首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Exogenous leptin enhances energy utilization in ob/ob mice by binding its hypothalamic receptor and selectively increasing peripheral fat oxidation. Leptin also increases uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT), but the neurotransmitter that mediates this effect has not been established. The present experiments sought to determine whether leptin regulates UCP1 expression in BAT and its own expression in white adipose tissue (WAT) through the long or short forms of leptin receptor and modulation of norepinephrine release. Mice lacking dopamine beta-hydroxylase (Dbh-/-), the enzyme responsible for synthesizing norepinephrine and epinephrine from dopamine, were treated with leptin (20 microg/g body weight/day) for 3 days before they were euthanized. UCP1 messenger RNA (mRNA) and protein expression were 5-fold higher in BAT from control (Dbh+/-) compared with Dbh-/- mice. Leptin produced a 4-fold increase in UCP1 mRNA levels in Dbh+/- mice but had no effect on UCP1 expression in Dbh-/-. The beta3-adrenergic agonist, CL-316,243 increased UCP1 expression and established that BAT from both groups of mice was capable of responding to beta-adrenergic stimulation. Similarly, exogenous leptin reduced leptin mRNA in WAT from Dbh+/- but not Dbh-/- mice. In separate experiments, leptin produced comparable reductions in food intake in both Dbh+/- and Dbh-/- mice, illustrating that norepinephrine is not required for leptin's effect on food intake. Lastly, db/db mice lacking the long form of the leptin receptor failed to increase UCP1 mRNA in response to exogenous leptin but increased UCP1 mRNA in response to CL-316,243. These studies establish that norepinephrine is required for leptin to regulate its own expression in WAT and UCP1 expression in BAT and indicate that these effects are likely mediated through the centrally expressed long form of the leptin receptor.  相似文献   

3.
Glucocorticoids (GCs) have long been accepted as being catabolic in nature, liberating energy substrates during times of stress to supply the increased metabolic demand of the body. The effects of GCs on adipose tissue metabolism are conflicting, however, because patients with elevated GCs present with central adiposity. We performed an extensive literature review of the effects of GCs on adipose tissue metabolism. The contradictory effects of GCs on lipid metabolism occur through a number of different mechanisms, some of which are well defined and others remain to be elucidated. Firstly, through increases in caloric and dietary fat intake, along with increased hydrolysis of circulating triglycerides (chylomicrons, very low-density lipoproteins) by lipoprotein lipase activity, GCs increase the amount of fatty acids in circulation, which are then available for ectopic fat distribution (liver, muscle, and central adipocytes). Glucocorticoids also increase de novo lipid production in hepatocytes through increased expression of fatty acid synthase. There is some controversy as to whether these same mechanisms occur in adipocytes, thereby contributing to adipose hypertrophy. Glucocorticoids promote preadipocyte conversion to mature adipocytes, causing hyperplasia of the adipose tissue. Glucocorticoids also have acute antilipolytic effect on adipocytes, whereas their genomic actions facilitate increased lipolysis after about 48 hours of exposure. The acute and long-term effects of GCs on adipose tissue lipolysis remain unclear. Although considerable evidence supports the notion that GCs increase lipolysis through glucocorticoid-induced increases of lipase expression, they clearly have antilipolytic effects within these same tissues and cell line models.  相似文献   

4.
5.
Adipose tissue IL-6 expression is increased in obesity and is a strong predictor of abnormalities in adipocyte and systemic metabolism. We used adipose tissue organ culture to test the direct effects of IL-6 on leptin expression, lipolysis, and lipoprotein lipase activity. To assess possible interactions with the hormonal milieu, IL-6 effects were tested in the presence or absence of insulin and/or glucocorticoid [dexamethasone (dex)]. Because omental (Om) and abdominal sc depots differ in IL-6 expression, their responses to exogenous IL-6 were compared. Although IL-6 had no significant effects under basal conditions, culture with the combination of IL-6 and dex, compared with dex alone, for 2 d increased leptin in both depots [+95 +/- 30% (sc) and +67 +/- 19% (Om), P < 0.01]; IL-6 did not affect leptin production when added in the presence of insulin. Culture with IL-6 in the absence of hormones moderately increased lipolysis during culture in both sc and Om [+79 +/- 23% (sc) and +26 +/- 9% (Om), each P < 0.01]. IL-6 markedly reduced the high levels of lipoprotein lipase activity in tissue cultured with insulin plus dex. We conclude that high local concentrations of IL-6 can modulate leptin production and lipid metabolism in human adipose tissue.  相似文献   

6.
Leptin enhances the glucose utilization in most insulin target tissues and paradoxically decreases it in white adipose tissue (WAT), but knowledge of the mechanisms underlying the inhibitory effect of central leptin on the insulin-dependent glucose uptake in WAT is limited. After 7 d intracerebroventricular leptin treatment (0.2 μg/d) of rats, the overall insulin sensitivity and the responsiveness of WAT after acute in vivo insulin administration were analyzed. We also performed unilateral WAT denervation to clarify the role of the autonomic nervous system in leptin effects on the insulin-stimulated [(3)H]-2-deoxyglucose transport in WAT. Central leptin improved the overall insulin sensitivity but decreased the in vivo insulin action in WAT, including insulin receptor autophosphorylation, insulin receptor substrate-1 tyrosine-phosphorylation, and Akt activation. In this tissue, insulin receptor substrate-1 and glucose transporter 4 mRNA and protein levels were down-regulated after central leptin treatment. Additionally, a remarkable up-regulation of resistin, together with an augmented expression of suppressor of cytokine signaling 3 in WAT, was also observed in leptin-treated rats. As a result, the insulin-stimulated glucose transporter 4 insertion at the plasma membrane and the glucose uptake in WAT were impaired in leptin-treated rats. Finally, denervation of WAT abolished the inhibitory effect of central leptin on glucose transport and decreased suppressor of cytokine signaling 3 and resistin levels in this tissue, suggesting that resistin, in an autocrine/paracrine manner, might be a mediator of central leptin antagonism of insulin action in WAT. We conclude that central leptin, inhibiting the insulin-stimulated glucose uptake in WAT, may regulate glucose availability for triacylglyceride formation and accumulation in this tissue, thereby contributing to the control of adiposity.  相似文献   

7.
Fatty acids released from white adipose tissue (WAT) provide important energy substrates during fasting. However, uncontrolled fatty acid release from WAT during non-fasting states causes lipotoxicity and promotes inflammation and insulin resistance, which can lead to and worsen type 2 diabetes (DM2). WAT is also a source for insulin sensitizing fatty acids such as palmitoleate produced during de novo lipogenesis. Insulin and leptin are two major hormonal adiposity signals that control energy homeostasis through signaling in the central nervous system. Both hormones have been implicated to regulate both WAT lipolysis and de novo lipogenesis through the mediobasal hypothalamus (MBH) in an opposing fashion independent of their respective peripheral receptors. Here, we review the current literature on brain leptin and insulin action in regulating WAT metabolism and discuss potential mechanisms and neuro-anatomical substrates that could explain the opposing effects of central leptin and insulin. Finally, we discuss the role of impaired hypothalamic control of WAT metabolism in the pathogenesis of insulin resistance, metabolic inflexibility and type 2 diabetes.  相似文献   

8.
Conjugated linoleic acid (CLA) is a unique lipid that elicits dramatic reductions in adiposity in several animal models when included at < or = 1% of the diet. Despite a flurry of investigations, the precise mechanisms by which conjugated linoleic acid elicits its dramatic effects in adipose tissue and liver are still largely unknown. In vivo and in vitro analyses of physiological modifications imparted by conjugated linoleic acid on protein and gene expression suggest that conjugated linoleic acid exerts its de-lipidating effects by modulating energy expenditure, apoptosis, fatty acid oxidation, lipolysis, stromal vascular cell differentiation and lipogenesis. The purpose of this review shall be to examine the recent advances and insights into conjugated linoleic acid's effects on obesity and lipid metabolism, specifically focused on changes in gene expression and physiology of liver and adipose tissue.  相似文献   

9.
Melatonin, the main hormone produced by the pineal gland, is secreted in a circadian manner (24‐hr period), and its oscillation influences several circadian biological rhythms, such as the regulation of clock genes expression (chronobiotic effect) and the modulation of several endocrine functions in peripheral tissues. Assuming that the circadian synchronization of clock genes can play a role in the regulation of energy metabolism and it is influenced by melatonin, our study was designed to assess possible alterations as a consequence of melatonin absence on the circadian expression of clock genes in the epididymal adipose tissue of male Wistar rats and the possible metabolic repercussions to this tissue. Our data show that pinealectomy indeed has impacts on molecular events: it abolishes the daily pattern of the expression of Clock, Per2, and Cry1 clock genes and Pparγ expression, significantly increases the amplitude of daily expression of Rev‐erbα, and affects the pattern of and impairs adipokine production, leading to a decrease in leptin levels. However, regarding some metabolic aspects of adipocyte functions, such as its ability to synthesize triacylglycerols from glucose along 24 hr, was not compromised by pinealectomy, although the daily profile of the lipogenic enzymes expression (ATP‐citrate lyase, malic enzyme, fatty acid synthase, and glucose‐6‐phosphate dehydrogenase) was abolished in pinealectomized animals.  相似文献   

10.
OBJECTIVE: To assess the effect of chronic treatment with CGP-12177 a beta3-adrenergic receptor (AR) agonist with beta2/beta1-AR antagonist action, on the expression of the leptin gene and of genes coding for uncoupling proteins (ucp1, ucp2 and ucp3) in brown and white adipose tissues. DESIGN: NMRI mice received a daily subcutaneous injection of CGP-12177 at a dose of 0.05, 0.2, 0.5 or 1 mg/kg for 15 days. The specific levels of the mRNAs of interest were analysed in interscapular brown adipose tissue (BAT) and in two white adipose tissue (WAT) depots, inguinal (IWAT) and epididymal (EWAT). RESULTS: No changes in food intake or body weight were detected at any dose of CGP-12177. In the two WAT depots, the treatment led to enhanced expression of ucp1 and ucp3, but not of ucp2. In BAT, low doses (0.05 and 0.2 mg/kg) led to a decreased expression of the three ucp genes, whereas a slight stimulatory effect on the three ucp genes was elicited with a high dose (1 mg/kg). Treated animals displayed increased expression of leptin in BAT and, to a lesser extent, in IWAT, but not in EWAT. CONCLUSION: The results reveal that simultaneous stimulation of the expression of certain ucp genes and the leptin gene can be achieved, and suggest that adrenergic regulation of the leptin gene and of genes of the ucp family in adipose tissues is the result of complex interactions between the different beta-AR pathways.  相似文献   

11.
Cyclosporin A (CsA), tacrolimus and rapamycin are immunosuppressive agents (IAs) associated with insulin resistance and dyslipidemia, although their molecular effects on lipid metabolism in adipose tissue are unknown.  相似文献   

12.
Excess visceral adipose tissue is associated with anomalies of blood glucose homoeostasis, elevation of plasma triglycerides and low levels of high-density lipoprotein cholesterol that contribute to the development of type-2 diabetes and cardiovascular syndromes. Visceral adipose tissue releases a large amount of free fatty acids and hormones/cytokines in the portal vein that are delivered to the liver. The secreted products interact with hepatocytes and various immune cells in the liver. Altered liver metabolism and determinants of insulin resistance associated with visceral adipose tissue distribution are discussed, as well as, determinants of an insulin-resistant state promoted by the increased free fatty acids and cytokines delivered by visceral adipose tissue to the liver.  相似文献   

13.
Effects of fenofibrate on lipid metabolism in adipose tissue of rats   总被引:1,自引:0,他引:1  
The effect of fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, on body weight gain and on reduction of adipose tissue pads has been ascribed to increased fat catabolism in liver mainly through the induction of target enzymes involved in hepatic lipid metabolism. The aim of this study was to investigate whether peroxisome proliferator-activated receptor alpha activation also affects metabolic pathways in adipose tissue of rats treated with fenofibrate (100 mg/kg body weight) for 9 days. Fenofibrate lowered body weight gain and plasma triglyceride, total cholesterol, and high-density lipoprotein cholesterol but had no influence on food intake and on plasma glucose levels. The activity of lipoprotein lipase of treated animals decreased 50% in epididymal, 29% in retroperitoneal, and was not affected in the mesenteric fat pads. In this study, we show a 34% decrease in epididymal adipose tissue de novo lipogenesis by fenofibrate. The results demonstrate that insulin sensitivity of lipolysis is decreased in fenofibrate-treated rats which resulted in 30% higher rate of glycerol release when compared to the control group. These findings suggest that besides its effects on liver, fenofibrate exerts effects on lipid metabolism in adipose tissue which may contribute to decreasing adiposity.  相似文献   

14.
15.
16.
To determine whether increase of serum leptin (the known natural inhibitor of lipogenic enzymes gene expression) concentration would account for the age-related decrease in lipogenesis (a) serum leptin concentration; (b) leptin mRNA abundance; (c) the rate of fatty acid synthesis in vivo; (d) lipogenic enzymes activity and (e) mRNA levels were assayed in white adipose tissue (WAT) of male young and old rats. We found that leptin mRNA abundance in WAT and serum leptin concentration was much lower in young than in old animals. In contrast, the rate of fatty acid synthesis in WAT was much higher in young animals. The old rats displayed much lower lipogenic enzymes activities (acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), ATP-citrate lyase (ACL), malic enzyme (ME), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase 6PGDH) and mRNA abundance as compared to young rats. Considering the inverse relationship between serum leptin concentration and lipogenic enzymes genes expression and known inhibitory effect of leptin on lipogenic enzymes gene expression, one can conclude that the increase of ob gene expression could at least partly account for the reduced WAT lipogenic enzymes genes expression in old animals.  相似文献   

17.
18.
Chicken growth hormone stimulated the rate of in vitro lipolysis in adipose tissue explants from domestic fowl, turkeys, and intact and hypophysectomised feral pigeons. This stimulation was dose related and did not require the presence of glucocorticoids. Lipogenesis in chick hepatocytes was enhanced by insulin treatment and this effect was abolished by the presence of mammalian or avian GH in the incubation medium.  相似文献   

19.
OBJECTIVE: Disturbances in adipocyte lipolysis in obesity may contribute to elevated circulating non-esterified fatty acid (NEFA) concentrations and insulin resistance. In experimental models, NEFA metabolism is influenced by adipocyte proteins such as adipocyte and keratinocyte lipid binding proteins (aP2/ALBP and mal1/KLBP) and fatty acid translocase (CD36). We investigated the effect of obesity and weight loss on the expression of these proteins in human subcutaneous adipose tissue. STUDY DESIGN AND SUBJECTS: Subcutaneous adipose tissue was obtained from 12 obese (body mass index (BMI) 42.4+/-1.6 kg/m(2)) and 12 lean (23.4+/-0.6 kg/m(2)) subjects. The obese subjects underwent gastric banding and biopsies were taken again after 2 y following a significant weight reduction (BMI 32.8+/-1.4 kg/m(2)). Adipose tissue proteins were quantified by Western blotting. RESULTS: Differential expression of ALBP, KLBP and CD36 was observed in lean and weight-reduced subjects compared with obese individuals. This resulted in a significantly lower ALBP/KLBP ratio in lean and weight-reduced individuals compared to obese subjects. Furthermore there was a significant influence of gender on this ratio. Moreover, the commonly used internal standard protein actin was expressed significantly higher in lean compared to obese individuals. CONCLUSION: The relative content of ALBP and KLBP in human adipose tissue changes with obesity, weight loss and gender indicating differential regulation. Differing responses in the expression patterns of adipose tissue proteins capable of binding NEFAs in response to weight changes suggest a potential importance in the development of obesity-associated complications.  相似文献   

20.
In the present study, we have explored, in vitro, the possibility that short exposure to androgens and estrogens for 24 h may directly influence leptin expression (ARNm and secretion) in sc adipose tissue from men and women. In men, only dihydrotestosterone at high concentration (100 nM) induced a reduction in leptin secretion and ob mRNA level. In women, 17beta-estradiol (10-100 nM) increased ob mRNA expression (+180 to +500%) and leptin release (+75%). Moreover, in adipose tissue of women, the estrogen precursors testosterone (100 nM) and dehydroepiandrosterone (1 microM) also induced an increase in leptin secretion (+84 and +96%, respectively), an effect that was prevented by the aromatase inhibitor letrozole. Finally, the stimulatory effect of 17beta-estradiol observed in women was antagonized by the antiestrogen ICI182780. Altogether, these results suggest that the sexual dimorphism of leptinemia in humans is mainly owing to the estrogen receptor-dependent stimulation of leptin expression in adipose tissue by estrogens and estrogen precursors in women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号