共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Juan Francisco Martín-Rodríguez PhD María Adilia Ruiz-Rodríguez MD Francisco J. Palomar MD PhD María Teresa Cáceres-Redondo MD Laura Vargas RN Paolo Porcacchia MD Mercedes Gómez-Crespo BA Ismael Huertas-Fernández MSc Fátima Carrillo MD PhD Marcos Madruga-Garrido MD Pablo Mir MD PhD 《Movement disorders》2015,30(3):431-435
3.
Hatice Kumru Sergiu Albu John Rothwell Daniel Leon Cecilia Flores Eloy Opisso Josep Maria Tormos Josep Valls-Sole 《Clinical neurophysiology》2017,128(10):2043-2047
Objective
Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS (‘magnetic-PAS’) on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle.Methods
Eleven healthy subjects underwent three 10 min stimulation sessions: 10 Hz rPMS alone, applied in trains of 5 stimuli every 10 s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1 Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2 ms and intracortical facilitation (ICF) at an ISI of 15 ms before and immediately after each intervention.Results
Magnetic-PAS, but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle.Conclusion
Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle.Significance
Application of magnetic-PAS might be relevant for motor rehabilitation. 相似文献4.
Ming‐Kuei Lu Barbara Bliem Patrick Jung Noritoshi Arai Chon‐Haw Tsai Ulf Ziemann 《Human brain mapping》2009,30(11):3645-3656
Paired associative transcranial magnetic stimulation (PAS) has been shown to induce long‐term potentiation (LTP)‐like or long‐term depression (LTD)‐like change in excitability of human primary motor cortex (M1), as probed by motor evoked potential (MEP) amplitude. In contrast, little is known about PAS effects on volitional motor cortical activity. In 10 healthy subjects, movement related cortical potentials (MRCP) were recorded to index volitional motor cortical activity during preparation of simple thumb abduction (prime mover: abductor pollicis brevis, APB) or wrist extension movements (prime mover: extensor carpi radialis, ECR). PASLTP increased, PASLTD decreased, and PAScontrol did not change MEPAPB, while MEPECR, not targeted by PAS, remained unchanged in all PAS conditions. PASLTP decreased MRCP negativity during the late Bereitschaftspotential (?500 to 0 ms before movement onset), only in the APB task, and predominantly over central scalp electrodes contralateral to the thumb movements. This effect correlated negatively with the PASLTP induced increase in MEPAPB. PASLTD and PAScontrol did not affect MRCP amplitude. Findings indicate a specific interference of PAS with preparatory volitional motor cortical activity, suggestive of a net result caused by increased M1 excitability and disrupted effective connectivity between premotor areas and M1. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
5.
Iezzi E Suppa A Conte A Li Voti P Bologna M Berardelli A 《The European journal of neuroscience》2011,33(10):1908-1915
Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short‐ and long‐term forms of synaptic plasticity, resembling short‐term potentiation (STP) and long‐term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5‐Hz rTMS interferes with LTP/LTD‐like plasticity induced by intermittent and continuous theta‐burst stimulation (iTBS and cTBS). The effects induced by 5‐Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5‐Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5‐Hz rTMS. Interactions between 5‐Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5‐Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5‐Hz rTMS and TBS, and delivering one and ten 5‐Hz rTMS trains. We also investigated whether 5‐Hz rTMS induces changes in intracortical excitability tested with paired‐pulse transcranial magnetic stimulation. When given alone, 5‐Hz rTMS induced short‐lasting and iTBS/cTBS induced long‐lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5‐Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS‐induced after‐effects disappeared. The 5‐Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5‐Hz rTMS abolishes iTBS/cTBS‐induced LTP/LTD‐like plasticity through non‐homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short‐term and long‐term rTMS‐induced plasticity in human M1. 相似文献
6.
Tegenthoff M Cornelius B Pleger B Malin JP Schwenkreis P 《Acta neurologica Scandinavica》2004,109(5):330-336
OBJECTIVES: Repetitive synchronized movements lead to short-term plastic changes in the primary motor cortex, which can be assessed by transcranial magnetic stimulation (TMS). Drugs which enhance such plastic changes could be of therapeutical interest, e.g. in patients with cerebral lesions. MATERIAL AND METHODS: We studied the effect of amphetamine on motor performance and plastic changes in the motor cortex as revealed by TMS mapping in healthy humans, who had to train a repetitive synchronized movement over 1 h. RESULTS: Cortical plastic changes observed after 1 h of training were more pronounced with amphetamine, whereas motor performance did not differ between training sessions with and without amphetamine. CONCLUSION: We conclude that amphetamine is able to enhance training-induced motor cortex plasticity. This effect could be due to its known influence on the GABAergic and glutamatergic system, but might also result from its role as an indirect catecholaminergic agonist. 相似文献
7.
Ippei Nojima Satoko Koganemaru Toshio Kawamata Hidenao Fukuyama Tatsuya Mima 《The European journal of neuroscience》2015,41(12):1614-1623
After watching sports, people often feel as if their sports skills might have been improved, even without any actual training. On some occasions, this motor skill learning through observation actually occurs. This phenomenon may be due to the fact that both action and action observation (AO) can activate shared cortical areas. However, the neural basis of performance gain through AO has not yet been fully clarified. In the present study, we used transcranial magnetic stimulation to investigate whether primary motor cortex (M1) plasticity is a physiological substrate of AO‐induced performance gain and whether AO itself is sufficient to change motor performance. The excitability of M1, especially that of its intracortical excitatory circuit, was enhanced after and during AO with kinesthetic illusion but not in interventions without this illusion. Moreover, behavioral improvement occurred only after AO with kinesthetic illusion, and a significant correlation existed between the performance gain and the degree of illusion. Our findings indicated that kinesthetic illusion is an essential component of the motor learning and M1 plasticity induced by AO, and this insight may be useful for the strategic rehabilitation of stroke patients. 相似文献
8.
Increasing motor cortex plasticity with spaced paired associative stimulation at different intervals in older adults 下载免费PDF全文
Simranjit K. Sidhu Maryam Pourmajidian George M. Opie John G. Semmler 《The European journal of neuroscience》2017,46(11):2674-2683
The ability of priming non‐invasive brain stimulation (NIBS) to modulate neuroplasticity induction (i.e. metaplasticity) within primary motor cortex (M1) may be altered in older adults. Previous studies in young subjects suggest that consecutive NIBS protocols interact in a time‐dependent manner and involve homoeostatic metaplasticity mechanisms. This was investigated in older adults by assessing the response to consecutive blocks of paired‐associative stimulation (PAS) separated by different inter‐PAS intervals (IPIs). Fifteen older (62–82 years) subjects participated in four sessions, with each session involving two PAS blocks separated by IPIs of 10 (IPI10) or 30 (IPI30) mins. For each IPI, the first (priming) PAS block was either PASLTP (N20 latency + 2 ms) or PASLTD (N20 latency ? 10 ms), while the second (test) PAS block was always PASLTP. Changes in M1 excitability were assessed by recording motor evoked potentials from a muscle of the right hand. For both IPIs, the response produced by PASLTD‐primed PASLTP was significantly greater than the response produced by PASLTP‐primed PASLTP. Furthermore, the effects of PASLTD priming on PASLTP were significantly greater for IPI30. These findings suggest that priming PAS can increase plasticity induction in older adults, and this occurs through mechanisms involving homoeostatic metaplasticity. They also demonstrate that the timing between priming and test NIBS is a crucial determinant of this effect, with a 30‐min interval being most effective. Providing a 30‐min delay between priming NIBS and motor training may improve the efficacy of NIBS in augmenting motor performance and learning in the elderly. 相似文献
9.
Nicolas Lang Hartwig R Siebner Diana Ernst Michael A Nitsche Walter Paulus Roger N Lemon John C Rothwell 《Neuropsychopharmacology》2004,56(9):634-639
BACKGROUND: Rapid-rate repetitive transcranial magnetic stimulation (rTMS) can produce a lasting increase in cortical excitability in healthy subjects or induce beneficial effects in patients with neuropsychiatric disorders; however, the conditioning effects of rTMS are often subtle and variable, limiting therapeutic applications. Here we show that magnitude and direction of after-effects induced by rapid-rate rTMS depend on the state of cortical excitability before stimulation and can be tuned by preconditioning with transcranial direct current stimulation (tDCS). METHODS: Ten healthy volunteers received a 20-sec train of 5-Hz rTMS given at an intensity of individual active motor threshold to the left primary motor hand area. This interventional protocol was preconditioned by 10 min of anodal, cathodal, or sham tDCS. We used single-pulse TMS to assess corticospinal excitability at rest before, between, and after the two interventions. RESULTS: The 5-Hz rTMS given after sham tDCS failed to produce any after-effect, whereas 5-Hz rTMS led to a marked shift in corticospinal excitability when given after effective tDCS. The direction of rTMS-induced plasticity critically depended on the polarity of tDCS conditioning. CONCLUSIONS: Preconditioning with tDCS enhances cortical plasticity induced by rapid-rate rTMS and can shape the direction of rTMS-induced after-effects. 相似文献
10.
Bergmann TO Mölle M Marshall L Kaya-Yildiz L Born J Roman Siebner H 《The European journal of neuroscience》2008,27(9):2241-2249
Paired associative stimulation (PAS) repeatedly pairs electrical nerve stimulation with transcranial magnetic stimulation of the contralateral motor hand area (M1(HAND)). Depending on the interstimulus interval, PAS can induce a long-term potentiation (LTP)-like facilitation or long-term depression (LTD)-like suppression of cortical excitability. In three experimental sessions, 12 awake men received PAS of the right median nerve and left M1(HAND) in the evening before sleep. To optimize the timing of paired stimulation in M1(HAND), the interstimulus interval of PAS was adjusted to the individual N20-latency of the somatosensory evoked potential to induce LTP-like effects (PAS(N20+2ms)), LTD-like effects (PAS(N20-5ms)), or no timing-dependent after-effects (PAS(control)). Motor-evoked potentials (MEPs) showed high interindividual variations in the conditioning effects of PAS(N20+2ms) and PAS(N20-5ms) on cortical excitability. However, PAS(control) allowed us to adjust for any unspecific stimulation effects and the MEP increase after PAS(N20+2ms) differed significantly from the MEP decrease after PAS(N20-5ms). PAS(N20+2ms) and PAS(N20-5ms) also had a differential effect on regional expression of slow waves and slow spindle activity during the first hour of subsequent non-rapid eye movement (NREM) sleep. At the electrode sites overlying the conditioned M1(HAND) and the adjacent premotor cortex, local expression of slow spindle activity was significantly correlated with interindividual differences in the efficacy of PAS(N20+2ms) and PAS(N20-5ms) to potentiate or suppress cortical excitability. This correlation indicates that PAS shapes the local regulation of slow sleep spindles during subsequent NREM sleep. 相似文献
11.
Maja Kojovic MD Antonio Caronni PhD Matteo Bologna MD John C. Rothwell PhD Kailash P. Bhatia MD Mark J. Edwards PhD 《Movement disorders》2011,26(7):1282-1289
Botulinum toxin injections ameliorate dystonic symptoms by blocking the neuromuscular junction and weakening dystonic contractions. We asked if botulinum toxin injections in dystonia patients might also affect the integrity of sensorimotor cortical plasticity, one of the key pathophysiological features of dystonia. We applied a paired associative stimulation protocol, known to induce long‐term potentiation–like changes in the primary motor cortex hand area to 12 patients with cervical dystonia before and 1 and 3 months after botulinum toxin injections to the neck muscles. Primary motor cortex excitability was probed by measuring transcranial magnetic stimulation‐evoked motor evoked potentials before and after paired associative stimulation. We also measured the input–output curve, short‐interval intracortical inhibition, intracortical facilitation, short afferent inhibition, and long afferent inhibition in hand muscles and the clinical severity of dystonia. Before botulinum toxin injections, paired associative stimulation significantly facilitated motor evoked potentials in hand muscles. One month after injections, this effect was abolished, with partial recovery after 3 months. There were significant positive correlations between the facilitation produced by paired associative stimulation and (1) the time elapsed since botulinum toxin injections and (2) the clinical dystonia score. One effect of botulinum toxin injection treatment is to modulate afferent input from the neck. We propose that subsequent reorganization of the motor cortex representation of hand muscles may explain the effect of botulinum toxin on motor cortical plasticity. © The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. 相似文献
12.
We used single‐pulse transcranial magnetic stimulation of the left primary hand motor cortex and motor evoked potentials of the contralateral right abductor pollicis brevis to probe motor cortex excitability during a standard mental rotation task. Based on previous findings we tested the following hypotheses. (i) Is the hand motor cortex activated more strongly during mental rotation than during reading aloud or reading silently? The latter tasks have been shown to increase motor cortex excitability substantially in recent studies. (ii) Is the recruitment of the motor cortex for mental rotation specific for the judgement of rotated but not for nonrotated Shepard & Metzler figures? Surprisingly, motor cortex activation was higher during mental rotation than during verbal tasks. Moreover, we found strong motor cortex excitability during the mental rotation task but significantly weaker excitability during judgements of nonrotated figures. Hence, this study shows that the primary hand motor area is generally involved in mental rotation processes. These findings are discussed in the context of current theories of mental rotation, and a likely mechanism for the global excitability increase in the primary motor cortex during mental rotation is proposed. 相似文献
13.
Daniele Belvisi Panagiotis Kassavetis Matteo Bologna Mark J. Edwards Alfredo Berardelli John C. Rothwell 《The European journal of neuroscience》2014,40(12):3704-3710
Surround inhibition is a physiological mechanism that is hypothesised to improve contrast between signals in the central nervous system. In the human motor system, motor surround inhibition (mSI) can be assessed using transcranial magnetic stimulation (TMS). We evaluated whether it is possible to modulate mSI, using a paradigm able to induce plastic effects in primary motor cortex (M1). Fifteen healthy volunteers participated in the experiments. To assess mSI, we delivered single pulses at rest and at the onset of a right thumb abduction. TMS pulses over abductor digiti minimi (ADM; surround muscle) hotspot were delivered when EMG activity in right abductor pollicis brevis (APB; active muscle) > 100 μV was detected. Paired associative stimulation (PAS) was delivered using peripheral median nerve electric stimulation and TMS over APB M1 area at an interstimulus interval of 21.5 ms for the real PAS (PAS21.5) and 100 ms for the sham PAS (PAS100). To verify the effect of PAS21.5 on mSI we collected 20 MEPs from ADM at rest and during APB movements before (T0) and 5 (T1), 15 (T2) and 30 (T3) minutes after PAS21.5. mSI from APB to ADM was present at baseline. PAS21.5 increased the amount of mSI compared with baseline whereas there was no effect after PAS100. Our results suggest that mSI is an adaptable phenomenon depending on prior experience. 相似文献
14.
Masashi Hamada Ritsuko Hanajima Yasuo Terao Noritoshi Arai Toshiaki Furubayashi Satomi Inomata-Terada Akihiro Yugeta Hideyuki Matsumoto Yuichiro Shirota Yoshikazu Ugawa 《Clinical neurophysiology》2007,118(12):2672-2682
OBJECTIVE: Repetitive paired-pulse transcranial magnetic stimulation (TMS) at I-wave periodicity has been shown to induce a motor-evoked potential (MEP) facilitation. We hypothesized that a greater enhancement of motor cortical excitability is provoked by increasing the number of pulses per train beyond those by paired-pulse stimulation (PPS). METHODS: We explored motor cortical excitability changes induced by repetitive application of trains of four monophasic magnetic pulses (quadro-pulse stimulation: QPS) at 1.5-ms intervals, repeated every 5s over the motor cortex projecting to the hand muscles. The aftereffects of QPS were evaluated with MEPs to a single-pulse TMS, motor threshold (MT), and responses to brain-stem stimulation. These effects were compared to those after PPS. To evaluate the QPS safety, we also studied the spread of excitation and after discharge using surface electromyograms (EMGs) of hand and arm muscles. RESULTS: Sizes of MEPs from the hand muscle were enhanced for longer than 75min after QPS; they reverted to the baseline at 90min. Responses to brain-stem stimulation from the hand muscle and cortical MEPs from the forearm muscle were unchanged after QPS over the hand motor area. MT was unaffected by QPS. No spreads of excitation were detected after QPS. The appearance rate of after discharges during QPS was not different from that during sham stimulation. CONCLUSIONS: Results show that QPS can safely induce long-lasting, topographically specific enhancement of motor cortical excitability. SIGNIFICANCE: QPS is more effective than PPS for inducing motor cortical plasticity. 相似文献
15.
16.
Mechanisms underlying human motor system plasticity 总被引:6,自引:0,他引:6
There has been increased interest in the ability of the adult human nervous system to reorganize and adapt to environmental changes throughout life. This ability has been termed "plasticity." Plastic changes in the cerebral cortex have been studied: (a) as modifications of sensory or motor cortical representation of specific body parts (cortical maps, body representation level); and (b) as changes in the efficacy of existing synapses or generation of new synapses (neuronal or synaptic level). In this review, we describe paradigms used to study mechanisms of plasticity in the intact human motor system, the functional relevance of such plasticity, and possible ways to modulate it. 相似文献
17.
Facchini S Muellbacher W Battaglia F Boroojerdi B Hallett M 《Acta neurologica Scandinavica》2002,105(3):146-151
OBJECTIVES: In order to learn more about the physiology of the motor cortex during motor imagery, we evaluated the changes in excitability of two different hand muscle representations in the primary motor cortex (M1) of both hemispheres during two imagery conditions. MATERIALS AND METHODS: We applied focal transcranial magnetic stimulation (TMS) over each M1, recording motor evoked potentials (MEPs) from the contralateral abductor pollicis brevis (APB) and first dorsal interosseus (FDI) muscles during rest, imagery of contralateral thumb abduction (C-APB), and imagery of ipsilateral thumb abduction (I-APB). We obtained measures of motor threshold (MT), MEP recruitment curve (MEP-rc) and F waves. RESULTS: Motor imagery compared with rest significantly decreased the MT and increased MEPs amplitude at stimulation intensities clearly above MT in condition C-APB, but not in condition I-APB. These effects were not significantly different between right and left hemisphere. MEPs simultaneously recorded from the FDI, which was not involved in the task, did not show facilitatory effects. There were no significant changes in F wave amplitude during motor imagery compared with rest. CONCLUSIONS: Imagery of unilateral simple movements is associated with increased excitability only of a highly specific representation in the contralateral M1 and does not differ between hemispheres. 相似文献
18.
《Clinical neurophysiology》2020,131(10):2402-2409
ObjectiveSub-motor threshold 5 Hz repetitive paired associative stimulation (5 Hz-rPAS25ms) produces a long-lasting increase in corticospinal excitability. Assuming a spike-timing dependent plasticity-like (STDP-like) mechanism, we hypothesized that 5 Hz-rPAS at a shorter inter-stimulus interval (ISI) of 15 ms (5 Hz-rPAS15ms) would exert a lasting inhibitory effect on corticospinal excitability.Methods20 healthy volunteers received two minutes of 5 Hz-rPAS15ms. Transcranial magnetic stimulation (TMS) was applied over the motor hotspot of the right abductor pollicis brevis muscle at 90% active motor threshold. Sub-motor threshold peripheral electrical stimulation was given to the left median nerve 15 ms before each TMS pulse. We assessed changes in mean amplitude of the unconditioned motor evoked potential (MEP), short-latency intracortical inhibition (SICI), intracortical facilitation (ICF), short-latency afferent inhibition (SAI), long-latency afferent inhibition (LAI), and cortical silent period (CSP) before and for 60 minutes after 5-Hz rPAS15ms.ResultsSubthreshold 5-Hz rPAS15ms produced a 20–40% decrease in mean MEP amplitude along with an attenuation in SAI, lasting at least 60 minutes. A follow-up experiment revealed that MEP facilitation was spatially restricted to the target muscle.ConclusionsSubthreshold 5-Hz rPAS15ms effectively suppresses corticospinal excitability. Together with the facilitatory effects of subthreshold 5-Hz rPAS25ms (Quartarone et al., J Physiol 2006;575:657–670), the results show that sub-motor threshold 5-Hz rPAS induces STDP-like bidirectional plasticity in the motor cortex.SignificanceThe results of the present study provide a new short-time paradigm of long term depression (LTD) induction in human sensory-motor cortex. 相似文献
19.
Zhen Ni Robin F.H. Cash Carolyn Gunraj Eduard Bercovici Mark Hallett Robert Chen 《Brain stimulation》2019,12(1):84-86
Background
Paired associative stimulation (PAS), with stimulus interval of 21.5 or 25?ms, using transcranial magnetic stimulation in the posterior-anterior (PA) current direction, produces a long-term-potentiation-like effect. Stimulation with PA directed current generates both early and late indirect (I)-waves while that in anterior-posterior (AP) current predominantly elicits late I-waves. Short interval intracortical inhibition (SICI) inhibits late I-waves but not early I-waves.Objective
To investigate how cortical inhibition modulates the effects of PAS.Methods
PAS at stimulus interval of 21.5?ms conditioned by SICI (SICI-PAS) was compared to PAS alone with both PA and AP directed currents.Results
PAS with both current directions increased cortical excitability. SICI-PAS increased cortical excitability in the PA but not the AP current direction.Conclusions
Both early and late I-waves circuits can mediate cortical PAS plasticity under different conditions. Plasticity induction with the late but not the early I-wave circuits is blocked by SICI. 相似文献20.
《Brain stimulation》2018,11(6):1314-1321
BackgroundPaired associative stimulation (PAS) induces long-term potentiation (LTP)-like effects when interstimulus intervals (ISIs) between electrical peripheral nerve stimulation and transcranial magnetic stimulation (TMS) to M1 are approximately 21–25 ms (PASLTP). It was previously reported that two forms of motor learning (i.e., mode-free and model-based learning) can be differentially modulated by PASLTP depending on the different synaptic inputs to corticospinal neurons (CSNs), which relate to posterior-to-anterior (PA) or anterior-to-posterior (AP) currents induced by TMS (PA or AP inputs, respectively). However, the effects of long-term depression (LTD)-inducing PAS with an ISI of approximately 10 ms (PASLTD) on motor learning and its dependency on current direction have not yet been tested.ObjectiveTo investigate whether, and how, PASLTD affects distinct types of motor learning.MethodsEighteen healthy volunteers participated. We adopted the standard PAS using suprathreshold TMS with the target muscle relaxed, as well as subthreshold PAS during voluntary contraction, which was suggested to selectively recruit PA or AP inputs depending on the orientation of the TMS coil. We examined the effects of suprathreshold and subthreshold PASLTD on the performance of model-free and model-based learning, as well as the corticospinal excitability, indexed as the amplitudes of motor evoked potentials (MEPs).ResultsPASLTD inhibited model-free learning and MEPs only when subthreshold AP currents were applied. The PASLTD protocols tested here showed no effects on model-based learning.ConclusionsPASLTD affected model-free learning, presumably by modulating CSN excitability changes, rather than PA inputs, which are thought to be related to model-free learning. 相似文献