首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the role of the dorsomedial prefrontal cortex (dmPFC) on the activity of the hypothalamus-pituitary-adrenal axis and memory consolidation in young and aged rats. The messenger RNA (mRNA) expression of several gamma-aminobutyric acid (GABA) and glutamate receptor subunits were also evaluated in the prefrontal cortex (PFC) of young and aged rats. Microinjections of picrotoxin (GABA(A) antagonist), muscimol (GABA(A) agonist), or vehicle were performed into the dmPFC of young adult (3 months) and aged (27 months) male Wistar rats. Plasma corticosterone was measured under acute stress (30-minute restraint) conditions following microinjections. The retention of an inhibitory avoidance response was also evaluated in response of the same treatments. Picrotoxin microinjections into the dmPFC reduced the stress-induced corticosterone concentrations on young but not on aged animals. Aging did not modify the mRNA content of any of the receptor subunits analyzed. Picrotoxin into the dmPFC reduced inhibitory avoidance response in young but not aged animals. Muscimol treatment did not modify any of the parameters evaluated. These results suggest that prefrontal cortex loses its capacity to control hypothalamo-pituitary-adrenal (HPA) axis activity and the consolidation of emotional memory during aging.  相似文献   

2.
Summary Animals with sham-operations or medial prefrontal cortex lesions were trained in a task which required memory for short or long lists of items (spatial locations). On any one trial a rat is presented with 2, 4, 6, 8 or 10 items (spatial locations) on a 12-arm radial maze followed 15 min later by a win-shift test comprising a choice between a place previously visited and a novel place. Sham-operated animals showed an increase in errors as a function of set size (2 to 8 items) followed by a decrease in errors with a set size of 10 items suggesting the use of both retrospective and prospective memory codes. In contrast, animals with medial prefrontal cortex lesions made most of their errors for the longest list length reflecting an inability to shift from a retrospective to prospective memory code. The results are interpreted as support for a medial prefrontal cortex role in mediating a prospective code perhaps via knowlege systems based on temporal information.  相似文献   

3.
Research on the effect of acute stress and high levels of glucocorticoids on memory has largely focused on memory tasks involving the medial temporal lobe (e.g., declarative memory). Less is known, however, about the effects of stress and glucocorticoids on more strategic memory processes regulated by the prefrontal cortex (e.g., source monitoring). In the current study, the authors investigated whether exposure to acute psychosocial stress would result in altered source monitoring performance relative to the performance of a nonstressed control group. To this end, the authors assigned nonsmoking, healthy, young men to either a stress (n = 22) or a control (n = 18) condition, after which the men were given an internal source monitoring test. Results show that relative to control participants, stressed participants made fewer source monitoring errors. This study suggests that stress may have differential effects on memory, depending on whether the memory test is regulated by the prefrontal cortex or the medial temporal lobe.  相似文献   

4.
The current study was designed to further clarify the influence of brain morphology, sleep oscillatory activity and age on memory consolidation. Specifically, we hypothesized, that a smaller volume of hippocampus, parahippocampal and medial prefrontal cortex negatively impacts declarative, but not procedural, memory consolidation. Explorative analyses were conducted to demonstrate whether a decrease in slow‐wave activity negatively impacts declarative memory consolidation, and whether these factors mediate age effects on memory consolidation. Thirty‐eight healthy participants underwent an acquisition session in the evening and a retrieval session in the morning after night‐time sleep with polysomnographic monitoring. Declarative memory was assessed with the paired‐associate word list task, while procedural memory was tested using the mirror‐tracing task. All participants underwent high‐resolution magnetic resonance imaging. Participants with smaller hippocampal, parahippocampal and medial prefrontal cortex volumes displayed a reduced overnight declarative, but not procedural memory consolidation. Mediation analyses showed significant age effects on overnight declarative memory consolidation, but no significant mediation effects of brain morphology on this association. Further mediation analyses showed that the effects of age and brain morphology on overnight declarative memory consolidation were not mediated by polysomnographic variables or sleep electroencephalogram spectral power variables. Thus, the results suggest that the association between age, specific brain area volume and overnight memory consolidation is highly relevant, but does not necessarily depend on slow‐wave sleep as previously conceptualized.  相似文献   

5.
In vivo voltammetry was used to study the effects of basolateral amygdala dopamine depletion on stress-induced dopamine release in the nucleus accumbens and medial prefrontal cortex. Male Long-Evans rats received bilateral microinjections of 6-hydroxydopamine or vehicle into the basolateral amygdala. Changes in dopamine signal were monitored in the nucleus accumbens and in the right and left hemispheres of medial prefrontal cortex, in lesioned animals and shams. Animals were subjected to a physical stressor (tail pinch) and a species-typical threat (fox odour); each stressor was presented twice over four consecutive daily sessions. The results indicate that the nucleus accumbens dopamine responses to both stressors are significantly potentiated by dopamine-depleting lesions to basolateral amygdala. In contrast, while the dopamine stress response in the left medial prefrontal cortex did not differ between lesioned animals and shams, the right medial prefrontal cortical dopamine response to tail pinch, but not fox odour stress, was significantly attenuated in lesioned animals. Therefore, basolateral amygdala dopamine depletion had opposite effects on the nucleus accumbens and medial prefrontal cortical dopamine responses to stress, although the effect on the latter is lateralized to the right hemisphere in a stressor-specific manner. These data indicate that stress-induced activation of meso-amygdaloid dopamine exerts an inhibitory influence on the nucleus accumbens dopamine response to stress. They also suggest the possibility that meso-amygdaloid dopamine influences the nucleus accumbens dopamine response to stress indirectly by modulating stress-induced dopamine release in medial prefrontal cortex. These findings add to a growing body of evidence of a preferential involvement of right medial prefrontal cortical dopamine in a wide range of physiological responses to stress.  相似文献   

6.
Early life stress is a prominent risk factor for the development of adult psychopathology. Numerous studies have shown that early life stress leads to persistent changes in behavioral and endocrine responses to stress. However, despite recent findings of gene expression changes and structural abnormalities in neurons of the forebrain neocortex, little is known about specific cognitive deficits that can result from early life stress. Here we examined five cognitive functions in two inbred strains of mice, the stress-resilient strain C57Bl/6 and the stress-susceptible strain Balb/c, which were exposed to an infant maternal separation paradigm and raised to adulthood. Between postnatal ages P60 to P90, mice underwent a series of tests examining five cognitive functions: Recognition memory, spatial working memory, associative learning, shifts of attentional sets, and reversal learning. None of these functions were impaired in IMS C57Bl/6 mice. In contrast, IMS Balb/c mice exhibited deficits in spatial working memory and extradimensional shifts of attention, that is, functions governed primarily by the medial prefrontal cortex. Thus, like recently discovered changes in frontocortical gene expression, the emergence of specific cognitive deficits associated with the medial prefrontal cortex is also strain-specific. These findings illustrate that early life stress can indeed affect specific cognitive functions in adulthood, and they support the hypothesis that the genetic background and environmental factors are critical determinants in the development of adult cognitive deficits in subjects with a history of early life stress.  相似文献   

7.
Extracellular levels of dopamine are increased in response to systemic administration of cocaine in several brain areas including the nucleus accumbens and medial prefrontal cortex. While the cocaine-induced increase in extracellular dopamine levels in the nucleus accumbens is augmented after repeated daily cocaine, the response of extracellular dopamine levels in the medial prefrontal cortex is attenuated. Since dopamine in the medial prefrontal cortex has an inhibitory effect on nucleus accumbens dopamine levels and locomotor activity, the role of medial prefrontal cortex dopamine tolerance in the expression of sensitized locomotor behavior was further examined by injection of D-amphetamine sulfate into the prelimbic portion of the medial prefrontal cortex just prior to cocaine challenge in cocaine-sensitized rats. Male Sprague-Dawley rats were non-handled (naive) or injected with either saline (1 ml/kg, i.p.) or cocaine (15 mg/kg, i.p.) for five consecutive days. After a seven to 12 day withdrawal period, rats were microinjected with either saline or various doses of amphetamine into primarily the prelimbic region of the medial prefrontal cortex followed by systemic injection of saline or cocaine. In naive rats, intramedial prefrontal cortex amphetamine produced a trend toward decreased locomotor responding to cocaine challenge while no effect of amphetamine was evident in daily saline pretreated rats. Daily cocaine pretreated rats that received saline in the medial prefrontal cortex demonstrated a sensitized locomotor response compared to their daily saline pretreated counterparts. This sensitization was blocked by a low dose of amphetamine (0.175 microg/side) in the medial prefrontal cortex, an effect which disappeared in animals administered higher amphetamine doses. The results suggest that in rats sensitized to cocaine, decreased medial prefrontal cortex dopamine levels in response to cocaine challenge may contribute to behavioral sensitization. Furthermore, the data indicate the possibility that there is an optimal range at which medial prefrontal cortex amphetamine exerts maximal behavioral inhibition. These findings implicate a role for decreased cortical control in producing sensitized behavioral responding to cocaine.  相似文献   

8.
Fluoride is a chemical compound known to bring about fluorosis. It is thought to disrupt the central nervous system because of its ability to induce excitotoxicity and oxidative stress. Any damage of pyramidal cells in the prefrontal cortex would result in cognitive function and working memory regulation disorders. The present study aimed at investigating the effects of sodium fluoride (NaF) on the working memory and estimated total number of medial prefrontal cortex pyramidal cells of adult male rats. Thirty-two male Wistar rats were assigned into four groups, namely control and three treated groups receiving 5, 10 and 20 mg/kg BW, respectively, of oral NaF solution for 30 days. The working memory test was carried out using a Y-maze. The number of pyramidal cells in the medial prefrontal cortex was estimated using an unbiased stereological method. There was no significant difference among groups in the working memory and number of pyramidal neurons in the medial prefrontal cortex cells.  相似文献   

9.
Williams GV  Castner SA 《Neuroscience》2006,139(1):263-276
It has been postulated that spatial working memory operates optimally within a limited range of dopamine transmission and D1 dopamine receptor signaling in prefrontal cortex. Insufficiency in prefrontal dopamine, as in aging, and excessive transmission, as in acute stress, lead to impairments in working memory that can be ameliorated by D1 receptor agonist and antagonist treatment, respectively. Iontophoretic investigations of dopamine's influence on the cellular mechanisms of working memory have revealed that moderate D1 blockade can enhance memory fields in primate prefrontal pyramidal neurons while strong blockade abolishes them. The combined behavioral and physiological evidence indicates that there is a normal range of dopamine function in prefrontal cortex that can be described as an "inverted-U" relationship between dopamine transmission and the integrity of working memory. Both in vivo and in vitro studies have demonstrated a role for dopamine in promoting the excitability of prefrontal pyramidal cells and facilitating their N-methyl-d-aspartate inputs, while simultaneously restraining recurrent excitation and facilitating feedforward inhibition. This evidence indicates that there is a fine balance between the synergistic mechanisms of D1 modulation in working memory. Given the critical role of prefrontal function for cognition, it is not surprising that this balancing act is perturbed by both subtle genetic influences and environmental events. Further, there is evidence for an imbalance in these dopaminergic mechanisms in multiple neuropsychiatric disorders, particularly schizophrenia, and in related nonhuman primate models. Elucidating the orchestration of dopamine signaling in key nodes within prefrontal microcircuitry is therefore pivotal for understanding the influence of dopamine transmission on the dynamics of working memory. Here, we explore the hypothesis that the window of optimal dopamine signaling changes on a behavioral time-scale, dependent upon current cognitive demands and local neuronal activity as well as long-term alterations in signaling pathways and gene expression. If we look under the bell-shaped curve of prefrontal dopamine function, it is the relationship between neuromodulation and cognitive function that promises to bridge our knowledge between molecule and mind.  相似文献   

10.
Exercise could play a beneficial role in stress, but its underlying mechanism especially about heat shock protein 70 (HSP70) and inducible nitric oxide synthase (iNOS) in brain has not been fully clarified. Moreover, few studies have investigated swimming exercise and its effects on the combined stress of both chronic and acute stress. In this study we tried to investigate the role of swimming exercise in combined stress and whether its biological mechanism was related to the HSP70 and iNOS in hippocampus and prefrontal cortex. 32 Wistar rats were enrolled and divided into four groups: control, CUMS, labetalol and exercise. After the animal model of chronic unpredicted mild stress (CUMS) was built in the latter three groups, all the rats were given the novel acute stress of inescapable footshock. The behavioral changes were measured by open field test. Radioimmunoassay (RIA) was adopted to test the change of serum corticosterone (CORT). The expression of HSP70 and iNOS in hippocampus and prefrontal cortex was analyzed by Western blot. The results demonstrated that swimming exercise could not only improve the behavior changes and protect the function of HPA axis stable in CUMS animals exposed to novel acute stress, but also increase the HSP70 expression and decrease the iNOS expression in hippocampus and prefrontal cortex. In conclusion, swimming exercise could play a beneficial role in combined stress by up-regulating HSP70 level and down-regulating iNOS level in brain.  相似文献   

11.
The medial prefrontal cortex (mPFC) is a brain area crucial for memory, attention, and decision making. Specifically, the noradrenergic system in this cortex is involved in aversive learning, as well as in the retrieval of these memories. Some evidence suggests that this area has an important role during taste memory, particularly during conditioned taste aversion (CTA), a model of aversive memory. Despite some previous evidence, there is scarce information about the role of adrenergic receptors in the mPFC during formation of aversive taste memory and appetitive/incidental taste memory. The goal of this research was to evaluate the role of mPFC β-adrenergic receptors during CTA acquisition/consolidation or CTA retrieval, as well as during incidental taste memory formation using the model of latent inhibition of CTA. The results showed that infusions in the mPFC of the β-adrenergic antagonist propranolol before CTA acquisition impaired both short- and long-term aversive taste memory formation, and also that propranolol infusions before the memory test impaired CTA retrieval. However, propranolol infusions before pre-exposure to the taste during the latent inhibition procedure had no effect on incidental taste memory acquisition or consolidation. These data indicate that β-adrenergic receptors in the mPFC have different functions during taste memory formation: they have an important role during aversive taste association as well as during aversive retrieval but not during incidental taste memory formation.  相似文献   

12.
Experimental studies in various animal models have revealed convincing evidence that stressful experience during early developmental periods produces a variety of behavioral, neuroanatomical and endocrine alterations, which are reminiscent of human mental disorders such as depression and various types of anxiety disorders. Since these mental disorders are assumed to be associated with altered GABAergic inhibition in cortical and subcortical brain regions, the current study tested the hypothesis that early postnatal adverse emotional experience (separation stress) interferes with the establishment and functional maturation of distinct inhibitory interneuron populations in different subregions of the medial prefrontal cortex (mPFC) of the precocious rodent degu (Octodon degus). At the age around puberty early stressed animals displayed significantly lower densities of calbindin-D28k-immunoreactive interneurons in the anterior cingulate (down to 79%) and in the precentral medial (down to 64%) subregions of the mPFC compared with age-matched unstressed controls. At this age the densities of two other interneuron types characterized by their expression of the calcium-binding proteins parvalbumin or calretinin remained at control levels. In adulthood, i.e. after an extended period without stress exposure, the density of calbindin-D28k-immunoreactive interneurons in the stressed animals was back to control numbers, whereas parvalbumin-immunoreactive interneurons displayed significantly elevated density in the anterior cingulate (up to 138%) and in the precentral medial cortex (up to 137%) of the stressed animals. In both age groups the density of calretinin- and corticotropin releasing hormone-immunoreactive interneurons did not differ between stressed and control animals, and the prelimbic and infralimbic subregions of the medial prefrontal cortex remained unaffected by stress experience. These results confirm that early adverse emotional experience induces long lasting age-, region- and neuron-specific imbalance of inhibitory systems in some, but not all subregions of the medial prefrontal cortex of the degu.  相似文献   

13.
Activity-regulated cytoskeleton associated protein (Arc) is known to be induced by synaptic plasticity following memory consolidation. Since estrogen has been shown to play an important role in synaptogenesis, a key aspect of the synaptic plasticity, we aimed to study the effects of estrogen on Arc expression in SH-SY5Y human neuroblastoma cells. Using quantitative real-time PCR, Western blot, and confocal immunocytochemistry techniques we found that estrogen markedly increased Arc mRNA and protein expression in SH-SY5Y cells. Estrogen-activated Arc expression was mediated via mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI-3K), but not protein kinase C (PKC) and Rho-associated kinase (ROCK), and in the estrogen receptor (ER)-dependent manner. Estrogen also significantly upregulated the dendritic spine scaffolding protein, postsynaptic density-95 (PSD-95), as well as expression of the presynaptic vesicle protein, synaptophysin. Our findings demonstrate the possible mechanisms of estrogen-induced synaptic plasticity, as well as memory consolidation.  相似文献   

14.
The medial prefrontal cortex modulates the nucleus accumbens dopamine response to stress and has been implicated in feedback regulation of hypothalamic-pituitary-adrenal axis activation by stress. Here we report on the effects of bilateral neonatal (postnatal day 7) ibotenate-induced lesions to the medial prefrontal cortex on nucleus accumbens dopamine and neuroendocrine function in adult rats. Voltammetry was used to monitor the dopamine response to each of five, once-daily exposures to tail-pinch stress whereas alterations in neuroendocrine function were determined from the plasma corticosterone response to a single 20-min episode of restraint stress. Potential lesion-induced deficits in sensory-motor gating were assessed by measuring prepulse inhibition of the acoustic startle response before and after repeated stress. Our data show that each daily stress episode elicited larger and longer-lasting dopamine increases in prefrontal cortex-lesioned animals than in sham-lesioned controls. Furthermore, greater stress-induced elevations in plasma corticosterone were seen in lesioned animals than in their sham-lesioned counterparts. However, while repeated stress potentiated startle responses in animals of both groups, there was no effect of lesion on the amplitude or on prepulse inhibition of the startle response.Together, these findings indicate that neonatal prefrontal cortex damage can lead to changes in mesolimbic dopamine and neuroendocrine function during adulthood. They also add to a growing body of experimental and clinical evidence implicating abnormal prefrontal cortex neuronal development in the pathophysiology of schizophrenia and other disorders linked to central dopamine dysfunction.  相似文献   

15.
Helm KA  Han JS  Gallagher M 《Neuroscience》2002,115(3):765-774
Principal neurons in the hippocampus and prefrontal cortex of the rat have been identified as targets for glucocorticoids involved in the hypothalamic-pituitary-adrenocortical stress response. Alterations in mRNA expression for glucocorticoid receptors in each of these regions have been shown to affect the negative feedback response to corticosterone following an acute stressor. Both decreases in forebrain glucocorticoid receptors and in the efficiency of adrenocortical feedback have been observed in normal aging, and have been selectively induced with experimental lesions or manipulations in neurotransmitter systems. The current study investigated the possibility that a loss of cholinergic support from cells in the basal forebrain, a hallmark of aging, contributes to the selective age-related loss of glucocorticoid receptor mRNA expression at cholinoceptive target sites that include the hippocampus and medial prefrontal cortex. Lesions of the basal forebrain cholinergic system in young adult rats were made by microinjections of the immunotoxin 192 IgG-saporin into the medial septum/vertical limb of the diagonal band and substantia innominata/nucleus basalis. Basal levels of circulating glucocorticoids were unaffected by the lesions. Analysis of both mineralocorticoid and glucocorticoid receptor mRNA expression revealed a significant decrease in glucocorticoid receptor mRNA in the hippocampus and medial prefrontal cortex, with spared expression at subcortical sites and no detectable change in mineralocorticoid receptor mRNA in any of the examined regions. Thus, rats with lesions of the basal forebrain cholinergic system recapitulate some of the detrimental effects of aging associated with glucocorticoid-mediated stress pathways in the brain.  相似文献   

16.
In this study, we examined the effect of the s.c. administration of (+/-) 3,4-methylenedioxymethamphetamine (MDMA) or saline on locomotor activity and Fos expression following the bilateral destruction of hippocampal dentate granule cells by colchicine in rats. The lesioned animals, when administered s.c. saline, showed a significantly greater increase in locomotor activity compared to the intact animals, and revealed a marginally significant level of increased locomotor activity compared to the sham-lesioned animals. In addition, when the lesioned animals were given s.c. saline or MDMA, there was a significant increase in Fos expression in the nucleus accumbens core, but not in the medial prefrontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex, piriform cortex, dorsal striatum, or nucleus accumbens shell, compared to the intact and sham-lesioned animals. Overall, these results suggest that the nucleus accumbens core may be involved in the enhancement of locomotor activity induced by the injection of saline alone (stress loading) or MDMA following bilateral destruction of hippocampal dentate granule cells by colchicine.  相似文献   

17.
Fear extinction is the decrease in conditioned fear responses that normally occurs when a conditioned stimulus (CS) is repeatedly presented in the absence of the aversive unconditioned stimulus (US). Extinction does not erase the initial CS-US association, but is thought to form a new memory. After extinction training, extinction memory competes with conditioning memory for control of fear expression. Deficits in fear extinction are thought to contribute to post-traumatic stress disorder (PTSD). Herein, we review studies performed in rats showing that the medial prefrontal cortex plays a critical role in the retention and expression of extinction memory. We also review human studies indicating that prefrontal areas homologous to those critical for extinction in rats are structurally and functionally deficient in patients with PTSD. We then discuss how findings from rat studies may allow us to: (1) develop new fear extinction paradigms in humans, (2) make specific predictions as to the location of extinction-related areas in humans, and (3) improve current extinction-based behavioral therapies for anxiety disorders.  相似文献   

18.
Ghashghaei HT  Barbas H 《Neuroscience》2001,103(3):593-614
The prefrontal cortex in rhesus monkeys is a heterogeneous region by structure, connections and function. Caudal medial and orbitofrontal cortices receive input from cortical and subcortical structures associated with emotions, autonomic function and long-term memory, while lateral prefrontal cortices are linked with structures associated with working memory. With the aid of neural tracers we investigated whether functionally distinct orbitofrontal, medial and lateral prefrontal cortices have specific or common connections with an ascending modulatory system, the basal forebrain. Ascending projections originated in the diagonal band and the basalis nuclei of the basal forebrain in regions demarcated by choline acetyltransferase. Although the origin of projections from the basal forebrain to lateral, medial and orbitofrontal cortices partially overlapped, projections showed a general topography. The posterior part of the nucleus basalis projected preferentially to lateral prefrontal areas while its rostrally adjacent sectors projected to medial and orbitofrontal cortices. The diagonal band nuclei projected to orbitofrontal and medial prefrontal areas. Cortical and subcortical structures that are interconnected appear to have a similar pattern of connections with the basal forebrain. In comparison to the ascending projections, the descending projections were specific, originating mostly in the posterior (limbic) component of medial and orbitofrontal cortices and terminating in the diagonal band nuclei and in the anterior part of the nucleus basalis. In addition, prefrontal limbic areas projected to two other systems of the basal forebrain, the ventral pallidum and the extended amygdala, delineated with the striatal-related markers dopamine, adenosine 3':5'-monophosphate regulated phosphoprotein of M(r) 32kDa, and the related phosphoprotein Inhibitor-1. These basal forebrain systems project to autonomic nuclei in the hypothalamus and brainstem.We interpret these results to indicate that lateral prefrontal areas, which have a role in working memory, receive input from, but do not issue feedback projections to the basal forebrain. In contrast, orbitofrontal and medial prefrontal areas, which have a role in emotions and long-term memory, have robust bidirectional connections with the basal forebrain. Moreover, orbitofrontal and medial prefrontal cortices target the ventral pallidum and the extended amygdala, through which high-order association areas may activate motor autonomic structures for the expression of emotions.  相似文献   

19.
Hypofunction of prefrontal cortical regions, such as dorsolateral and orbital regions, has been suggested to contribute to the symptomatology of schizophrenia. In the rat, the medial and the lateral prefrontal cortices are considered as homologs of the primate dorsolateral and orbital prefrontal cortices, respectively. The present study investigated in rats the effects of lesions of the medial and lateral prefrontal cortices on latent inhibition, prepulse inhibition and amphetamine-induced activity. These paradigms are known to be modulated by the mesolimbic dopaminergic system, a system that has been suggested to be involved in the symptomatology of schizophrenia. Latent inhibition and prepulse inhibition are disrupted in schizophrenic patients as well as in rats treated with amphetamine. Amphetamine-induced activity was tested under dim light (low stress) and bright light (high stress) because stressful situations selectively increase mesocortical dopamine activity. Lateral prefrontal cortex lesioned animals did not differ in their behavior from control animals in any of the paradigms used in this study. Medial prefrontal cortex lesions did not affect latent inhibition but increased prepulse inhibition. In the amphetamine-induced activity experiment, prior to drug administration, open field locomotion was reduced under bright illumination for all lesion groups. After amphetamine administration, medial prefrontal cortex lesions attenuated the hyperlocomotor effect of the drug under the dim light condition and potentiated it under the bright light condition.The results indicate that medial and lateral prefrontal cortex can be functionally differentiated by their involvement in the modulation of behavior requiring mesocorticolimbic dopamine activation. The results in amphetamine induced activity suggest that the behavioral outcomes associated with medial prefrontal cortex depend on the background (stress) against which the evaluation is made. The results also support the notion that prepulse inhibition may be a better model than latent inhibition of the symptoms of schizophrenia associated with dysfunctional prefrontal activity.  相似文献   

20.
Sanchez CJ  Bailie TM  Wu WR  Li N  Sorg BA 《Neuroscience》2003,119(2):497-505
These studies examined the ability of the dopamine D1-like agonist SKF 81297 and D1-like antagonist SCH 23390 in the medial prefrontal cortex to alter the reinstatement of cocaine-induced conditioned place preference behavior. Male Sprague-Dawley rats were fitted with bilateral cannulae over the medial prefrontal cortex and subsequently trained in a conditioned place preference task. Animals were trained in this task using four pairings of cocaine (12 mg/kg, i.p.). Conditioned place preference was demonstrated in all animals, and this behavior was then extinguished over a 5-10-day period before testing for reinstatement. Just prior to reinstatement by immobilization stress or a cocaine priming injection (5 mg/kg, i.p.), a microinjection of the D1-like receptor antagonist SCH 23390 (0.01, 0.1 or 1.0 microg/side), or the D1-like receptor agonist SKF 81297 (0.1, 0.3 or 1.0 microg/side) was given into the medial prefrontal cortex. SCH 23390 blocked both stress- and cocaine-induced reinstatement of conditioned place preference after the two higher doses were administered into the medial prefrontal cortex. The highest dose of SKF 81297 (1.0 microg/side) prevented immobilization stress- but not cocaine-induced reinstatement. The highest dose of these drugs given in the absence of stress or cocaine did not produce reinstatement. The results indicate that immobilization stress given within the place-preference chamber is capable of producing reinstatement of cocaine-seeking behavior. The microinjection studies suggest that D1-like receptor antagonism within the prefrontal cortex is sufficient to block reinstatement by stress and cocaine. Furthermore, the results from D1-like receptor activation in the medial prefrontal cortex point to utilization of different neural pathways for stress- and cocaine-induced reinstatement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号