首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human serum albumin (HSA), one of the most copious plasma proteins is responsible for binding and transportation of many exogenous and endogenous ligands including drugs. In this study, we intended to explore the extent and types of binding interaction present between HSA and the antihypertensive drug, telmisartan (TLM). The conformational changes in HSA due to this binding were also studied using different spectroscopic and molecular docking techniques. The spectral shifting and intensity variations upon interaction with TLM were studied using FT-IR spectroscopy. Binding constant and the change in absorption of HSA at its λmax was analyzed using absorption spectroscopy. Eventually, the types and extent of binding interactions were confirmed using molecular docking technique. Results have shown that TLM significantly interacts with the binding site-1 of HSA utilizing strong hydrogen bonding with Glu292, and Lys195 residues. The UV-absorption intensities were found to be decreased serially as the drug concentration increased with a binding constant of 1.01 × 103 M−1. The secondary structure analysis using FT-IR spectroscopy also revealed a marked reduction in the α-helix (56%) component of HSA on interaction. This study gives critical insights into the interaction of TLM with HSA protein which eventually affects the concentration of TLM reaching the site of action and ultimately its therapeutic profile.  相似文献   

2.
《Saudi Pharmaceutical Journal》2020,28(11):1333-1352
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared by the World Health Organization (WHO) as a global pandemic on March 11, 2020. SARS-CoV-2 targets the respiratory system, resulting in symptoms such as fever, headache, dry cough, dyspnea, and dizziness. These symptoms vary from person to person, ranging from mild to hypoxia with acute respiratory distress syndrome (ARDS) and sometimes death. Although not confirmed, phylogenetic analysis suggests that SARS-CoV-2 may have originated from bats; the intermediary facilitating its transfer from bats to humans is unknown. Owing to the rapid spread of infection and high number of deaths caused by SARS-CoV-2, most countries have enacted strict curfews and the practice of social distancing while awaiting the availability of effective U.S. Food and Drug Administration (FDA)-approved medications and/or vaccines. This review offers an overview of the various types of coronaviruses (CoVs), their targeted hosts and cellular receptors, a timeline of their emergence, and the roles of key elements of the immune system in fighting pathogen attacks, while focusing on SARS-CoV-2 and its genomic structure and pathogenesis. Furthermore, we review drugs targeting COVID-19 that are under investigation and in clinical trials, in addition to progress using mesenchymal stem cells to treat COVID-19. We conclude by reviewing the latest updates on COVID-19 vaccine development. Understanding the molecular mechanisms of how SARS-CoV-2 interacts with host cells and stimulates the immune response is extremely important, especially as scientists look for new strategies to guide their development of specific COVID-19 therapies and vaccines.  相似文献   

3.
The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.  相似文献   

4.
5.
ObjectiveDiabetic kidney disease (DKD) is the leading cause of death and disability of diabetes mellitus. However, there is still a lack of specific drugs for the treatment of DKD. The chief aim of this research is to investigate the role and mechanism of 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) for DKD.MethodsWild type and TLR4 knockout mice were induced to diabetes. After 4-week treatment with DMDD, blood sugar, renal function, blood lipid and pathological changes were assessed. Real-time PCR, western blotting, and immunohistochemistry were employed to detect the expressions of TLR4, TGFβ1 and Smad2/3 in the renal tissue.ResultsDMDD improved the serum lipid and decreased fasting blood glucose levels in diabetic mice. CysC and urinary albumin levels increased markedly in the diabetic group, and they were obviously decreased after 4 weeks of DMDD treatment. Compared with the WT diabetic mice, the urinary albumin and CysC in the TLR4-/- mice were expressed at lower levels. HE and Masson’s staining revealed that DMDD clearly ameliorated pathological changes and renal fibrosis. When TLR4 gene was knock out, the pathological was improved. Mechanistically, TLR4, TGF-β1 and Smad2/3 were obvious up-regulation in the renal tissues of diabetic mice. The expressions of these proteins were significantly down-regulated after DMDD treatment (p < 0.05). In the TLR4-/- mice, mRNA and protein levels of TGF-β1 and Smad2/3 were obviously lower than those in the WT mice. In addition, IHC revealed that a strong in situ expressions of TLR4, TGF-β1 and Smad2/3 were seen in the kidney tissues of diabetic mice, which were distinctly weakened in the DMDD-treated mice. In the TLR4-/- mice, however, expressions of TGF-β1 and Smad2/3 were not remarkable increase in the diabetic mice compared with normal mice.ConclusionsThese results strongly indicate that TLR4 is essential for DMDD protection against renal dysfunction in diabetic mice. Its hypoglycemic and anti-fibrosis effects were likely mediated by the TLR4/TGFβ signaling pathway.  相似文献   

6.
7.
IntroductionAllogenic hematopoietic stem cell transplantation is a curative option for malignant and non-malignant pediatric diseases. Serotherapy is often employed to avoid graft-versus-host disease (GvHD) on one hand and graft rejection on the other hand. Therapeutic drug monitoring is increasingly used to allow for more precise dosing especially in pediatric patients due to their specific pharmacological characteristics. Application of T-cell directed antibodies is not routinely monitored, but may benefit from more precise dosing regimens.MethodsTwo different preparations of rabbit anti-thymocyte globulin (rATG), Thymoglobuline® and ATG-F (Grafalon®), are frequently used to prevent GvHD in pediatric patients by in vivo T-cell depletion. Total rATG levels and active rATG levels were analyzed prospectively in pediatric patients undergoing HSCT. Clinical and laboratory outcome parameters were recorded.ResultsrATG levels were measured in 32 patients, 22 received thymoglobuline and 10 received ATG-F. The median total peak plasma level was 419.0 µg/ml for ATG-F and 60.4 µg/ml for thymoglobuline. For ATG-F, exposure could be predicted from the calculated dose more precisely than for thymoglobuline. Active peak plasma levels neither of ATG-F, nor of thymoglobuline correlated significantly with the number of lymphocytes prior to serotherapy. There was no significant difference in incidence of aGvHD, cGvHD, rejection, mixed chimerism or viral infections in the two cohorts. However, in our cohort, patients with high thymoglobuline exposure showed a compromised reconstitution of T cells.ConclusionsATG-F and thymoglobuline show different pharmacological and immunological impact in children, whose clinical significance needs to be investigated in larger cohorts.  相似文献   

8.
Aegle marmelos (L.) Correa is an Indian medicinal plant known for its vast therapeutic activities. In Ayurveda, the plant is known to balance “vata,” “pitta,” and “kapha” dosh. Recent studies suggest anti-inflammatory, anti-microbial, and anti-diabetic potential but lack in defining the dosage over the therapeutic activities. This study aims to determine the chemical profile of Aegle marmelos fruit extract; identification, enrichment, and characterization of the principal active component(s) having anti-inflammatory and anti-diabetic potential. Targeted enrichment of total coumarins, focusing on marmelosin, marmesin, aegeline, psoralen, scopoletin, and umbelliferone, was done from Aegle marmelos fruit pulp, and characterized using advanced high-throughput techniques. In vitro and in silico anti-diabetic and anti-inflammatory activities were assessed to confirm their efficacy and affinity as anti-diabetic and anti-inflammatory agents. The target compounds were also analysed for toxicity by in silico ADMET study and in vitro MTT assay on THP-1 and A549 cell lines. The coumarins enrichment process designed, was found specific for coumarins isolation as it resulted into 48.61% of total coumarins enrichment, which includes 31.2% marmelosin, 8.9% marmesin, 4% psoralen, 2% scopoletin, 1.7% umbelliferone, and 0.72% aegeline. The quantification with HPTLC and qNMR was found to be correlated with the HPLC assay results. The present study validates the potential use of Aegle marmelos as an anti-inflammatory and anti-diabetic agent. Coumarins enriched from the plant fruit have good therapeutic activity and can be used for Phytopharmaceutical ingredient development. The study is novel, in which coumarins were enriched and characterized by a simple and sophisticated methodology.  相似文献   

9.
Identification of critical quality attributes (CQAs) is an important step for development of biopharmaceuticals with intended performance. An accurate CQA assessment is needed to ensure product quality and focusing on development efforts where control is needed. The assignment of criticality is based on safety and efficacy. Efficacy is related to PK and bioactivity. Here, we developed a novel approach based on antibody-antigen complex structure and modeling as a complementary method for bioactivity assessment. To validate this approach, common product related quality attributes and mutagenesis data from several IgGs were assessed using available antibody-antigen complex structures, and results were compared with experimental data from bioactivity or binding affinity measurements. A stepwise evaluation scheme for structural based analysis is proposed; based on systematic assessment following the scheme, good correlation has been observed between structural analysis and experimental data. This demonstrates that such an approach can be applied as a complementary tool for bioactivity assessment. Main applications are 1) To decouple multiple attributes to achieve amino acid resolution for bioactivity assessment, 2) To assess bioactivity of attributes that cannot be experimentally generated, 3) To provide molecular mechanism for experimental observation and understand structure function relationship. Examples are provided to illustrate these applications.  相似文献   

10.
《Drug discovery today》2023,28(3):103469
Antitumor agents are delivered via nanoparticles (NPs) to the mitochondria. The drugs attack the mitochondria resulting in mitochondrial damage and the release of cytochrome C (Cyto-C). Cyto-C binds with Apaf1 and Caspase-9 to form an apoptosome. The apoptosome activates Caspase 3, which ultimately results in the death of cancer cells.
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   

11.
MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.  相似文献   

12.
《药学学报(英文版)》2021,11(9):2749-2767
Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.  相似文献   

13.
《Drug discovery today》2022,27(1):326-336
Tuberculosis (TB), an airborne infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of human morbidity and mortality worldwide. Given the alarming rise of resistance to anti-TB drugs and latent TB infection (LTBI), new targets and novel bioactive compounds are urgently needed for the treatment of this disease. We provide an overview of the recent advances in anti-TB drug discovery, emphasizing several newly validated targets for which an inhibitor has been reported in the past five years. Our review presents several attractive directions that have potential for the development of next-generation therapies.  相似文献   

14.
15.
BackgroundType 2 Diabetes Mellitus (T2DM) patients are exposed to a 7.5 times higher risk of hypoglycemia while fasting during Ramadan. Relevant diabetes guidelines prioritize the use of SGLT2 inhibitors over other classes. There is a great need to enrich data on their safe and effective use by fasting patients at greater risk of hypoglycemia. Therefore, this study aims to assess the safety and tolerability of Empagliflozin in T2DM Muslim patients during Ramadan.MethodologyA prospective cohort study was conducted for adult Muslim T2DM patients. Patients who met the inclusion criteria were categorized into two sub-cohorts based on Empagliflozin use during Ramadan (Control versus Empagliflozin). The primary outcomes were the incidence of hypoglycemia symptoms and confirmed hypoglycemia. Other outcomes were secondary. All patients were followed up to eight weeks post-Ramadan. A propensity score (PS) matching and Risk Ratio (RR) were used to report the outcomes.ResultsAmong 1104 patients with T2DM who were screened, 220 patients were included, and Empagliflozin was given to 89 patients as an add-on to OHDs. After matching with PS (1:1 ratio), the two groups were comparable. The use of other OHDs, such as sulfonylurea, DPP4 inhibitors, and Biguanides, was not statistically different between the two groups. The risk of hypoglycemia symptoms during Ramadan was lower in patients who received Empagliflozin than in the control group (RR 0.48 CI 0.26, 0.89; p-value = 0.02). Additionally, the risk of confirmed hypoglycemia was not statistically significant between the two groups (RR 1.09 CI 0.37, 3.22; p-value = 0.89).ConclusionEmpagliflozin use during Ramadan fasting was associated with a lower risk of hypoglycemia symptoms and higher tolerability. Further randomized control trials are required to confirm these findings.  相似文献   

16.
ObjectiveThis study aims to select the most effective anti-Rheumatoid Arthritis (RA) component of flavonoids from Daphne genkwa Sieb. et Zucc. by anti-inflammatory and immunomodulatory effects in vitro, and to elucidate the mechanism.MethodsThe anti-inflammatory and immunomodulatory effects of total flavonoids (TF) and four flavonoid components (genkwanin, hydroxygenkwanin, luteolin and apigenin) were determined by pharmacological approach in LPS-induced RAW 264.7 macrophages and ConA-induced T lymphocytes. Principal component analysis (PCA) was used to obtain the optimal anti-RA component in vitro. Western blot and real-time quantitative PCR (q-PCR) were used to explore the mechanisms. Finally, the in vitro anti-RA effect was verified by human rheumatoid arthritis fibroblast-like synoviocytes (FLSs).ResultsTF and four flavonoids significantly reduced the expressions of NO, iNOS, TNF-α, IL-6, IFN-γ and IL-2. PCA showed that genkwanin was the most effective anti-RA component in vitro. Genkwanin inhibited nuclear factor-κB (NF-κB) pathway by decreasing the phosphorylation levels of IKK, IκB and NF-κB, and down-regulated the expressions of iNOS, COX-2 and IL-6 mRNA. Genkwanin also inhibited the abnormal proliferation of FLSs and down-regulated the secretions of NO and IL-6.ConclusionThe most effective anti-RA component was genkwanin. Genkwanin exerts anti-RA effect through down-regulating the activation of NF-κB pathway and mRNA expressions of inflammatory mediators, and also by inhibiting the abnormal proliferation of FLSs and its NO and IL-6 secretion levels.  相似文献   

17.
The dose emission from DPIs can be affected by the inspiratory parameters achieved by the patient as well as the device in-use. Conventional in-vitro dose emission methodology was used, but instead of using inhalation volume (Vin) of 2 or 4 L and peak inhalation flow (PIF) corresponding to 4 kPa, a range of PIFs (28.3, 60, 90 and 120 L min−1) and Vins (0.5, 0.75, 1, 1.5, 2, and 4 L) were used. The formulation was composed of spray dried Theophylline as a model drug with Lactohale® α lactose monohydrate carrier. The formulation was aerosolised using two DPIs; a low resistance Breezhaler® and high resistance Handihaler®. The formulation showed a consistent dose content uniformity with a Coefficient of Variation (CV) of 1.70%. The drug distribution on the surface of the carrier was obvious from the SE micrographs with some drug particles lodged into lactose crevices. The dose emission after the first inhalation (ED1) and total emitted dose (TED) of theophylline increased with PIF and Vin, irrespective of the inhaler device. However, the dose delivered was superior for the Handihaler® compared to Breezhaler®. Drug retention in the capsule and device was high at low PIFs and Vins and reduced after the second inhalation. Therefore, our study supports the recommendations for patients who cannot achieve sufficient PIF and Vin to inhale twice for each dose to ensure the better clinical outcome.  相似文献   

18.
Isolating and purifying liver immune cells are crucial for observing the changes in intrahepatic immune responses during the development of liver diseases and exploring the potential immunological mechanisms. Therefore, the aim of this study was to provide an optimal protocol for isolating immune cells with a high yield and less damage. We compared mechanical dissection and collagenase digestion, and the results were represented by the proportion of lymphocytes, Kupffer cells and neutrophils. The apoptosis rates of liver immune cells resulted by different isolation protocols were compared by Annexin V-staining using flow cytometric analysis. Our data indicated that the enzymatic digestion in vitro was more efficient than the mechanical dissection in vitro with a suitable collagenase IV concentration of 0.01%, and the purification of liver immune cells by a one-step density gradient centrifugation in 33% Percoll had the definite advantage of a higher proportion of the target cells. We also provided evidence that enzymatic digestion in vitro method was superior to collagenase digestion in situ for liver T lymphocytes, NK cells and NKT cells isolation and purification. This protocol was also validated in human liver samples. In conclusion, we developed an optimal protocol for isolating and purifying immune cells from mouse and human liver samples in vitro by 0.01% collagenase IV and 33% Percoll density gradient centrifugation with the advantages of higher cell yields and viability. This method provides a basis for further studying liver immune cells and liver immunity with a wide range of applications.  相似文献   

19.
BackgroundAutologous hematopoietic stem cell transplantation is an effective therapeutic strategy for lymphoma patients. However, some patients have to give up receiving transplantation because of failing to obtain sufficient CD34+ cells yields. Therefore, we ex vivo expanded HSCs of lymphoma patients using UM171 to solve the problem of HSCs deficiency.MethodsMobilized peripheral blood-derived CD34+ cells from lymphoma patients were cultured for 10 days with or without UM171. The fold of cell expansion and the immunophenotype of expanded cells were assessed by flow cytometry. RNA-seq experiment was performed to identify the mechanism by which UM171 promoted HSCs expansion.ResultsUM171 treatment increased the proportion of CD34+ (68.97 ± 6.91%), CD34+ CD38 cells (44.10 ± 9.20%) and CD34+CD38CD45RACD90+ LT-HSCs (3.05 ± 2.08%) compared to vehicle treatment (36.08 ± 11.14%, 18.30 ± 9.49% and 0.56 ± 0.45%, respectively). UM171 treatment led to an 85.08-fold increase in LT-HSC numbers relative to initial cells. Importantly, UM171 promoted expansion of LT-HSCs achieved 138.57-fold in patients with poor mobilization. RNA-seq data showed that UM171 upregulated expression of HSC-, mast cell-specific genes and non-canonical Wnt signaling related genes, and inhibited genes expression of erythroid, megakaryocyte and inflammatory mediated chemokine.ConclusionsOur study shows that UM171 can efficiently promote ex vivo expansion of HSCs from lymphoma patients, especially for poorly mobilizing patients. In terms of mechanism, UM171 upregulate HSC-specific genes expression and suppress erythroid and megakaryocytic differentiation, as well as activate non-classical Wnt signaling.  相似文献   

20.
To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号