首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
A malarial antigen, Pc96, in the plasma membrane of erythrocytes infected with Plasmodium chabaudi has been identified. It is synthesized by the parasite and present during most of the growth stages of the intra-erythrocytic cycle as demonstrated by immunofluorescence. The antigen has a molecular weight of approximately 96,000. Monoclonal antibodies raised against this antigen were used to isolate the protein by affinity chromatography. Mice immunized with affinity-purified Pc96 were partially protected against blood induced-P. chabaudi infection. This result indicates the existence of a protective antigen in the membranes of erythrocytes parasitized by a rodent malaria and encourages the search for analogous antigens in human malaria parasites as possible candidate molecules for malaria vaccination.  相似文献   

2.
New phosphoproteins appear on the host erythrocyte membrane during Plasmodium berghei and P. chabaudi infection. Distinct proteins having similar properties and all distinguished by isoelectric points of less than 4.0 are identified. Associated with the erythrocyte membranes of P. berghei infected erythrocytes are two proteins with molecular masses of 65 and 46 kDa, whereas 93, 90 and 76 kDa proteins are observed during P. chabaudi infection. These new erythrocyte membrane associated proteins are all of parasite origin as indicated by metabolic labeling with proline and are synthesized during the ring stage of the asexual replicative cycle. Three of these proteins, the 93 kDa P. chabaudi protein and both P. berghei proteins, have been purified and the amino acid composition determined. All three are characterized by a relatively high proportion of aspartate and glutamate residues. Mono-and polyclonal antibodies were also raised against the same three purified proteins. No cross reactivity between these three proteins is observed, but one monoclonal antibody against the 65 kDa P. berghei crossreacts with a 27 kDa mouse erythrocyte protein. Immunofluorescence using the antibodies in combination with subcellular fractionation studies clearly shows that these phosphoproteins are associated with the host erythrocyte membrane and not the parasite.  相似文献   

3.
A subcellular fraction enriched in erythrocyte membranes has been isolated from rhesus monkey erythrocytes infected with Plasmodium knowlesi. Infected cells were lysed by centrifugation through a zone of hypotonic buffer and membranes isolated by equilibrium density gradient centrifugation in the same tube. The purified membrane fraction was shown to include the erythrocyte surface membrane by several methods: electron microscopy, identification of Coomassie Blue stained erythrocyte membrane proteins, identification of band 3 with a monoclonal antibody, and identification of radioiodinated cell surface proteins. The resulting ghosts were shown to be specifically reactive with monkey sera against the variant surface antigens of P. knowlesi by indirect immunofluorescence and membrane agglutination. No reactivity was seen with a monoclonal antibody (13C11) against the intracellular schizont surface. A number of metabolically labelled parasite proteins were enriched in this membrane function, including peptides of 277, 208, 173, 153, 134, 109, 80, 60 and 48 kDa and the variant surface antigens of variable molecular mass (180-207 kDa). These proteins were distinct from the major parasite proteins of total infected erythrocytes and isolated merozoites. The major glucosamine labelled glycoprotein of the internal schizont (230 kDa) was not found in this fraction. Moreover, no fragment of this parasite glycoprotein was found in this membrane fraction, indicating that no part of this molecule is transported to the erythrocyte surface. In contrast, the variant antigen of P. knowlesi, known to be on the erythrocyte surface, could be readily identified as peptides unique to specific cloned parasite lines. We propose that the other nine parasite proteins found within this membrane fraction represent a starting point for the identification of other parasite proteins transported to the surface membrane of the infected erythrocyte.  相似文献   

4.
Plasmodium chabaudi-susceptible NMRI and B10.A mice were vaccinated with host cell plasma membranes isolated from P. chabaudi-infected erythrocytes. Most of the mice were protected from the lethal consequences of challenge with the homologous parasite, although protection was unassociated with a reduction in the course or peak of parasitemia. Vaccination also induced the production of antibodies against Pc90, which is the immunodominant protein expressed by parasites in host cell plasma membranes.  相似文献   

5.
Plasma membranes of Plasmodium chabaudi-infected erythrocytes contain seven major neoproteins with apparent molecular masses of 154, 145, 90, 72, 67, 52, and 33 kDa, respectively. These neoproteins, with the exception of the two larger ones, can be metabolically labelled with [14C]isoleucine. The seven neoproteins are antigenic as revealed by Western blotting using hyperimmune sera obtained from two different mouse strains. None of the parasite proteins is accessible from the outside in intact P. chabaudi-infected erythrocytes as determined by lactoperoxidase-mediated radioiodination, indirect immune fluorescence microscopy, or post-embedding immunoelectron microscopy. These methods, however, identify parasite proteins in host cell plasma membranes when the latter are artificially changed either during isolation or by methanol fixation. We conclude therefore that parasitic proteins are cryptically arranged in intact host cell plasma membranes of P. chaubaudi-infected erythrocytes.  相似文献   

6.
A Plasmodium falciparum polypeptide (46 kDa) associated with the infected erythrocytes of all asexual stages as well as immature gametocytes was identified by the monoclonal antibody (Mab) 30B8.3. The expression of this protein was not dependent upon the knobby phenotype and was detected in parasites grown either in human or Aotus erythrocytes. The antigen was heatstable, did not label with [14C]glucosamine, and was not sensitive to periodate oxidation. Immunofluorescent staining patterns of Mab 30B8.3 on in vitro cultured parasites varied from punctate (rings and trophozoites) to patchy (trophozoites and schizonts) fluorescence. The Mab 30B8.3 antigen was not detected on the infected erythrocyte surface by conventional wet-mount IFA procedure. However, when parasites were cultured in the presence of Mab 30B8.3, the epitope was detected by the monoclonal antibodies present in the culture medium. Differential extraction of the polypeptide from infected erythrocytes and immune electron microscopy of cryosectioned parasites localized the 30B8.3 epitope primarily on membranes of Maurer's clefts within the infected erythrocyte's cytosol. This 46 kDa polypeptide is unique because it seemed to be an integral membrane protein of the Maurer's clefts/vesicles and it was not secreted into the culture medium nor deposited on the infected erythrocyte membrane. Previous studies indicate that several parasite proteins, excreted extracellularly or deposited on infected erythrocyte membrane, are found to be associated with Maurer's cleft membranes and vesicles. The 46 kDa polypeptide described in this study may play an important role in the transport of the parasite antigens.  相似文献   

7.
8.
 On the basis of immunological cross-reactivity, we identified a 43-kDa Plasmodium berghei antigen with homology to the exp-1 antigen from P. falciparium. The P. berghei antigen was recognized by an antibody directed against an epitope on the C-terminus of the P. falciparum exp-1 protein. This antigen is localized on the surface of the parasite and shares peptide sequence homology with the P. chabudi antigen Ag3008. To investigate further the role of the P. berghei antigen, we designed antisense phosphorothioate oligodeoxynucleotides (PS oligos) complementary to sequences of the exp-1 mRNA from P. falciparum. The PS oligos were capable of inhibiting the development of P. falciparum in vitro by 47%. In vivo, experiments in mice showed that the same PS oligos had the potential to extend the life span of mice infected with P. berghei by a factor of 2–4. The immunological cross-reactivity and the antisense inhibition of P. berghei parasite development in vivo indicate that this antigen may be a homologue of exp-1 from P. falciparum that has functional importance for parasite survival. Received: 3 April 1995 / Accepted: 16 June 1995  相似文献   

9.
A new procedure has been developed which allows the concomitant isolation of viable parasites and host cell plasma membranes from erythrocytes infected with Plasmodium chabaudi trophozoites. The average final yield of parasites is 56%. Free parasites reveal a well preserved ultrastructure, incorporate [14C]isoleucine for at least 3 h, and synthesize about the same proteins as parasites within erythrocytes as monitored by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)-autoradiography. The host cell plasma membranes can be isolated in the form of ghosts with an average yield of 27%. The ghosts possess a structurally intact plasma membrane as revealed by freeze-etch electron microscopy. The ghosts are regularly associated with seven neo-proteins as identified by SDS-PAGE and isoelectric focusing (IEF)/SDS-PAGE. These neo-proteins have the following apparent molecular masses: 154 kDa, 145 kDa, 90 kDa, 72 kDa (pI 4.5), 67 kDa, 52 kDa, and 33 kDa (pI 5.7), respectively. The contamination of ghosts by parasite material and, conversely, the contamination of parasites by host cell plasma membranes is very low as demonstrated by light and electron microscopy, lactoperoxidase-mediated radioiodination and the distribution of the typical parasite marker enzymes such as choline kinase, cholinephosphotransferase and ethanolaminephosphotransferase.  相似文献   

10.
The interaction between Plasmodium falciparum merozoites and human erythrocytes is mediated by specific parasite proteins and sialoglycoproteins (SGPs) on the surface of the host cell. To investigate whether a similar mechanism functions in rodent malaria, a series of experiments was performed to identify the proteins involved in the interaction of Plasmodium chabaudi parasites and mouse erythrocytes. Labeled parasite proteins incubated with purified mouse SGP bound specifically to glycoprotein 2.1. Two parasite proteins (72 and 126 kilodaltons [kDa]) were coprecipitated with antibody directed to mouse erythrocyte membrane proteins. The lower band (72 kDa) as well as a band of 105 kDa were also observed to bind to N-acetyl-D-galactosamine affinity columns, suggesting a carbohydrate component in the binding of these parasites to erythrocytes. These experiments indicate that P. chabaudi possesses specific proteins which recognized SGP on the surface of murine erythrocytes in a manner similar to that of the merozoites of P. falciparum. Thus P. chabaudi in mice may provide an in vivo model of the human parasite for testing ways to inhibit merozoite recognition and invasion of host cells.  相似文献   

11.
Immune human sera were used to select a cDNA clone expressing an asexual blood-stage antigen of Plasmodium falciparum. Antibodies affinity-purified on extracts from this clone were used to characterize the antigen by immunoblotting and immunofluorescence. The antigen is present in mature-stage parasites as a high molecular weight protein of about 250 kDa and is apparently processed to smaller fragments in the merozoite. It varies in molecular weight and antibody reactivity in different isolates, and has been localized at the erythrocyte membrane by immunoelectronmicroscopy. Part of the protein is composed of exactly repeated hexapeptide units that constitute the strain-specific determinant. This molecule has similar characteristics to the strain-specific molecule believed to be responsible for cytoadherence.  相似文献   

12.
Two very large Plasmodium falciparum proteins are identified as constituents of the infected erythrocyte membrane. Sera were obtained from Aotus monkeys that had been repeatedly infected with asexual P. falciparum from one of four strains. The capacity of these sera to block in vitro cytoadherence of infected erythrocytes and agglutinate intact infected cells was determined. The sera were also used to immunoprecipitate protein antigens from detergent extracts of 125I-surface labeled or biosynthetically radiolabeled infected erythrocytes. For each serum/antigen combination, precipitation of only one protein correlated with the ability of the serum to interfere with cytoadherence and agglutinate infected cells. This malarial protein, denoted Pf EMP 1 (P. falciparum-erythrocyte-membrane-protein 1) bore strain-specific epitope(s) on the cell surface and displayed size heterogeneity (Mr approximately 220,000-350,000). Pf EMP 1 was strongly labeled by cell-surface radioiodination but was a quantitatively very minor malarial protein. Pf EMP 1 was distinguished by its size, surface accessibility and antigenic properties from a more predominant malarial protein in the same size range (Pf EMP 2) that is under the infected erythrocyte membrane at knobs. Monoclonal antibodies and rabbit antisera raised against Pf EMP 2 were used to show that this size heterogeneous antigen was indistinguishable from the previously described MESA (mature parasite infected erythrocyte surface antigen), identified by precipitation with rabbit antisera raised against the MESA hexapeptide repeats. Antibodies raised against Pf EMP 2/MESA did not precipitate Pf EMP 1. We conclude that Pf EMP 1 is either directly responsible for the cytoadherence phenomenon, or is very closely associated with another as yet unidentified functional molecule. Pf EMP 2/MESA must have a structural property/function that is important under the host cell membrane.  相似文献   

13.
In human erythrocytes, the intracellular presence of malarial parasites (Plasmodium falciparum) markedly changed the permeation characteristics of the nucleosides, adenosine and tubercidin, an adenosine analogue. We report parasite-induced changes in the kinetics of cellular uptake of the nucleosides and in the appearance in infected cells of a nucleoside permeation route of low sensitivity to the classical inhibitor of erythrocytic nucleoside transport, nitrobenzylthioinosine (NBMPR). These changes and a diminution in NBMPR effectiveness during parasite maturation to the trophozoite or schizont stage, suggest the presence in the infected cells of an altered or new nucleoside permeation mechanism of low sensitivity to NBMPR. The incorporation of adenosine into polynucleotides was also of low sensitivity to 10 microM NBMPR. Binding studies of [3H]NBMPR with both normal erythrocytes and those harbouring parasites at each morphological stage indicated that fewer high affinity NBMPR binding sites were present on cells containing mature parasites than on the uninfected cells. The apparent low sensitivity to NBMPR of nucleoside permeation in erythrocytes containing P. falciparum forms may enable therapeutic measures with cytotoxic nucleosides to be directed with selectivity toward parasite-containing cells.  相似文献   

14.
Normal, splenectomized, and athymic Fischer rats were infected with Plasmodium chabaudi. In normal rat infections, acute-phase infection resolved rapidly and completely. In splenectomized rats, infection resulted in high parasitemia and ultimately death. In nude rats, parasite growth was reduced compared with normal rats, and a persistent parasitemia (between 20 and 45%) was observed for several months. Complete resolution of the infection was achieved after adoptive transfer of T lymphocytes, even when transfer occurred during the course of infection. These results indicated that an acquired, T-lymphocyte-dependent immunity was necessary for the complete recovery observed in normal rats. In normal rats, thrombocytopenia and splenomegaly occurred during infection. By contrast, in nude rats, both of these pathological manifestations were only observed after thymus grafting. Thrombocytopenia was also absent in the splenectomized animals. Despite an increase in platelet-associated immunoglobulin levels during the infection, thrombocytopenia was not transferred by injection of infected rat serum to normal recipients. It has been concluded that the nude rat infection can be regarded as a novel and useful model for studying the T-cell-dependent effector and pathological mechanisms and to investigate the anti-P. chabaudi immune response.  相似文献   

15.
Infection with blood-stage Plasmodium chabaudi chabaudi AS results in splenomegaly, peripheral leukocytosis, and a major activation of the immune system. The frequencies and absolute numbers of T-cell, B-cell, and macrophage populations in spleen and peripheral blood from P. chabaudi-infected BALB/c mice were compared and found to be significantly altered during acute infection. The kinetics of the redistribution of the different cell types in spleen and peripheral blood were different, with T and B cells appearing in the blood when their frequencies and absolute numbers in the spleen were low. The frequency and absolute number of apoptotic cells in the spleen were increased during acute P. chabaudi infection and involved both T cells, B cells, and macrophages. Both Fas and Fas-ligand expression were increased in the spleen. Taken together, our data provide new information on the complex cellular interactions that take place in the immune system during blood-stage malaria infection in a mouse model.  相似文献   

16.
The 105 kDa antigen of Plasmodium chabaudi has many characteristics of the P. falciparum Pf 155 (RESA) molecule. A clone (pPC105e) from a P. chabaudi genomic library was isolated using immune screening with a 105 kDa antigen specific monoclonal antibody (B7E10). Southern, Northern and Western blotting analyses provide evidence for a lack of variability at the protein and DNA levels. A subclone of the insert in the expression vector pEX2, synthesises a fusion peptide which contains the epitope recognized by B7E10. Sequences homologous to the insert were detected in the genome of three other rodent and two primate malarias.  相似文献   

17.
Apical membrane antigen 1 (AMA-1), an asexual blood-stage antigen of Plasmodium falciparum, is an important candidate for testing as a component of a malaria vaccine. This study investigates the nature of diversity in the Plasmodium chabaudi adami homolog of AMA-1 and the impact of that diversity on the efficacy of the recombinant antigen as a vaccine against challenge with a heterologous strain of P. chabaudi. The nucleotide sequence of the AMA-1 gene from strain DS differs from the published 556KA sequence at 79 sites. The large number of mutations, the nonrandom distribution of both synonymous and nonsynonymous mutations, and the nature of both the codon changes and the resulting amino acid substitutions suggest that positive selection operates on the AMA-1 gene in regions coding for antigenic sites. Protective immune responses induced by AMA-1 were strain specific. Immunization of mice with the refolded ectodomain of DS AMA-1 provided partial protection against challenge with virulent DS (homologous) parasites but failed to protect against challenge with avirulent 556KA (heterologous) parasites. Passive immunization of mice with rabbit antibodies raised against the same antigen had little effect on heterologous challenge but provided significant protection against the homologous DS parasites.  相似文献   

18.
D-lactate production in erythrocytes infected with Plasmodium falciparum   总被引:1,自引:0,他引:1  
The production of D-lactate that accompanies the metabolism of glucose to L-lactate in Plasmodium falciparum was evaluated with erythrocytes that contained either young or mature parasites. Infected cells with ring-stage parasites release L-lactate and D-lactate at rates 1340 and 81 nmol h-1 (10(8) cells)-1, respectively. These rates increase to 2050 and 136 nmol h-1 (10(8) cells)-1, respectively, in infected cells with trophozoite/schizont-stage parasites. D-Lactate represents 6-7% of the total lactate. The formation of D-lactate is by way of a methylgloxal pathway in which methylglyoxal is formed nonenzymatically from dihydroxyacetone phosphate and is then converted into D-lactate by the sequential action of parasite glycoxalase I and glyoxalase II. The kinetic properties of parasite glyoxalase I and glyoxalase II allow these enzymes to be distinguished from those in the host cell. D-Lactate production by the parasite appears to be a defense mechanism to protect the parasite from the toxic effects of methylglyoxal.  相似文献   

19.
This study analyzed the effect of infection of mice with a virulent strain of Plasmodium chabaudi on natural autoantibodies. Mice received appropriate treatments in order to survive and the serum autoantibodies were characterized either by enzyme immunoassays against a panel of self and non-self antigens or by Western immunoblots using fibroblast or red blood cell (RBC) extracts. IgM and mainly IgG antibodies directed against actin, myoglobin, myosin, spectrin, tubulin, and trinitrophenylated-ovalbumin were found a few days after the parasitemia peak, persisted for several weeks after parasite clearance, and returned to almost normal levels after 2 months. Following a challenge with parasitized RBCs, a similar increase in all antibodies was observed, their levels remaining high 20 days post-injection and still remaining at twice the normal level 1 month later. Western blotting detected autoantibodies to many membrane RBC proteins, e.g. spectrin, and band 3 and its related polypeptides, as well as against fibroblast constituents, such as tubulin, actin, and the 70 kd heat shock protein. Autoantibodies seemed to be polyspecific, since those eluted from infected mouse RBCs and the IgG antibodies from infected mouse sera affinity-purified on a mouse tubulin immunoadsorbent reacted with all antigens of the panel, including parasite extracts. Surprisingly, in mice which had recovered from infection, autoantibody levels, particularly anti-spectrin and anti-band 3, rose after the injection of a high dose of normal instead of parasitized RBCs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Previous studies of Plasmodium falciparum have identified a region of chromosome 2 in which are clustered three genes for glycosylphosphatidylinositol (GPI)-anchored merozoite surface proteins, MSP2, MSP5, and MSP4, arranged in tandem. MSP4 and MSP5 both encode proteins 272 residues long that contain hydrophobic signal sequences, GPI attachment signals, and a single epidermal growth factor (EGF)-like domain at their carboxyl termini. Nevertheless, the remainder of their protein coding regions are quite dissimilar. The locations and similar structural features of these genes suggest that they have arisen from a gene duplication event. Here we describe the identification of the syntenic region of the genome in the murine malaria parasite, Plasmodium chabaudi adami DS. Only one open reading frame is present in this region, and it encodes a protein with structural features reminiscent of both MSP4 and MSP5, including a single EGF-like domain. Accordingly, the gene has been designated PcMSP4/5. The homologue of the P. falciparum MSP2 gene could not be found in P. chabaudi; however, the amino terminus of the PcMSP4/5 protein shows similarity to that of MSP2. The PcMSP4/5 gene encodes a protein with an apparent molecular mass of 36 kDa, and this protein is detected in mature stages of the parasite. The protein partitions in the detergent-enriched phase after Triton X-114 fractionation and is localized to the surfaces of trophozoites and developing and free merozoites. The PcMSP4/5 gene is transcribed in both ring and trophozoite stages but appears to be spliced in a stage-specific manner such that the central intron is spliced from the mRNA in the parasitic stage in which the protein is expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号