首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vaccinia virus E3L gene product, pE3, is a dsRNA binding protein that prevents activation of the interferon-induced, dsRNA-activated protein kinase, PKR. Activation of PKR, which results in phosphorylation of the translation initiation factor, eIF2α, leads to the inhibition of protein synthesis, a process involved in defense against virus infection. The E3L gene product has a conserved dsRNA binding domain (DRBD) in its carboxyl-terminal region and has been shown to functionin vitroby sequestration of dsRNA. We have utilizedin vitrobinding assays and the yeast two-hybrid system to demonstrate direct interactions of pE3 with PKR. By these methods, we demonstrate that pE3 interacts with two distinct regions in PKR, the amino-terminal (amino acids 1–99) located in the regulatory domain and the carboxyl-terminal (amino acids 367–523) located in the catalytic domain. The amino-terminal region of PKR that interacts with pE3 contains a conserved DRBD, suggesting that PKR can form nonfunctional heterodimers with pE3, analogous to those seen with other dsRNA binding proteins. Interaction of pE3 with the amino-terminal region of PKR is enhanced by dsRNA. In contrast, dsRNA reduces the interaction of pE3 with the carboxyl-terminal region of PKR. Competition experiments demonstrate that the carboxyl-terminal region of PKR, to which pE3 binds, overlaps the region with which eIF2α and the pseudosubstrate pK3 interact, suggesting that pE3 may also prevent PKR activation by masking the substrate binding domain. Like pE3, the amino-terminal region of PKR also interacts with the carboxyl-terminal domain of PKR. These interactions increase our understanding of the mechanisms by which pE3 downregulates PKR. In addition, the PKR–PKR interactions observed leads us to suggest a novel autoregulatory mechanism for activation of PKR in which dsRNA binding to the DRBD(s) induces a conformational change that results in release of the amino terminal region from the substrate binding domain, allowing access to eIF2α and its subsequent phosphorylation.  相似文献   

2.
3.
dsRNA-activated protein kinase (PKR) is activated by viral dsRNAs and phosphorylates eIF2a reducing translation of host and viral mRNA. Although infection with a chimeric West Nile virus (WNV) efficiently induced PKR and eIF2a phosphorylation, infections with natural lineage 1 or 2 strains did not. Investigation of the mechanism of suppression showed that among the cellular PKR inhibitor proteins tested, only Nck, known to interact with inactive PKR, colocalized and co-immunoprecipitated with PKR in WNV-infected cells and PKR phosphorylation did not increase in infected Nck1,2−/− cells. Several WNV stem-loop RNAs efficiently activated PKR in vitro but not in infected cells. WNV infection did not interfere with intracellular PKR activation by poly(I:C) and similar virus yields were produced by control and PKR−/− cells. The results indicate that PKR phosphorylation is not actively suppressed in WNV-infected cells but that PKR is not activated by the viral dsRNA in infected cells.  相似文献   

4.
The interferon-induced protein kinase PKR is activated upon binding double-stranded RNA and phosphorylates the translation initiation factor eIF2alpha on Ser-51 to inhibit protein synthesis in virally infected cells. Swinepox virus C8L and vaccinia virus K3L gene products structurally resemble the amino-terminal third of eIF2alpha. We demonstrate that the C8L protein, like the K3L protein, can reverse the toxic effects caused by high level expression of human PKR in yeast cells. In addition, expression of either the K3L or C8L gene product was found to reverse the inhibition of reporter gene translation caused by PKR expression in mammalian cells. The inhibitory function of the K3L and C8L gene products in these assays was found to be critically dependent on residues near the carboxyl-termini of the proteins including a sequence motif shared among eIF2alpha and the C8L and K3L gene products. Thus, despite significant sequence differences both the C8L and K3L proteins function as pseudosubstrate inhibitors of PKR.  相似文献   

5.
dsRNA-dependent protein kinase R (PKR) is a ubiquitously expressed enzyme well known for its roles in immune response. Upon binding to viral dsRNA, PKR undergoes autophosphorylation, and the phosphorylated PKR (pPKR) regulates translation and multiple signaling pathways in infected cells. Here, we found that PKR is activated in uninfected cells, specifically during mitosis, by binding to dsRNAs formed by inverted Alu repeats (IRAlus). While PKR and IRAlu-containing RNAs are segregated in the cytosol and nucleus of interphase cells, respectively, they interact during mitosis when nuclear structure is disrupted. Once phosphorylated, PKR suppresses global translation by phosphorylating the α subunit of eukaryotic initiation factor 2 (eIF2α). In addition, pPKR acts as an upstream kinase for c-Jun N-terminal kinase and regulates the levels of multiple mitotic factors such as CYCLINS A and B and POLO-LIKE KINASE 1 and phosphorylation of HISTONE H3. Disruption of PKR activation via RNAi or expression of a transdominant-negative mutant leads to misregulation of the mitotic factors, delay in mitotic progression, and defects in cytokinesis. Our study unveils a novel function of PKR and endogenous dsRNAs as signaling molecules during the mitosis of uninfected cells.  相似文献   

6.
The cellular protein, PACT, can directly activate protein kinase (PKR) in vitro by the interaction of PACT domain 3 with PKR. In contrast, in vivo, PACT-mediated PKR activation and concomitant inhibition of protein synthesis require additional cellular stresses. We observed that without such stresses, cotransfection of a PACT expression vector with various reporter genes enhances their levels of expression. This effect was promoter and inducer-independent and PACT specific and mediated by PACT domains 1 and 2. PACT did not increase the level of the reporter mRNA but enhanced its translation by suppressing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) caused by the transfection process. To further examine the phenomenon, we generated cell lines expressing a PACT mutant containing only domains 1 and 2. Reporter gene expression was higher and eIF2alpha phosphorylation was lower in such cell lines compared with the corresponding control cells. Thus, different domains of PACT can either promote or inhibit translation by appropriately modulating the status of eIF2alpha phosphorylation.  相似文献   

7.
Bovine viral diarrhea virus is an important animal pathogen. The cytopathic and noncytopathic biotypes of the virus are associated with distinct pathologic entities. A striking difference between the two biotypes is viral RNA accumulation in infected cells. Viral dsRNA is thought to activate protein kinase PKR; an important mediator of innate immunity. In this study, we investigated PKR activation and its consequences in BVDV-infected cells. Infection with cp BVDV was found to induce PKR activation, eIF2alpha phosphorylation, translation inhibition and NF-kappaB activation. In contrast, PKR activity and eIF2alpha phosphorylation were not induced during infection with the ncp BVDV. In addition, cells infected with ncp BVDV showed no PKR phosphorylation in response to infection with the unrelated poliovirus whereas uninfected ncp BVDV cells when infected with poliovirus showed high levels of phosphorylated PKR. Cells infected with ncp BVDV failed to respond to synthetic dsRNA (poly I:C) treatment with NF-kappaB activation. However, the NF-kappaB response to bacterial lipopolysaccarides (LPS) was normal in these cells, suggesting a specific suppression of antiviral response signaling in ncp BVDV infected cells. These results indicate that ncp BVDV has evolved specific mechanisms to prevent activation of PKR and its antiviral effectors, most likely to facilitate the establishment and maintenance of persistent infection.  相似文献   

8.
Lytic replication of many viruses activates an innate host response designed to prevent the completion of the viral lifecycle, thus impeding the spread of the infection. One branch of the host's complex reaction functions to incapacitate the cellular translational machinery on which the synthesis of viral polypeptides completely depends. This is achieved through the activation of specific protein kinases that phosphorylate eIF2 on its α subunit and inactivate this critical translation initiation factor. However, as continued synthesis of viral proteins is required to assemble the viral progeny necessary to transmit the infection to neighboring cells, viruses have developed a variety of strategies to counter this cellular response. Genetic and biochemical studies with herpes simplex virus type 1 (HSV-1) have revealed that the virus produces at least two discrete products at different times during its replicative program that act to prevent the accumulation of phosphorylated eIF2α. The γ134.5 gene product is expressed first, encoding a regulatory subunit that binds the cellular protein phosphatase 1α and regenerates pools of active eIF2 by removing the inhibitory phosphate from the α subunit. The second function, encoded by the product of the Us11 gene, specifies a double-stranded RNA-binding protein that prevents activation of PKR, a cellular eIF2α kinase. Together, both proteins cooperate to overcome the antiviral response of the host and properly regulate translation in HSV-1–infected cells.  相似文献   

9.
The double-stranded RNA-dependent protein kinase (PKR) is one of the four mammalian kinases that phosphorylates the translation initiation factor 2alpha in response to virus infection. This kinase is induced by interferon and activated by double-stranded RNA (dsRNA). Phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) blocks translation initiation of both cellular and viral mRNA, inhibiting virus replication. To counteract this effect, most viruses express inhibitors that prevent PKR activation in infected cells. Here we report that PKR is highly activated following infection with alphaviruses Sindbis (SV) and Semliki Forest virus (SFV), leading to the almost complete phosphorylation of eIF2alpha. Notably, subgenomic SV 26S mRNA is translated efficiently in the presence of phosphorylated eIF2alpha. This modification of eIF2 does not restrict viral replication; SV 26S mRNA initiates translation with canonical methionine in the presence of high levels of phosphorylated eIF2alpha. Genetic and biochemical data showed a highly stable RNA hairpin loop located downstream of the AUG initiator codon that is necessary to provide translational resistance to eIF2alpha phosphorylation. This structure can stall the ribosomes on the correct site to initiate translation of SV 26S mRNA, thus bypassing the requirement for a functional eIF2. Our findings show the existence of an alternative way to locate the ribosomes on the initiation codon of mRNA that is exploited by a family of viruses to counteract the antiviral effect of PKR.  相似文献   

10.
CJ Bierle  MR Schleiss  AP Geballe 《Virology》2012,433(1):157-166
Viral double-stranded RNA (dsRNA) activates protein kinase R (PKR), which phosphorylates eIF2α and inhibits translation. In response, viruses have evolved various strategies to evade the antiviral impact of PKR. We investigated whether guinea pig cytomegalovirus (GPCMV), a useful model of congenital CMV infection, encodes a gene that interferes with the PKR pathway. Using a proteomic screen, we identified several GPCMV dsRNA-binding proteins, among which only gp145 rescued replication of a vaccinia virus mutant that lacks E3L. gp145 also reversed the inhibitory effects of PKR on expression of a cotransfected reporter gene. Mapping studies demonstrated that the gp145 dsRNA-binding domain has homology to the PKR antagonists of other CMVs. However, dsRNA-binding by gp145 is not sufficient for it to block PKR. gp145 differs from the PKR antagonists of murine CMV in that it functions alone and from those encoded by human CMV in functioning in cells from both primates and rodents.  相似文献   

11.
Min JY  Li S  Sen GC  Krug RM 《Virology》2007,363(1):236-243
It is not known how influenza A viruses, important human pathogens, counter PKR activation, a crucial host antiviral response. Here we elucidate this mechanism. We show that the direct binding of PKR to the NS1 protein in vitro that results in inhibition of PKR activation requires the NS1 123-127 amino acid sequence. To establish whether such direct binding of PKR to the NS1 protein is responsible for inhibiting PKR activation in infected cells, we generated recombinant influenza A/Udorn/72 viruses expressing NS1 proteins in which amino acids 123/124 or 126/127 are changed to alanines. In cells infected with these mutant viruses, PKR is activated, eIF-2alpha is phosphorylated and viral protein synthesis is inhibited, indicating that direct binding of PKR to the 123-127 sequence of the NS1 protein is necessary and sufficient to block PKR activation in influenza A virus-infected cells. Unexpectedly, the 123/124 mutant virus is not attenuated because reduced viral protein synthesis is offset by enhanced viral RNA synthesis at very early times of infection. These early viral RNAs include those synthesized predominantly at later times during wild-type virus infection, demonstrating that wild-type temporal regulation of viral RNA synthesis is absent in 123/124 virus-infected cells. Enhanced early viral RNA synthesis after 123/124 virus infection also occurs in mouse PKR-/- cells, demonstrating that PKR activation and deregulation of the time course of viral RNA synthesis are not coupled. These results indicate that the 123/124 site of the NS1A protein most likely functionally interacts with the viral polymerase to mediate temporal regulation of viral RNA synthesis. This interaction would occur in the nucleus, whereas PKR would bind to NS1A proteins in the cytoplasm prior to their import into the nucleus.  相似文献   

12.
Interferon regulatory factor (IRF) 7 has been demonstrated to be a master regulator of virus-induced type I interferon production (IFN), and it plays a central role in the innate immune response against viruses. Here, we identified death-associated protein kinase 1 (DAPK1) as an IRF7-interacting protein by tandem affinity purification (TAP). Viral infection induced DAPKI-IRF7 and DAPKI-IRF3 interactions and overexpression of DAPK1 enhanced virus-induced activation of the interferon-stimulated response element (ISRE) and IFN-p promoters and the expression of the IFNB1 gene. Knockdown of DAPK1 attenuated the induction of IFNB1 and RIG.lexpression triggered by viral infection or I FN-p, and they were enhanced by viral replication. In addition, viral infection or IFN-p treatment induced the expression of DAPK1. IFN-p treatment also activated DAPK1 by decreasing its phosphorylation level at serine 308. Interestingly, the involvement of DAPK1 in virus-induced signaling was independent of its kinase activity. Therefore, our study identified DAPK1 as an important regulator of the cellular antiviral response.  相似文献   

13.
In this report, the contribution of PKR to the IFN-gamma mediated inhibition of VSV replication in neurons was examined. IFN-gamma treatment of NB41A3 murine neuroblastoma cells resulted in the reduced expression of VSV protein during infection. PKR was found to be modestly upregulated in NB41A3 cells following IFN-gamma treatment. The phosphorylation state of PKR and its downstream target, eIF2alpha, were unaffected by either IFN-gamma or VSV infection. Inhibition of PKR through the use of 2-aminopurine or the expression of the Influenza A NS1 gene had no effect on the ability of IFN-gamma to inhibit the replication of VSV in vitro. These data indicate that endogenously expressed PKR is not required for the IFN-gamma mediated inhibition of VSV replication in NB41A3 neuroblastoma cells.  相似文献   

14.
15.
Autophagy and apoptosis play critical roles in cellular homeostasis and survival. Subtilase cytotoxin (SubAB), produced by non-O157 type Shiga-toxigenic Escherichia coli (STEC), is an important virulence factor in disease. SubAB, a protease, cleaves a specific site on the endoplasmic reticulum (ER) chaperone protein BiP/GRP78, leading to ER stress, and induces apoptosis. Here we report that in HeLa cells, activation of a PERK (RNA-dependent protein kinase [PKR]-like ER kinase)-eIF2α (α subunit of eukaryotic initiation factor 2)-dependent pathway by SubAB-mediated BiP cleavage negatively regulates autophagy and induces apoptosis through death-associated protein 1 (DAP1). We found that SubAB treatment decreased the amounts of autophagy markers LC3-II and p62 as well as those of mTOR (mammalian target of rapamycin) signaling proteins ULK1 and S6K. These proteins showed increased expression levels in PERK knockdown or DAP1 knockdown cells. In addition, depletion of DAP1 in HeLa cells dramatically inhibited the SubAB-stimulated apoptotic pathway: SubAB-induced Bax/Bak conformational changes, Bax/Bak oligomerization, cytochrome c release, activation of caspases, and poly(ADP-ribose) polymerase (PARP) cleavage. These results show that DAP1 is a key regulator, through PERK-eIF2α-dependent pathways, of the induction of apoptosis and reduction of autophagy by SubAB.  相似文献   

16.
The interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) is a serine/threonine kinase that plays an important role in the biology of IFN, exerting antiviral and anticellular actions. These effects have been correlated with phosphorylation of the eukaryotic initiation factor eIF-2alpha and the NF-kappaB inhibitor IkappaB, although it has not been demonstrated that IkappaB is a direct target of PKR in vivo. In view of the various biological effects of PKR, it is likely that other cellular substrates are involved in PKR action. To identify novel substrates of PKR, we have carried out a systematic study of the phosphorylated proteins from cultured cells following PKR activation using high-resolution two-dimensional gel electrophoresis (2D-PAGE). We have used metabolic labeling with [32P]orthophosphate of HeLa cells infected with vaccinia virus (VV) recombinants expressing wild type (wt) or the catalytically inactive mutant form (K296R) of PKR under regulation of the Escherichia coli lacI operator/repressor system. Upon induction of PKR in the presence of isopropyl-beta-D-thiogalactoside (IPTG), the 68-kDA wt enzyme and eIF-2alpha are phosphorylated. These events lead to changes in the phosphorylation state of viral and cellular proteins. A distinct set of VV-induced phosphoproteins remained phophorylated, while the labeling of other viral proteins decreased markedly, probably as a result of a PKR-dependent translational block. Five proteins of unknown origin (68, 26, 20, 19, 15-16 kDA) appeared to be newly phosphorylated after PKR activation. Expression of the catalytically inactive K296R mutant form of PKR did not induce changes in the phosphorylation of VV proteins. Thus, by 2D-PAGE, we identified cellular and VV-induced phosphoproteins modified after PKR activation. Some or all of the phosphoproteins appearing or increasing in amount after PKR activation might not be direct targets of PKR, but rather indirect consequences of PKR activation.  相似文献   

17.
18.
Deregulated activity of the BCR-ABL tyrosine kinase encoded by the Bcr-Abl oncogene represents an important therapeutic target for all the chronic myelogenous leukemia (CML) phases. In this study, we sought to identify targeted PKR activation by Bcr-Abl AS RNA, an anti-sense RNA complementary to the unique mRNA fragments flanking the fusion point of Bcr-Abl, which can be used as an effective anti-leukemia strategy in K562 cells. Moreover, we observed expression of Bcr-Abl AS RNA in K562 cells which resulted in selective apoptosis induction through specific activation of PKR, leading to phosphorylation of eIF2α, global inhibition of protein synthesis, caspase-8 activation and BAX up-regulation. The targeted PKR activation and induced apoptosis were reversed by the PKR inhibitor 2-aminopurine. Taken together, our results indicate that targeted PKR activation led to selective apoptosis induction in K562 cells, which correlated with caspase-8 activity and enhanced expression of BAX.  相似文献   

19.
eIF2B is a heteropentameric guanine-nucleotide exchange factor essential for protein synthesis initiation in eukaryotes. Its activity is inhibited in response to starvation or stress by phosphorylation of the α subunit of its substrate, translation initiation factor eIF2, resulting in reduced rates of translation and cell growth. We have used an in vitro nucleotide-exchange assay to show that wild-type yeast eIF2B is inhibited by phosphorylated eIF2 [eIF2(αP)] and to characterize eIF2B regulatory mutations that render translation initiation insensitive to eIF2 phosphorylation in vivo. Unlike wild-type eIF2B, eIF2B complexes with mutated GCN3 or GCD7 subunits efficiently catalyzed GDP exchange using eIF2(αP) as a substrate. Using an affinity-binding assay, we show that an eIF2B subcomplex of the GCN3, GCD7, and GCD2 subunits binds to eIF2 and has a higher affinity for eIF2(αP), but it lacks nucleotide-exchange activity. In contrast, the GCD1 and GCD6 subunits form an eIF2B subcomplex that binds equally to eIF2 and eIF2(αP). Remarkably, this second subcomplex has higher nucleotide-exchange activity than wild-type eIF2B that is not inhibited by eIF2(αP). The identification of regulatory and catalytic eIF2B subcomplexes leads us to propose that binding of eIF2(αP) to the regulatory subcomplex prevents a productive interaction with the catalytic subcomplex, thereby inhibiting nucleotide exchange.  相似文献   

20.
Lytic replication of many viruses activates an innate host response designed to prevent the completion of the viral lifecycle, thus impeding the spread of the infection. One branch of the host's complex reaction functions to incapacitate the cellular translational machinery on which the synthesis of viral polypeptides completely depends. This is achieved through the activation of specific protein kinases that phosphorylate eIF2 on its alpha subunit and inactivate this critical translation initiation factor. However, as continued synthesis of viral proteins is required to assemble the viral progeny necessary to transmit the infection to neighboring cells, viruses have developed a variety of strategies to counter this cellular response. Genetic and biochemical studies with herpes simplex virus type 1 (HSV-1) have revealed that the virus produces at least two discrete products at different times during its replicative program that act to prevent the accumulation of phosphorylated eIF2alpha. The gamma(1)34.5 gene product is expressed first, encoding a regulatory subunit that binds the cellular protein phosphatase 1alpha and regenerates pools of active eIF2 by removing the inhibitory phosphate from the alpha subunit. The second function, encoded by the product of the Us11 gene, specifies a double-stranded RNA-binding protein that prevents activation of PKR, a cellular eIF2alpha kinase. Together, both proteins cooperate to overcome the antiviral response of the host and properly regulate translation in HSV-1-infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号