首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Saudi Pharmaceutical Journal》2021,29(10):1143-1154
Gastroretentive raft-forming formulations were developed in liquid and chewable tablet dosage forms to achieve prolonged delivery of quercetin in the stomach. The formulations contained a solid dispersion of quercetin and polyvinylpyrrolidone (PVP K 30) at a 1:10 w/w ratio to improve the solubility of the flavonoid. The formulations also contained sodium alginate as a gel forming agent, calcium carbonate as a calcium source and carbon dioxide producer and hydroxypropyl methylcellulose K100M as a drug release retarding polymer. The chewable tablets incorporated mannitol as a diluent. Both liquid and chewable tablet formulations exhibited rapid floating behaviour (lag time < 1 min) and long floating duration (>24 h) in 0.1 N HCl. The optimized liquid formulation showed superior characteristics based on high raft strength (10.4 g) and sustained release of quercetin (93 % over 8 h) whereas the optimized chewable tablet formulation exhibited lower raft strength (7.2 g) and lower drug release (79 % in 8 h). The optimized liquid and chewable tablet formulations were found to induce anti-inflammatory activity in cell culture using RAW 264.7 cells macrophages and enhance the migration of human gastric adenocarcinoma (AGS) epithelial cells in vitro, indicating wound healing potential for treatment of gastric ulcers.  相似文献   

2.
This study investigated a chemically crosslinked poly(vinyl alcohol) (PVA) hydrogel controlled drug delivery system to deliver the anti-inflammatory drug dexamethasone (DEX). The PVA hydrogels, with different crosslinking densities, were characterized by swelling studies, electron scanning microscopy, viscosity, Fourier transform infrared spectroscopy (FTIR) and in vitro release assessment. Increasing crosslinking density slowed and decreased swelling and water absorption. FTIR analysis suggested DEX has possible interactions with the crosslinker and the PVA polymer. In vitro release of DEX from PVA hydrogels was sustained for 33 days and appeared to fit the Higuchi and Korsmeyer–Peppas models. This work indicates the likelihood of PVA hydrogel as a controlled drug release system for DEX for anti-inflammatory uses.  相似文献   

3.
Gastroretentive expandable films were developed to provide controlled release of ginger extract (GE) for treatment of gastric diseases. The dosage form consisted of ginger extract solid dispersion (GE-SD) loaded in a starch/chitosan composite film, which was subsequently folded and inserted into a hard gelatin capsule. GE-SD was prepared by solvent evaporation using an optimum weight ratio of 1:1 for GE and PVP K30. Expandable films containing GE-SD were prepared by solvent casting combinations of chitosan and either rice-, glutinous rice - or pregelatinized maize starch with glycerin incorporated as a plasticizer. The optimized film formulation prepared from glutinous rice starch, exhibited tensile strength of 5.4 N/cm2 and high expansion in simulated gastric fluid (SGF), resulting in a 2.8-fold increase in area. The films resulted in sustained release of up to 90% of the content of 6-gingerol during 8 h exposure to SGF. Furthermore, the 6-gingerol released from the film displayed dose-dependent cytotoxic activity against AGS human gastric adenocarcinoma cells and anti-inflammatory activity by inhibiting the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells.  相似文献   

4.
Lipopolysaccharide (LPS), a glycolipid component of the cell wall of gram-negative bacteria can elicit a systemic inflammatory process leading to septic shock and death. Acute phase response is characterized by fever, leucocytosis, thrombocytopenia, altered metabolic responses and redox balance by inducing excessive reactive oxygen species (ROS) generation. Resveratrol (trans-3,5,4′ trihydroxystilbene) is a natural polyphenol exhibiting antioxidant and anti-inflammatory properties. We investigated the protective effect of resveratrol on endotoxemia-induced acute phase response in rats. When acutely administered by i.p. route, resveratrol (40 mg/kg b.w.) counteracted the effect of a single injection of LPS (4 mg/kg b.w.) which induced fever, a decrease in white blood cells (WBC) and platelets (PLT) counts. When i.p. administered during 7 days at 20 mg/kg per day (subacute treatment), resveratrol abrogated LPS-induced erythrocytes lipoperoxidation and catalase (CAT) activity depression to control levels. In the plasma compartment, LPS increased malondialdehyde (MDA) via nitric monoxide (NO) elevation and decreased iron level. All these deleterious LPS effects were reversed by a subacute resveratrol pre-treatment via a NO independent way. Resveratrol exhibited potent protective effect on LPS-induced acute phase response in rats.  相似文献   

5.
Doxorubicin was chemically conjugated to acrylated chitosan in order to obtain sustained-release profiles of doxorubicin from thermo-responsive and photo-crosslinkable hydrogels. Chitooligosaccharide was acrylated with glycidyl methacrylate and subsequently conjugated to doxorubicin via an amide linkage. A mixture of doxorubicin–chitosan conjugates, acrylated Pluronic, and doxorubicin formed physical gels at 37 °C. Photo-irradiation was subsequently performed to chemically crosslink the physical hydrogel at 37 °C. Chitooligosaccharide–doxorubicin conjugates in the doxorubicin hydrogels significantly reduced burst release of free doxorubicin from doxorubicin hydrogels compared hydrogels without the conjugates. Upon incubating doxorubicin hydrogels at 37 °C, chitosan–doxorubicin conjugates were confirmed to be degraded into more hydrophilic oligomers by reversed-phase chromatography. In vitro cytotoxicity assay using released media from doxorubicin hydrogels showed that degraded chitosan–doxorubicin had cytotoxicity comparable to free doxorubicin. Athymic nude mice bearing human lung adenocarcinoma were subjected to intra-tumoral injections of physical hydrogels. After photo-crosslinking injected hydrogels using surgical catheters, tumor sizes, body weights, and survivals were measured for 1 month. Released media from doxorubicin hydrogels exerted similar cytotoxicities to free doxorubicin, and the tumor volume was significantly reduced for 1 month compared to other samples. Thus, doxorubicin hydrogels containing doxorubicin conjugates can be employed as a novel injectable anti-cancer drug aiming to achieve sustained release of doxorubicin for several weeks against solid tumors.  相似文献   

6.
Resveratrol is a substance of plant origin with antioxidant, anti-inflammatory, and chemoprotective properties used as a biologically active supplement in the prophylaxis of myocardial infarction, types 1 and 2 diabetes, and tumors. The aim of the present work was to develop and perform pharmacokinetic studies of a nanosomal form of resveratrol. The techniques described here yield particles of submicron size, with resveratrol yields of 70–100% and resveratrol contents in lyophilized formulations reaching 15–20%. After oral administration of unmodified resveratrol to mice, only 19% of the dose was taken up into the blood, while use of nanosomal resveratrol formulations based on Eudragit RL and lecithin/chitosan increased bioavailability to 39% and 61% respectively. Increases in the peak plasma resveratrol concentration by factors of 4–5 were also seen in mice given nanoparticles. Thus, conversion of resveratrol to the nanosomal form leads to solubilization and resultant increases in absorption into the bloodstream.  相似文献   

7.
硝苯地平缓释凝胶的制备工艺及其释药性能研究   总被引:1,自引:0,他引:1  
目的:制备硝苯地平缓释凝胶并考察其体外释药情况。方法:采用复凝聚法制备硝苯地平缓释凝胶,以壳聚糖、海藻酸钠的浓度、搅拌速度和壳聚糖溶液与海藻酸钠溶液的体积比为因素进行正交试验;用转篮法测定所制凝胶的释放度,通过改变释放介质的pH值,考察该缓释药物对pH的敏感性。结果:最佳工艺为壳聚糖浓度0.4%、海藻酸钠浓度1.5%、搅拌速度160r.min-1、壳聚糖溶液与海藻酸钠溶液的体积比为6:1。硝苯地平缓释凝胶在pH1.5的人工胃液中4h释放度为13.43%;在pH6.8的人工肠液中4h释放度为52.30%,12h释放度为81.72%。结论:所制硝苯地平缓释凝胶具有明显的缓释作用,体外释放具有较强的pH敏感性。  相似文献   

8.
Objectives Lipid nanoparticles as carrier for oral drug administration improve gastrointestinal solubility of poorly soluble drugs and thus enhance bioavailability. However, basic drugs may undergo rapid dissolution from such solid dispersions in the stomach and precipitate in the intestine due to their higher solubility in acidic medium. Therefore, the objective of this work was to study the enhancement in bioavailability of carvedilol phosphate (basic drug) by providing an alkaline gastric environment to drug‐loaded solid lipid nanoparticles. Methods An alkaline gastric environment in rats was created and maintained with oral administration of an antacid suspension 5 min before and 30 min post dosing. Key findings The formulation administered orally exhibited enhanced bioavailability (~27%) when compared with drug suspension and sustained release behaviour when compared with formulation under ideal gastric conditions. The enhanced bioavailability is due to the presence of lipid nanoparticles as drug carrier while the sustained‐release characteristic may be attributed to the presence of antacid, which resulted in elevation of gastric pH and reduced the drug's solubility. Conclusions It may be concluded that although lipid nanoparticles can be instrumental in improving bioavailability, additional sustained release may be achieved by targeting intestinal release of basic drugs from lipid vehicles, which is possible by incorporating them into suitable enteric‐coated formulations.  相似文献   

9.
Resveratrol, a natural hydroxystilbene, has been reported to have anti-inflammatory and anticarcinogenic activities. Inhibitory effects of resveratrol and its analogs on reactive oxygen species (ROS) production in unopsonized zymosan-stimulated murine macrophage Raw264.7 cells, human monocytes, and neutrophils were analyzed to investigate if the anti-inflammatory and anticarcinogenic activities of resveratrol are related to the inhibition of ROS production. Resveratrol was a potent inhibitor of ROS production in both unopsonized zymosan-stimulated Raw264.7 cells and human monocytes and neutrophils. Resveratrol exhibited 50% inhibition values (IC50) of 17 microM in activated Raw264.7 cells, 18 microM in human monocytes, and 23 microM in human neutrophils. 3,5-Dihydroxy-4'-methoxystilbene or 3,4'-dimethoxy-5-hydroxystilbene exhibited IC50 values of 63 or 73 microM in Raw264.7 cells, 51 or >100 microM in human monocytes, and 10 or 37 microM in human neutrophils, respectively. Trimethylresveratrol, piceid, and 3,5-dihydroxy-4'-methoxystilbene-3-O-beta-D-glucoside were weak inhibitors of ROS production. Thus, resveratrol was identified as a potent inhibitor of ROS production, which might be one biochemical mechanism related to its anti-inflammatory and anticarcinogenic activities. The number and position of hydroxy substituents in resveratrol analogs seem to play an important role in the inhibitory potency of ROS production.  相似文献   

10.
The photosensitive resveratrol was successfully encapsulated in yeast cells for the first time, as characterized by FT-IR spectra, fluorescence and confocal micrographs of the yeast cells, resveratrol and microcapsules. The release characteristic of the obtained yeast-encapsulated resveratrol in simulated gastric fluid was evaluated, and its storage stability as a powder was investigated at 25 degrees C/75% relative humidity (RH), 25 degrees C/90% RH and 60 degrees C under the laboratory fluorescent lighting conditions (ca. 300 lx) or in the dark. Also, the scavenging capacity of yeast-encapsulated resveratrol on DPPH radical was compared with that of non-encapsulated resveratrol. It could be demonstrated clearly that no chemical changes occurred during the encapsulation. Besides, the DPPH radical-scavenging activity increased after the encapsulation. In addition, the yeast-encapsulated resveratrol exhibited good stability, and its bioavailability was enhanced as a result of increased solubility of resveratrol and sustained releasing.  相似文献   

11.
In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised. The immunostimulatory capacity of these vaccine delivery systems was assessed in‐vitro and in‐vivo. Particle sizing measurements and SEM images showed that optimised OVA‐loaded CNP had a size of approximately 200 nm, a polydispersity index < 0.2, and a positive zeta‐potential of approximately 18 mV. The amount of OVA adsorbed onto CNP was high with an adsorption efficacy of greater than 96%. Raman spectroscopy indicated conformational changes of OVA when adsorbed onto the surface of CNP. Uptake of the dispersions and immunological activation of murine dendritic cells in‐vitro could be demonstrated. Investigation of the release of fluorescently‐labelled OVA (FITC‐OVA) from CNP and chitosan hydrogels in‐vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with < 10% of total protein being released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA‐loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell‐mediated and humoral immunity in‐vivo.  相似文献   

12.
Purpose  The main goal of this study was to show the long-term stability of vesicles from poly(2-methyl oxazoline-block-polydimethylsiloxane-block poly(2-methyl oxazoline) (PMOXA-PDMS-PMOXA) in PBS, blood plasma and the feasibility to use these vesicles for drug release from PVA hydrogels. Methods  The vesicle formation properties and loading efficiency was evaluated using fluorescent dyes. The stability of the vesicles was evaluated in buffer at pH 7 at room temperature and in 50% blood plasma at 37°C. The calcein loaded vesicles were dispersed in a UV crosslinked PVA hydrogel. The stability of the vesicles in the hydrogel was observed over one week, before the vesicles were ruptured with Triton X-100. Results  The vesicles are very stable in buffer, blood plasma, and the PVA hydrogel. In plasma 50% of the calcein is released in 48 h in the presence of sodium azide. The vesicles can be evenly dispersed in PVA and are stable. The release can be triggered and the calcein diffuses afterwards quickly throughout the gel. Conclusion  Polymeric vesicles can be used as diffusion barrier in hydrogels for the controlled release of water soluble drugs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Injectable hydrogels have potential biomedical applications ranging from tissue fillers to drug delivery vehicles. This study focussed on evaluating the structure of poly(vinyl alcohol) (PVA) hydrogels of variable solid content and high molecular weight model drug release from the networks formed via either conventional photo-polymerization compared with chemical initiation of polymerization using an oxidation-reduction (redox) reaction. Swelling behaviour was characterised in water to assess the structural properties. Model drugs, FITC-Dextran, 20 kDa (FD20) and 4 kDa (FD4) were loaded in the hydrogels prior to curing and drug release studies conducted. Redox-cured hydrogels were more swollen than UV-cured systems, lost approximately 20% of their polymer mass compared to only 5% from UV-cured hydrogels and subsequently exhibited networks of larger mesh sizes. Also, networks of variable solid contents showed different structural properties with systems of higher polymer concentration exhibiting a smaller mesh size. The difference in structural properties of the networks affected release of FD20, being faster in redox-cured than UV-cured hydrogels, and slower from systems of higher solid content. Release of FD4 was faster than FD20 from networks of same solid content. This study suggested that PVA hydrogels can be cured by redox-initiation to function as a controlled delivery system for macromolecular drugs.  相似文献   

14.
This work focused on the development of mucoadhesive and floating chitosan-coated alginate beads as a gastroretensive delivery vehicle for amoxicillin, towards the effective eradication of Helicobacter pylori, a major causative agent of peptic ulcers. Alginate was used as the core bead core polymer and chitosan as the mucoadhesive polymer coating. Amoxicillin-loaded alginate beads coated with 0.5% (w/v) chitosan (ALG/0.5%CHI) exhibited excellent floating ability, high encapsulation efficiency, high drug loading capacity, and a strong in vitro mucoadhesion to the gastric mucosal layer. In vitro, amoxicillin was released faster in simulated gastric fluid (pH 1.2, HCl) than in simulated intestinal fluid (phosphate buffer, pH 7.4). ALG/0.5%CHI could be prepared with a > 90% drug encapsulation efficiency and exhibited more than 90% muco-adhesiveness, 100% floating ability, and achieved sustained release of amoxicillin for over six hours in SGF.  相似文献   

15.
The high aqueous solubility of chitosan restricts the utility of chitosan microspheres for gastric drug delivery. This paper describes the preparation of reacetylated chitosan microspheres with suitable properties for the controlled release of active anti-microbial agents, such as amoxycillin and metronidazole, in the gastric cavity. Two different microencapsulation approaches were developed and optimized in order to encapsulate hydrophilic (amoxycillin) and hydrophobic (metronidazole) compounds efficiently. The reacetylated chitosan microspheres exhibited a controlled water swelling capacity and gelified at acidic pH, resulting in prolonged release of the encapsulated antibiotics. The reacetylation time was found to be a key factor that affects not only drug release, but also encapsulation efficiency and anti-microbial activity of the encapsulated compound. The last two parameters were also dependent on drug solubility in the reacetylating agent. Using short reacetylation time periods, it was possible to efficiently control the release of both hydrophilic and lipophilic antibiotics while maintaining their activity against different bacteria. Consequently, reacetylated chitosan microspheres are promising vehicles for the controlled delivery of anti-microbial agents to the gastric cavity and, hence, for the eradication of Helicobacter pylori, a pathogen strongly associated with gastric ulcers and possibly gastric carcinoma.  相似文献   

16.
The aim of this study was to develop a pH-sensitive chitosan/polyvinyl pyrrolidone (PVP) based controlled drug release system for repaglinide. The hydrogels were synthesised by crosslinking chitosan and PVP blend with glutaraldehyde to form a semi-interpenetrating polymer network (semi-IPN). These semi-IPNs were studied for their content uniformity, swelling index (SI), mucoadhesion, wettability, in vitro release and their release kinetics. The hydrogels showed more than 95% loading of repaglinide. These hydrogels showed high swelling and mucoadhesion under acidic conditions. The swelling was found due to the protonation of a primary amino group on chitosan. In acidic condition chitosan was ionized, and adhesion occurred between the positively charged chitosan and the negatively charged mucus. In the physiological condition less swelling was noticed. In vitro release study revealed that formulation containing chitosan (2% w/v) and PVP (4% w/v) in the ratio of 14:6 w/w showed complete drug release after 12h. Release profile showed that all the formulations followed non-fickian diffusion mechanism (diffusion coupled with swelling). Fourier transform infrared (FTIR) spectroscopic analysis revealed proper crosslinking of polymer and formation of semi-IPN as well as presence of drug in the formulation. Differential scanning calorimetry (DSC) and powder x-ray diffraction (p-XRD) study revealed the presence of repaglinide in crystalline form in the formulations. The surface morphology of semi-IPN was studied before and after dissolution in simulated gastric fluid (SGF, pH 1.2) which indicated generation of open channel-like structure in hydrogel after dissolution. The results of study suggest that semi-IPNs of chitosan/PVP are potent candidates for delivery of repaglinide in acidic environment.  相似文献   

17.
The high aqueous solubility of chitosan restricts the utility of chitosan microspheres for gastric drug delivery. This paper describes the preparation of reacetylated chitosan microspheres with suitable properties for the controlled release of active anti-microbial agents, such as amoxycillin and metronidazole, in the gastric cavity. Two different microencapsulation approaches were developed and optimized in order to encapsulate hydrophilic (amoxycillin) and hydrophobic (metronidazole) compounds efficiently. The reacetylated chitosan microspheres exhibited a controlled water swelling capacity and gelified at acidic pH, resulting in prolonged release of the encapsulated antibiotics. The reacetylation time was found to be a key factor that affects not only drug release, but also encapsulation efficiency and anti-microbial activity of the encapsulated compound. The last two parameters were also dependent on drug solubility in the reacetylating agent. Using short reacetylation time periods, it was possible to efficiently control the release of both hydrophilic and lipophilic antibiotics while maintaining their activity against different bacteria. Consequently, reacetylated chitosan microspheres are promising vehicles for the controlled delivery of anti-microbial agents to the gastric cavity and, hence, for the eradication of Helicobacter pylori, a pathogen strongly associated with gastric ulcers and possibly gastric carcinoma.  相似文献   

18.
To enhance permeation and solubility of an intranasal delivery system of fexofenadine hydrochloride (FXD HCl), a new formulation using poloxamer 407 (P407)/hydroxypropyl-β-cyclodextrin (HP-β-CD)-based thermoreversible gels with chitosan, was developed. Prepared gels were characterized by gelation temperature, viscosity, viscoelasticity, and drug release profile. The in vitro permeation study was performed in primary human nasal epithelial cell monolayers cultured by air–liquid interface method. The addition of chitosan caused the slight elevation of gelation temperature and viscosity-enhancing effect. Viscosity enhancement by the incorporation of chitosan caused the retardation of drug release from P407 gels in in vitro release test. The in vitro permeation profile showed that the increase in chitosan content (0.1% and 0.3%, w/v) significantly enhanced the permeation of FXD HCl. After intranasal administration of P407/HP-β-CD–based thermoreversible gels containing 0.1% and 0.3% of chitosan in rabbits at 0.5 mg/kg dose, plasma concentrations of FXD HCl were significantly higher than those of nasal solutions (p < 0.05). In particular, the bioavailability of the optimized thermoreversible gel containing 0.3% chitosan was about 18-fold higher than that of the solution type. These results suggested the feasibility that thermosensitive gels could be used as an effective dosage form to enhance the nasal absorption of FXD HCl.  相似文献   

19.
《Toxicology in vitro》2014,28(4):479-484
Astrocytes are responsible for modulating neurotransmitter systems and synaptic information processing, ionic homeostasis, energy metabolism, maintenance of the blood–brain barrier, and antioxidant and inflammatory responses. Our group recently published a culture model of cortical astrocytes obtained from adult Wistar rats. In this study, we established an in vitro model for hippocampal astrocyte cultures from adult (90 days old) and aged (180 days old) Wistar rats. Resveratrol, a polyphenol found in grapes and red wine, exhibits antioxidant, anti-inflammatory, anti-aging and neuroprotective effects that modulate glial functions. Here, we evaluated the effects of resveratrol on GSH content, GS activity, TNF-α and IL-1β levels in hippocampal astrocytes from newborn, adult and aged Wistar rats. We observed a decrease in antioxidant defenses and an increase in the inflammatory response in hippocampal astrocytes from adult and aged rats compared to classical astrocyte cultures from newborn rats. Resveratrol prevented these effects. These findings reinforce the neuroprotective effects of resveratrol, which are mainly associated with antioxidant and anti-inflammatory activities.  相似文献   

20.
Wounds, particularly burns, are prone to colonization of potentially life‐threatening bacteria. Local delivery of antimicrobial agents in sufficient quantities and over longer period of time can reduce risk of burn infections. Mupirocin‐in‐liposomes‐in‐hydrogels were proposed as advanced delivery system for improved burn therapy. Mupirocin was entrapped in phosphatidylcholine liposomes of various sizes, namely larger (micron size) vesicles entrapping 74% of drug and sonicated vesicles (below 300 nm) entrapping 49% of drug. Liposomes containing mupirocin were incorporated in chitosan hydrogels (10%, w/w). Incorporation of liposomes in hydrogels resulted in prolonged release of liposomally associated mupirocin, as observed in both in vitro and ex vivo studies. The drug release was affected by the vesicle size. Microbiological evaluation of newly developed system confirmed its antimicrobial potential against Staphylococcus aureus and Bacillus subtilis. Bioadhesiveness of the system was compared with the marketed cream containing mupirocin. Our system exhibited superior bioadhesiveness and sustained mupirocin release profiles to marketed product. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:3906–3915, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号