首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Immunotherapy, along with chemotherapy, targeted delivery, radiation and surgery has become one of the most common cancer treatments. The aim of cancer immunology is to use the bodys immune system to combat tumors and develop a robust antitumor immune response. In the last few years, immune checkpoint inhibitors and chimeric antigen receptor-modified T cells have made substantial advancements in cancer immunotherapy. By boosting cell type-specific delivery and immunological responses, nanocarriers like liposomes have the ability to enhance greater immune responses. The efficacy of anti-tumor therapeutics is being significantly improved as liposomes can assist in resolving a number of issues that can arise from a variety of cancer immunotherapies. Since, liposomes can be loaded with both hydrophilic and hydrophobic drugs and protect the immunotherapeutic agents loaded inside the core, they offer significant advantages over other nano delivery systems. The use of liposomes for accurate and timely delivery of immunotherapies to particular targeted neoplasms, with little or no injury to healthy cells, maximizes immunotherapy efficacy. Liposomes are also suitable vehicles for delivering medications simultaneously with other therapies such as chemotherapy, radiation, and phototherapy. Liposomal nanoparticles will be introduced and used as an objective immunotherapy delivery system for great precision, making them a viable cancer treatment approach.With an emphasis on dendritic cells, T cells, tumor and natural killer cells, and macrophages; outline of many forms of immune-therapies in oncology and cutting-edge advances in liposomal nanovesicles for cancer immunotherapy are covered in this review.  相似文献   

2.
《药学学报(英文版)》2023,13(6):2346-2368
Immunotherapy emerged as a paradigm shift in cancer treatments, which can effectively inhibit cancer progression by activating the immune system. Remarkable clinical outcomes have been achieved through recent advances in cancer immunotherapy, including checkpoint blockades, adoptive cellular therapy, cancer vaccine, and tumor microenvironment modulation. However, extending the application of immunotherapy in cancer patients has been limited by the low response rate and side effects such as autoimmune toxicities. With great progress being made in nanotechnology, nanomedicine has been exploited to overcome biological barriers for drug delivery. Given the spatiotemporal control, light-responsive nanomedicine is of great interest in designing precise modality for cancer immunotherapy. Herein, we summarized current research utilizing light-responsive nanoplatforms to enhance checkpoint blockade immunotherapy, facilitate targeted delivery of cancer vaccines, activate immune cell functions, and modulate tumor microenvironment. The clinical translation potential of those designs is highlighted and challenges for the next breakthrough in cancer immunotherapy are discussed.  相似文献   

3.
《药学学报(英文版)》2020,10(5):723-733
Immunotherapy strategies targeting the programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) pathway in clinical treatments have achieved remarkable success in treating multiple types of cancer. However, owing to the heterogeneity of tumors and individual immune systems, PD-L1/PD-1 blockade still shows slow response rates in controlling malignancies in many patients. Accumulating evidence has shown that an effective response to anti-PD-L1/anti-PD-1 therapy requires establishing an integrated immune cycle. Damage in any step of the immune cycle is one of the most important causes of immunotherapy failure. Impairments in the immune cycle can be restored by epigenetic modification, including reprogramming the environment of tumor-associated immunity, eliciting an immune response by increasing the presentation of tumor antigens, and by regulating T cell trafficking and reactivation. Thus, a rational combination of PD-L1/PD-1 blockade and epigenetic agents may offer great potential to retrain the immune system and to improve clinical outcomes of checkpoint blockade therapy.  相似文献   

4.
There is a close connection between epigenetic regulation, cancer metabolism, and immunology. The combination of epigenetic therapy and immunotherapy provides a promising avenue for cancer management. As an epigenetic regulator of histone acetylation, panobinostat can induce histone acetylation and inhibit tumor cell proliferation, as well as regulate aerobic glycolysis and reprogram intratumoral immune cells. JQ1 is a BRD4 inhibitor that can suppress PD-L1 expression. Herein, we proposed a chemo-free, epigenetic-based combination therapy of panobinostat/JQ1 for metastatic colorectal cancer. A novel targeted binary-drug liposome was developed based on lactoferrin-mediated binding with the LRP-1 receptor. It was found that the tumor-targeted delivery was further enhanced by in situ formation of albumin corona. The lactoferrin modification and endogenous albumin adsorption contribute a dual-targeting effect on the receptors of both LRP-1 and SPARC that were overexpressed in tumor cells and immune cells (e.g., tumor-associated macrophages). The targeted liposomal therapy was effective to suppress the crosstalk between tumor metabolism and immune evasion via glycolysis inhibition and immune normalization. Consequently, lactic acid production was reduced and angiogenesis inhibited; TAM switched to an anti-tumor phenotype, and the anti-tumor function of the effector CD8+ T cells was reinforced. The strategy provides a potential method for remodeling the tumor immune microenvironment (TIME).KEY WORDS: Tumor immune microenvironment, Tumor-associated macrophage, Epigenetic therapy, Immune checkpoint, Angiogenesis, Panobinostat, JQ1, Liposome  相似文献   

5.
Aberrant activation of oncogenic signaling pathways in tumors can promote resistance to the antitumor immune response. However, single blockade of these pathways is usually ineffective because of the complex crosstalk and feedback among oncogenic signaling pathways. The enhanced toxicity of free small molecule inhibitor combinations is considered an insurmountable barrier to their clinical applications. To circumvent this issue, we rationally designed an effective tumor microenvironment-activatable prodrug nanomicelle (PNM) for cancer therapy. PNM was engineered by integrating the PI3K/mTOR inhibitor PF-04691502 (PF) and the broad spectrum CDK inhibitor flavopiridol (Flav) into a single nanoplatform, which showed tumor-specific accumulation, activation and deep penetration in response to the high glutathione (GSH) tumoral microenvironment. The codelivery of PF and Flav could trigger gasdermin E (GSDME)-based immunogenic pyroptosis of tumor cells to elicit a robust antitumor immune response. Furthermore, the combination of PNM-induced immunogenic pyroptosis with anti-programmed cell death-1 (αPD-1) immunotherapy further boosted the antitumor effect and prolonged the survival time of mice. Collectively, these results indicated that the pyroptosis-induced nanoplatform codelivery of PI3K/mTOR and CDK inhibitors can reprogram the immunosuppressive tumor microenvironment and efficiently improve checkpoint blockade cancer immunotherapy.  相似文献   

6.
《药学学报(英文版)》2020,10(6):1047-1060
PD-1 and CTLA-4 antibodies offer great hope for cancer immunotherapy. However, many patients are incapable of responding to PD-1 and CTLA-4 blockade and show low response rates due to insufficient immune activation. The combination of checkpoint blockers has been proposed to increase the response rates. Besides, antibody drugs have disadvantages such as inclined to cause immune-related adverse events and infiltration problems. In this study, we developed a cyclic peptide C25 by using Ph.D.-C7C phage display technology targeting LAG-3. As a result, C25 showed a relative high affinity with human LAG-3 protein and could effectively interfere the binding between LAG-3 and HLA-DR (MHC-II). Additionally, C25 could significantly stimulate CD8+ T cell activation in human PBMCs. The results also demonstrated that C25 could inhibit tumor growth of CT26, B16 and B16-OVA bearing mice, and the infiltration of CD8+ T cells was significantly increased while FOXP3+ Tregs significantly decreased in the tumor site. Furthermore, the secretion of IFN-γ by CD8+ T cells in spleen, draining lymph nodes and especially in the tumors was promoted. Simultaneously, we exploited T cells depletion models to study the anti-tumor mechanisms for C25 peptide, and the results combined with MTT assay confirmed that C25 exerted anti-tumor effects via CD8+ T cells but not direct killing. In conclusion, cyclic peptide C25 provides a rationale for targeting the immune checkpoint, by blockade of LAG-3/HLA-DR interaction in order to enhance anti-tumor immunity, and C25 may provide an alternative for cancer immunotherapy besides antibody drugs.  相似文献   

7.
《药学学报(英文版)》2023,13(4):1740-1754
Cancer immunotherapy has become a promising strategy. However, the effectiveness of immunotherapy is restricted in “cold tumors” characterized with insufficient T cells intratumoral infiltration and failed T cells priming. Herein, an on-demand integrated nano-engager (JOT-Lip) was developed to convert cold tumors to hot via “increased DNA damage and dual immune checkpoint inhibition” strategy. JOT-Lip was engineered by co-loading oxaliplatin (Oxa) and JQ1 into liposomes with T-cell immunoglobulin mucin-3 antibodies (Tim-3 mAb) coupled on the liposomal surface by metalloproteinase-2 (MMP-2)-sensitive linker. JQ1 inhibited DNA repair to increase DNA damage and immunogenic cell death (ICD) of Oxa, thus promoting T cells intratumoral infiltration. In addition, JQ1 inhibited PD-1/PD-L1 pathway, achieving dual immune checkpoint inhibition combining with Tim-3 mAb, thus effectively promoting T cells priming. It is demonstrated that JOT-Lip not only increased DNA damage and promoted the release of damage-associated molecular patterns (DAMPs), but also enhanced T cells intratumoral infiltration and promoted T cell priming, which successfully converted cold tumors to hot and showed significant anti-tumor and anti-metastasis effects. Collectively, our study provides a rational design of an effective combination regimen and an ideal co-delivery system to convert cold tumors to hot, which holds great potential in clinical cancer chemoimmunotherapy.  相似文献   

8.
目前,进展期大肠癌治疗缺乏有效手段,亟待研发新的治疗技术。近年来,免疫疗法已在血液系统肿瘤和黑素瘤的治疗中显示有显著疗效,且有多项免疫治疗技术试用于大肠癌治疗,包括肿瘤治疗性疫苗、免疫检查点抑制剂和过继细胞疗法等。其中,免疫检查点抑制剂抗程序性细胞死亡受体-1抗体已在DNA错配修复缺陷型大肠癌的治疗中显示有很好的疗效,但在血液系统肿瘤治疗中显示有显著疗效的嵌合抗原受体修饰的T细胞疗法却在大肠癌等实体瘤治疗中显示疗效欠佳,有一系列的问题需予解决。不过,免疫疗法已成为继手术、放疗和化疗后的第四大肿瘤疗法,将为进展期大肠癌治疗带来新的希望。  相似文献   

9.
《药学学报(英文版)》2020,10(2):358-373
Blocking the programmed death-ligand 1 (PD-L1) on tumor cells with monoclonal antibody therapy has emerged as powerful weapon in cancer immunotherapy. However, only a minority of patients presented immune responses in clinical trials. To develop an alternative treatment method based on immune checkpoint blockade, we designed a novel and efficient CRISPR-Cas9 genome editing system delivered by cationic copolymer aPBAE to downregulate PD-L1 expression on tumor cells via specifically knocking out Cyclin-dependent kinase 5 (Cdk5) gene in vivo. The expression of PD-L1 on tumor cells was significantly attenuated by knocking out Cdk5, leading to effective tumor growth inhibition in murine melanoma and lung metastasis suppression in triple-negative breast cancer. Importantly, we demonstrated that aPBAE/Cas9-Cdk5 treatment elicited strong T cell-mediated immune responses in tumor microenvironment that the population of CD8+ T cells was significantly increased while regulatory T cells (Tregs) was decreased. It may be the first case to exhibit direct in vivo PD-L1 downregulation via CRISPR-Cas9 genome editing technology for cancer therapy. It will provide promising strategy for preclinical antitumor treatment through the combination of nanotechnology and genome engineering.  相似文献   

10.
《药学学报(英文版)》2022,12(4):2103-2119
Checkpoint blockade-based immunotherapy has shown unprecedented effect in cancer treatments, but its clinical implementation has been restricted by the low host antitumor response rate. Recently, chemotherapy is well recognized to activate the immune system during some chemotherapeutics-mediated tumor eradication. The enhancement of immune response during chemotherapy might further improve the therapeutic efficiency through the synergetic mechanism. Herein, a synergistic antitumor platform (designated as BMS/RA@CC-Liposome) was constructed by utilizing CT26 cancer-cell-biomimetic nanoparticles that combined chemotherapeutic drug (RA-V) and PD-1/PD-L1 blockade inhibitor (BMS-202) to remarkably enhance antitumor immunity. In this study, the cyclopeptide RA-V as chemotherapeutic drugs directly killing tumor cells and BMS-202 as anti-PD agents eliciting antitumor immune responses were co-encapsulated in a pH-sensitive nanosystem. To achieve the cell-specific targeting drug delivery, the combination therapy nanosystem was functionalized with cancer cell membrane camouflage. The biomimetic drug delivery system perfectly disguised as endogenous substances, and realized elongated blood circulation due to anti-phagocytosis capability. Moreover, the BMS/RA@CC-Liposome also achieved the selective targeting of CT26 cells by taking advantage of the inherent homologous adhesion property of tumor cells. The in vitro and in vivo experiments revealed that the BMS/RA@CC-Liposome realized PD-1/PD-L1 blockade-induced immune response, RA-V-induced PD-L1 down-regulation and apoptosis in cancer cells. Such a system combining the advantages of chemotherapy and checkpoint blockade-based immunotherapy to create an immunogenic tumor microenvironment systemically, demonstrated improved therapeutic efficacy against hypoxic tumor cells and offers an alternative strategy based on the immunology of the PD-1/PD-L1 pathway.  相似文献   

11.
癌症发病率逐年增长,且死亡率居高不下。肿瘤免疫治疗作为目前肿瘤治疗领域中最具前景的研究方向之一,其治疗手段主要包括过继性细胞治疗、免疫调节治疗、肿瘤疫苗治疗、分子靶向治疗等。姜黄素是姜黄中主要活性成分,主要通过抑制细胞增殖、诱导细胞凋亡、抑制肿瘤侵袭等机制发挥抗肿瘤功效。在免疫治疗领域,姜黄素通过调节机体的固有免疫系统、获得性免疫系统以及肿瘤相关分子的表达和活性达到抗肿瘤作用,并联合免疫检查点抑制剂、其他肿瘤免疫治疗方法用于肿瘤治疗。总结了姜黄素的免疫调节作用及其用于肿瘤免疫治疗的研究进展。  相似文献   

12.
Amplifying eat me signal during tumor immunogenic cell death(ICD) cascade is crucial for tumor immunotherapy.Inspired by the indispensable role of adenosine triphosphate(ATP,a necessary "eat me signal" for ICD),a versatile ICD amplifier was developed for chemotherapy-sensitized immunotherapy.Doxorubicin(DOX),ATP and ferrous ions(Fe2+) were co-assembled into nanosized amplifier(ADO-Fe) through π-π stacking and coordination effect.Meanwhile,phenylboric acid-polyethylene glycol-phenylbor...  相似文献   

13.
Cancer immunotherapy has been increasingly applied in the treatment of advanced malignancies. Consequently, immune checkpoints have become a major concern. As PD‐1 is an important immunomodulatory protein, the blockade of PD‐1 and its ligand PD‐L1 is a promising tumour immunotherapy for human carcinoma. In this review, we first discuss the role of the PD‐1/PD‐L1 interaction in gastrointestinal tract cancers. Targeting PD‐1 and PD‐L1 in immune cells and tumour cells may show remarkable efficiency in gastrointestinal tract cancers. Second, the PD‐1/PD‐L1‐associated signalling pathway involved in cancer immunotherapy in gastrointestinal tract cancers is discussed. Most importantly, this review summarizes the PD‐1/PD‐L1‐targeted immunotherapy combinations with relevant signalling pathways, which may result in a breakthrough for the treatment of gastrointestinal tract cancers, such as gastric cancer, colorectal cancer and liver cancer. Meanwhile, the review provides a deeper insight into the mechanism of checkpoint blockade immunotherapies.  相似文献   

14.
Cancer immunotherapy has now become a first line therapy for several kinds of tumors. However, the clinical performance of immnuocheckpoint blockade therapy is usually limited by low response rate or side effects including cytokine storm. Andrographolide, a natural diterpenoid from Andrographis paniculata, has been used in Asia for treatment of bronchitis, paristhmitis and bacillary dysentery for its unique anti-inflammatory effect. However, its effect on anti-tumor immunity remains elusive. In this study, we found that andrographolide in combination with anti-PD-1 antibody showed a higher therapeutic benefit than individual therapy in murine xenograft model of CT26 colon cancer. Consequently, andrographolide and anti-PD-1 antibody co-treatment boosted the function of CD4+ and CD8+ T cells evidenced by considerable tissue infiltration, elevated IFN-γ secretion and enhanced expression of cytotoxic T-cell related molecules including FasL, perforin and Granzyme B, which significantly decreases the tumor load. Mechanistically, andrographolide treatment inhibited COX2 activity and PGE2 release both in vivo and in vitro, which augments anti-tumor efficiency of anti-PD-1 therapy. Finally, we confirmed that COX2 level in human colon cancer sample positively correlated with tumor-promoting factors. Our study here provides a potential combination strategy for immunotherapy against colorectal cancer.  相似文献   

15.
We fabricated an ultrasound activated ‘nanobomb’ as a noninvasive and targeted physical therapeutic strategy for sonodynamic therapy and priming cancer immunotherapy. This ‘nanobomb’ was rationally designed via the encapsulation of indocyanine green (ICG) and perfluoropentane (PFP) into cRGD peptide-functionalized nano-liposome. The resulting Lip-ICG-PFP-cRGD nanoparticle linked with cRGD peptide could actively targeted ID8 and TC-1 cells and elicits ROS-mediated apoptosis after triggered by low-intensity focused ultrasound (LIFU). Moreover, the phase change of PFP (from droplets to microbubbles) under LIFU irradiation can produce a large number of microbubbles, which act as intra-tumoral bomber and can detonate explode tumor cells by acoustic cavitation effect. Instant necrosis of tumor cells further induces the release of biologically active damage-associated molecular patterns (DAMPs) to facilitate antitumor immunity. More important, the ‘nanobomb’ in combination with anti-PD-1checkpoint blockade therapy can significantly improve the antitumor efficacy in a subcutaneous model. In addition, the liposomes may also be used as an imaging probe for ultrasound (US) imaging after being irradiated with LIFU. In summary, the US imaging-guided, LIFU activated ROS production and explosion ‘nanobomb’ might significantly improve the antitumor efficacy and overcome drug resistance through combination of SDT and immunotherapy, we believe that this is a promising approach for targeted therapy of solid tumor including ovarian cancer.  相似文献   

16.
《药学学报(英文版)》2021,11(12):3727-3739
The immune checkpoints, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein-1/ligand-1 (PD-1/PD-L1) are vital contributors to immune regulation and tolerance. Recently immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy; however, they come with the cost of immune related adverse events involving multiple organs such as the liver. Due to its constant exposure to foreign antigens, the liver has evolved a high capacity for immune tolerance, therefore, blockade of the immune checkpoints can result in aberrant immune activation affecting the liver in up to 20% of patients depending on the agent(s) used and underlying factors. This type of hepatotoxicity is termed immune mediated liver injury from checkpoint inhibitors (ILICI) and is more common when CTLA4 and PD-1/PD-L1 are used in combination. The underlying mechanisms of this unique type of hepatotoxicity are not fully understood; however, the contribution of CD8+ cytotoxic T lymphocytes, various CD4+ T cells populations, cytokines, and the secondary activation of the innate immune system leading to liver injury have all been suggested. This review summarizes our current understanding of the underlying mechanisms of liver injury in immunotherapy using animal models of ILICI and available patient data from clinical studies.  相似文献   

17.
Introduction: In cancer, the immune response to tumor antigens is often suppressed by inhibitors and ligands. Checkpoint blockade, considered one of the most promising frontiers for anti-cancer therapy, aims to stimulate the immune anti-cancer response. Agents such as cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) inhibitors offer prolonged survival with manageable side effects.

Areas covered: We summarize the recent clinical successes of CTLA-4 inhibitors and place a strong emphasis on those in early phase clinical trials, often in combination with other immune check-point inhibitors, i.e., programmed cell death protein 1 (PD-1) and BRAF/mitogen-activated protein kinase inhibitors.

Expert opinion: Recent phase I and phase II clinical trials confirm the efficacy of anti-CTLA-4 therapy for treatment of cancers such as renal cell carcinoma. These studies also indicated increased efficacy with combined immune checkpoint blockade with PD-1 or Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) inhibitors. Researchers must search for new immune targets that may enable more effective and safe immune checkpoint blockade and cancer therapy. This goal may be achieved by next-generation combination therapies to overcome immune checkpoint therapy resistance.  相似文献   


18.
Introduction: Immunotherapy for brain cancer has evolved dramatically over the past decade, owed in part to our improved understanding of how the immune system interacts with tumors residing within the central nervous system (CNS). Glioblastoma (GBM), the most common primary malignant brain tumor in adults, carries a poor prognosis (<15 months) and only few advances have been made since the FDA’s approval of temozolomide (TMZ) in 2005. Importantly, several immunotherapies have now entered patient trials based on promising preclinical data, and recent studies have shed light on how GBM employs a slew of immunosuppressive mechanisms that may be targeted for therapeutic gain. Altogether, accumulating evidence suggests immunotherapy may soon earn its keep as a mainstay of clinical management for GBM.

Areas covered: Here, we review cancer vaccines, checkpoint inhibitors, adoptive T-cell immunotherapy, and oncolytic virotherapy.

Expert opinion: Checkpoint blockade induces antitumor activity by preventing negative regulation of T-cell activation. This platform, however, depends on an existing frequency of tumor-reactive T cells. GBM tumors are exceptionally equipped to prevent this, occupying low levels of antigen expression and elaborate mechanisms of immunosuppression. Therefore, checkpoint blockade may be most effective when used in combination with a DC vaccine or adoptively transferred tumor-specific T cells generated ex vivo. Both approaches have been shown to induce endogenous immune responses against tumor antigens, providing a rationale for use with checkpoint blockade where both primary and secondary responses may be potentiated.  相似文献   

19.
《药学学报(英文版)》2021,11(10):3134-3149
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) cascade is an effective therapeutic target for immune checkpoint blockade (ICB) therapy. Targeting PD-L1/PD-1 axis by small-molecule drug is an attractive approach to enhance antitumor immunity. Using flow cytometry-based assay, we identify tubeimoside-1 (TBM-1) as a promising antitumor immune modulator that negatively regulates PD-L1 level. TBM-1 disrupts PD-1/PD-L1 interaction and enhances the cytotoxicity of T cells toward cancer cells through decreasing the abundance of PD-L1. Furthermore, TBM-1 exerts its antitumor effect in mice bearing Lewis lung carcinoma (LLC) and B16 melanoma tumor xenograft via activating tumor-infiltrating T-cell immunity. Mechanistically, TBM-1 triggers PD-L1 lysosomal degradation in a TFEB-dependent, autophagy-independent pathway. TBM-1 selectively binds to the mammalian target of rapamycin (mTOR) kinase and suppresses the activation of mTORC1, leading to the nuclear translocation of TFEB and lysosome biogenesis. Moreover, the combination of TBM-1 and anti-CTLA-4 effectively enhances antitumor T-cell immunity and reduces immunosuppressive infiltration of myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our findings reveal a previously unrecognized antitumor mechanism of TBM-1 and represent an alternative ICB therapeutic strategy to enhance the efficacy of cancer immunotherapy.  相似文献   

20.
近年来,肿瘤的免疫治疗已成为继传统手术、放疗、化疗、内分泌治疗和靶向药物治疗手段之后新的治疗方法,尤其以程序性死亡受体1(PD-1)/程序性死亡配体1(PD-L1)位靶点的免疫检查点抑制治疗使得非小细胞肺癌、黑色素瘤等恶性实体肿瘤患者获得了有效持久的临床获益。PD-L1的检测是免疫检查点抑制剂治疗的关键环节,但在乳腺癌中的其检测方法和判定标准尚未统一。就PD-L1的检测方法以及其在乳腺癌各分子分型中的表达进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号