPK/ERK signalling pathway by intrabasolateral amygdala infusion of the MEK inhibitor, U0126, completely blocks acquisition of extinction. Thus, our results indicate that the MAPK/ERK signalling pathway is required for extinction of auditory fear conditioning in the BLA, and support a role for neuronal plasticity in the BLA during the acquisition of fear extinction.  相似文献   

7.
8.
Acute effects of ghrelin on excitatory synaptic transmission were evaluated on hippocampal CA1 synapses. Ghrelin triggered an enduring enhancement of synaptic transmission independently of NMDA receptor activation and probably via postsynaptic modifications. This ghrelin‐mediated potentiation resulted from the activation of GHS‐R1a receptors as it was mimicked by the selective agonist JMV1843 and blocked by the selective antagonist JMV2959. This potentiation also required the activation of PKA and ERK pathways to occur as it was inhibited by KT5720 and U0126, respectively. Moreover it most probably involved Ca2+ influxes as both ghrelin and JMV1843 elicited intracellular Ca2+ increases, which were dependent on the presence of extracellular Ca2+ and mediated by L‐type Ca2+ channels opening. In addition, ghrelin potentiated AMPA receptor‐mediated [Ca2+]i increases while decreasing NMDA receptor‐mediated ones. Thus the potentiation of synaptic transmission by GHS‐R1a at hippocampal CA1 excitatory synapses probably results from postsynaptic mechanisms involving PKA and ERK activation, which are producing long‐lasting enhancement of AMPA receptor‐mediated responses.  相似文献   

9.
10.
Reversible inactivation of the basolateral amygdala (BLA) disrupts the acquisition and expression of conditioned defeat (CD), an ethological model of conditioned fear, suggesting that the BLA may be a critical component of the neural circuit mediating behavioral plasticity associated with the experience of social defeat. We have also shown that this effect is N-methyl-d-aspartic acid (NMDA) receptor-dependent, because infusion of d,l-2-amino-5-phosphovalerate (APV) into the BLA also impairs the acquisition of CD. APV is a non-selective NMDA antagonist, however, thus it disrupts the entire heteromeric receptor complex, making it difficult to distinguish the relative contributions of either the NR2A or NR2B receptor subtypes on the acquisition of CD. There is ample evidence, however, that the NR2B subunit of the NMDA receptor in the amygdala is critical for mediating long-term potentiation and plasticity related to fear learning. The purpose of the present experiment was to determine whether infusion of ifenprodil, a selective antagonist of the NR2B subunit, into the BLA would block the acquisition (but not expression) of CD. In Experiment 1, infusion of ifenprodil immediately before defeat training significantly decreased submissive behaviors and restored territorial aggression when hamsters were later paired with a non-aggressive intruder (NAI). Conversely, infusion of ifenprodil immediately before CD testing failed to inhibit the expression of submissive behaviors in previously defeated hamsters. These results support the hypothesis that the BLA is a critical site for the plasticity underlying social defeat-induced changes in behavior.  相似文献   

11.
12.
Philip S  Armstead WM 《Brain research》2003,979(1-2):98-103
Previous studies in piglets have shown that the generation of oxygen free radicals (O(-)(2)) following traumatic brain injury and hypoxia/ischemia contribute to the reversal of N-methyl-D-aspartate (NMDA)-induced pial artery dilation to vasoconstriction. This study determined the contribution of protein tyrosine kinase (PTK) and mitogen-activated protein (MAPK) activation to impairment of NMDA cerebrovasodilation by O(-)(2) in piglets equipped with a closed window. Exposure of the cerebral cortex to a xanthine oxidase O(-)(2) generating system (OX) reversed NMDA (10(-8), 10(-6) M) dilation to vasoconstriction but such impairment was partially prevented by the PTK inhibitor, genistein, the MAPK (ERK isoform) inhibitor, U0126, and the MAPK (p38 isoform) inhibitor, SB203580 (9+/-1 and 15+/-1 vs. -1+/-1 and -1+/-1 vs. 5+/-1 and 9+/-1% for sham control, OX and OX in the presence of genistein, respectively). However, the p38 MAPK inhibitor, SB203580, prevented NMDA dilator impairment significantly less than the ERK MAPK inhibitor, U0126. Similar results were obtained for glutamate. These data show that PTK and MAPK activation by the presence of O(-)(2) contributes to the impairment of NMDA dilation. Furthermore, these data indicate a differential role for ERK and p38 MAPK activation in impairment of NMDA dilation by O(-)(2) in the brain.  相似文献   

13.
Extracellular signal-regulated kinase (ERK) belongs to the family of mitogen-activated protein kinases (MAPKs), which are serine-threonine kinases activated by phosphorylation in response to a variety of mitogenic signals. We previously reported that 17 beta-estradiol rapidly activates ERK in the rat hippocampus. However, the physiological role of this rapid activation of ERK by estrogen in vivo has not yet been elucidated. This study investigated whether ERK may participate in mediating the neuroprotective effects of estrogen against quinolinic acid (QA) toxicity in the rat hippocampus in vivo. Injection of QA into the hippocampi of male rats produced a loss of Nissl-stained neurons in the CA1 after 24 h. Prior administration of 17 beta-estradiol (50 pmol/animal) to the ventricles prevented the QA-induced decrease in Nissl-stained neurons. Pretreatment with U0126, an inhibitor of MAPK/ERK kinase, inhibited the rapid activation of ERK by 17 beta-estradiol in the rat hippocampus. Moreover, the neuroprotective effects of 17beta-estradiol against QA toxicity were blocked by the pretreatment with U0126. U0126 alone did not produce a loss of neurons. These results indicate that ERK mediates estrogen neuroprotection after QA toxicity in the rat hippocampus.  相似文献   

14.
Kent K  Hess K  Tonegawa S  Small SA 《Hippocampus》2007,17(10):1003-1011
The anatomical distribution of sensory-evoked activity recorded from the hippocampal long-axis can shift depending on prior experience. In accordance with Marr's computational model of hippocampal function, CA3 NMDA receptors have been hypothesized to mediate this experience-dependent shift in hippocampal activity. Here we tested this hypothesis by investigating genetically-modified mice in which CA3 NMDA receptors are selectively knocked-out (CA3-NR1 KO). First, we were required to develop an fMRI protocol that can record sensory-evoked activity from the mouse hippocampal long-axis. This goal was achieved in part by using a dedicated mouse scanner to image odor-evoked activity, and by using non-EPI (echo planer imaging) pulse sequences. As in humans, odors were found to evoke a ventral-predominant activation pattern in the mouse hippocampus. More importantly, odor-evoked activity shifted in an experience-dependent manner. Finally, we found that the experience-dependent shift in hippocampal long-axis activity is blocked in CA3-NR1 knock-out mice. These findings establish a cellular mechanism for the plasticity imaged in the hippocampal long-axis, suggesting how experience-dependent modifications of hippocampal activity can contribute to its mnemonic function.  相似文献   

15.
Encoding of novel information has been proposed to rely on the time‐locked release of dopamine in the hippocampal formation during novelty detection. However, the site of novelty detection in the hippocampus remains a matter of debate. According to current models, the CA1 and the subiculum act as detectors and distributors of novel sensory information. Although most CA1 pyramidal neurons exhibit regular‐spiking behavior, the majority of subicular pyramidal neurons fire high‐frequency bursts of action potentials. The present study investigates the efficacy of dopamine D1/D5 receptor activation to facilitate the induction of activity‐dependent long‐term potentiation (LTP) in rat CA1 regular‐spiking and subicular burst‐spiking pyramidal cells. Using a weak stimulation protocol, set at a level subthreshold for the induction of LTP, we show that activation of D1/D5 receptors for 5–10 min facilitates LTP in subicular burst‐spiking neurons but not in CA1 neurons. The results demonstrate that D1/D5 receptor‐facilitated LTP is NMDA receptor‐dependent, and requires the activation of protein kinase A. In addition, the D1/D5 receptor‐facilitated LTP is shown to be presynaptically expressed and relies on presynaptic Ca2+ signaling. The phenomenon of dopamine‐induced facilitation of presynaptic NMDA receptor‐dependent LTP in subicular burst‐spiking pyramidal cells is in accordance with observations of the time‐locked release of dopamine during novelty detection in this brain region, and reveals an intriguing mechanism for the encoding of hippocampal output information.  相似文献   

16.
17.
Vaillend C  Billard JM 《Hippocampus》2002,12(6):713-717
Duchenne muscular dystrophy (DMD) is associated with cognitive deficits that may result from a deficiency in the brain isoform of the cytoskeletal membrane-associated protein, dystrophin. CA1 hippocampal short-term potentiation (STP) of synaptic transmission is increased in dystrophin-deficient mdx mice, which has been attributed to a facilitated activation of NMDA receptors. In this study, extracellular recordings in the hippocampal slice preparation were used first to determine the consequences of this alteration on short-term depression (STD). STD induction was facilitated in mdx as compared with wild-type mice in a control medium. Because brain dystrophin deficiency results in a decreased number of gamma-aminobutyric acid A (GABAA)-receptor clusters, we tested the hypothesis that neuronal disinhibition contributes to the enhanced synaptic plasticity in mdx mice. We found that the GABAA receptor antagonist, bicuculline, increased basal neurotransmission in wild-type, but not in mdx mice and prevented the enhanced STP and STD in the CA1 area of slices from mdx mice. The possibility that altered GABA mechanisms underlie the facilitation of NMDA receptor-dependent synaptic plasticity in mdx mice is discussed.  相似文献   

18.
Yang J  Han H  Cao J  Li L  Xu L 《Hippocampus》2006,16(5):431-436
Clinical studies demonstrate that prenatal stress causes cognitive deficits and increases vulnerability to affective disorders in children and adolescents. The underlying mechanisms are not yet fully understood. Here, we reported that prenatal stress (10 unpredictable, 1 s, 0.8 mA foot shocks per day during gestational days 13-19) impaired long-term potentiation (LTP) but facilitated long-term depression (LTD) in hippocampal CA1 region in slices of the prenatal stressed offspring (5 weeks old). Cross-fostering neonate offspring by the prenatal stressed or control mothers did not change the effects of prenatal stress on the hippocampal LTP and LTD. Furthermore, prenatal stress enhanced the effects of acute stress on the hippocampal LTP and LTD and impaired spatial learning and memory in the Morris water maze in the young rat offspring. Therefore, prenatal stress alters synaptic plasticity and enhances the effects of acute stress on synaptic plasticity in the hippocampus, which may be the mechanism for the impaired spatial learning and memory in young rat offspring.  相似文献   

19.
Weak (20-50 microA) sine-wave stimulation at 60 Hz (SWS) of either the mossy fibers or the Schaffer collaterals promoted epileptiform synchronized bursts in the CA2/3 area of rat hippocampal slices in the absence of epileptogenic agents. Following brief SWSs (2-10 sec every 5 min), delayed synchronized bursts (DSBs) were triggered by weak test pulses in either pathway and transmitted to CA1. The long (2-10 sec) refractory periods which followed synchronized bursts in CA2/3 limited their rate of occurrence. Furthermore, SWS decreased the activity for several minutes in slices that exhibited frequent bursts. DSBs were reversibly blocked by perfusion with the N-methyl-D-aspartate (NMDA) specific antagonist DL-2-amino-5-phosphono-valeric acid (APV). The involvement of NMDA receptors was further suggested by the facilitation of CA2/3 synchronized bursts in medium with NMDA (5 microM) or lacking magnesium, and by iontophoresis of NMDA in the CA2/3 stratum radiatum. The findings that SWS-induced DSBs persisted for hours in undisturbed slices, and that bursts abolished by APV reappeared during washout in control solution, suggest long-term changes in the CA2/3 synaptic region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号