首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We addressed the fundamental questions of which variables underlie the control of arm movement and how they are stored in motor memory, reproduced and modified in the process of adaptation to changing load conditions. Such variables are defined differently in two major theories of motor control (internal models and threshold control). To resolve the controversy, these theories were tested (experiment 1) based on their ability to explain why active movement away from a stable posture is not opposed by stabilizing mechanisms (the posture–movement problem). The internal model theory suggests that the system counteracts the opposing forces by increasing the muscle activity in proportion to the distance from the initial posture (position-dependent EMG control). In contrast, threshold control fully excludes these opposing forces by shifting muscle activation thresholds and thus resetting the stabilizing mechanisms to a new posture. Subjects were sitting, holding the vertical handle of a double-joint manipulandum with their right hand and were facing a computer screen on which the handle and target to be reached were displayed. In response to an auditory signal, subjects quickly moved the handle from an initial position to one of two (frontal and sagittal) targets. No load was applied during the movement but in separate trials, a brief perturbation was applied to the handle by torque motors controlling the manipulandum. Perturbations were applied prior to or 3 s after movement offset, in the latter case in one of eight directions. The EMG activity of the majority of the seven recorded muscles was at zero level before movement onset and returned to zero level after movement offset. Those muscles that remained active before or after the movement could be made silent whereas previously silent muscles could be activated after a small passive displacement (several millimeters) elicited by perturbations in appropriate directions. Results showed that the activation thresholds of motoneurons of arm muscles were reset from the initial to a final position and that EMG activity was not position-dependent. These results were inconsistent with the internal model theory but confirmed the threshold control theory. Then the ability of threshold control theory to explain rapid movement adaptation to a position-dependent load was investigated (experiment 2 and 3). Subjects produced fast movement to the frontal target with and without a position-dependent load applied to the handle. Trials were organized in blocks alternating between the load and no-load condition (20 blocks in total, with randomly chosen number of five to ten trials in each). Subjects were instructed “do not correct” in experiment 2 and “correct” movement errors during the trial in experiment 3. Five threshold arm configurations underlying the movement production and adaptation were identified. When instructed “do not correct”, movement precision was fully restored on average after two trials. No significant improvement was observed as the experiment progressed despite the fact that the same load condition was repeated after one block of trials. Thus, in each block, the adaptation was made anew, implying that subjects relied on short-term memory and could not recall the threshold arm configurations they specified to accurately reach the same target in the same load condition in previous blocks. When instructed to “correct” within each trial, precision was restored faster, on average after one trial. Major aspects of the production and adaptation of arm movement (including the kinematics, movement errors, instruction-dependent behavior, and absence of position-related EMG activity) are explained in terms of threshold control.  相似文献   

2.
Internal models are sensory motor mappings used by the nervous system to anticipate the force requirements of movement tasks. The ability to use internal models likely underlies the development of skillful control of the arm throughout life. It is currently unknown to what extent individuals with hemiparetic stroke can form and implement such internal models. To examine this issue, we measured whether such individuals could learn to anticipate forces applied to their arms by a lightweight robotic device as they practiced reaching to a target. Thirteen subjects with post-stroke hemiparesis were tested. Forces were applied to the arm, which curved the hand path in either the medial or lateral direction, as the subjects reached repeatedly towards a target located in front of them at their workspace boundary. The subjects exhibited a decreased ability to adapt to the perturbing forces with their hemiparetic arms. That is, they did not straighten their reaching path as well, compared to their ipsilesional arms, and they exhibited smaller aftereffects when the perturbing force was unexpectedly removed. The ability to adapt to the force improved significantly with decreasing impairment severity, as quantified using both clinical scales and quantitative strength measurements. Some subjects with strength reductions as severe as 60% were able to adapt to the fields, generating significant aftereffects. We conclude that hemiparetic stroke impairs the ability to implement internal models used for anticipatory control of arm movement, although even some severely weakened subjects retain at least a partial ability to form and use internal models. Finding ways to fully restore this adaptive ability, or to make use of what adaptive ability remains during rehabilitation, is an important goal for improving functional motor recovery. Electronic Publication  相似文献   

3.
It has been suggested that multijoint movements result from the specification of a referent configuration of the body. The activity of muscles and forces required for movements emerge depending on the difference between the actual and referent body configurations. We identified the referent arm configurations specified by the nervous system to bring the arm to the target position both in healthy individuals and in those with arm motor paresis due to stroke. From an initial position of the right arm, subjects matched a force equivalent to 30% of their maximal voluntary force in that position. The external force, produced at the handle of a double-joint manipulandum by two torque motors, pulled the hand to the left (165°) or pushed it to the right (0°). For both the initial conditions, three directions of the final force (0°, +20°, and –20°) with respect to the direction of the initial force were used. Subjects were instructed not to intervene when the load was unexpectedly partially or completely removed. Both groups of subjects produced similar responses to unloading of the double-joint arm system. Partial removal of the load resulted in distinct final hand positions associated with unique shoulder-elbow configurations and joint torques. The net static torque at each joint before and after unloading was represented as a function of the two joint angles describing a planar surface or invariant characteristic in 3D torque/angle coordinates. For each initial condition, the referent arm configuration was identified as the combination of elbow and shoulder angles at which the net torques at the two joints were zero. These configurations were different for different initial conditions. The identification of the referent configuration was possible for all healthy participants and for most individuals with hemiparesis suggesting that they preserved the ability to adapt their central commands—the referent arm configurations—to accommodate changes in external load conditions. Despite the preservation of the basic response patterns, individuals with stroke damage had a more restricted range of hand trajectories following unloading, an increased instability around the final endpoint position, altered patterns of elbow and shoulder muscle coactivation, and differences in the dispersion of referent configurations in elbow-shoulder joint space compared to healthy individuals. Moreover, 4 out of 12 individuals with hemiparesis were unable to specify referent configurations of the arm in a consistent way. It is suggested that problems in the specification of the referent configuration may be responsible for the inability of some individuals with stroke to produce coordinated multijoint movements. The present work adds three findings to the motor control literature concerning stroke: non-significant torque/angle relationships in some subjects, narrower range of referent arm configurations, and instability about the final position. This is the first demonstration of the feasibility of the concept of the referent configuration for the double-joint muscle-reflex system and the ability of some individuals with stroke to produce task-specific adjustments of this configuration.  相似文献   

4.
We investigated the effect of neck flexion on discriminative and cognitive processing in postural control during bilateral arm movement while standing, using event-related potential (ERP) and electromyogram. Fourteen healthy subjects flexed their arms to the target stimuli with a 20% probability in neck resting and flexion positions. Amplitude and latency of N2 and P3, anterior deltoid (AD) reaction time, onset time of postural muscles with respect to AD activation, and peak amplitude and latency of all muscles were measured. With neck flexion, N2 and P3 amplitudes increased, N2 and P3 latencies and AD reaction time shortened, and onset times of all postural muscles became earlier. No significant differences in peak amplitude and latency of each muscle were found between neck positions. Significant positive correlations were found in changes with neck flexion between P3 latency and AD reaction time, and between N2 latency and onset time of erector spinae. These suggest that with neck flexion, attention allocation to discriminative and cognitive processing increased, and the processing speed increased with shortening of reaction time in focal muscles. In addition, the onset time of postural muscles became earlier without changing the activation pattern, which was associated with the hastened discriminative processing.  相似文献   

5.
In this paper, we examine grip forces and load forces during point-to-point arm movements with objects grasped with a precision grip. We demonstrate that grip force is finely modulated with load force. Variations in load force arise from inertial forces related to movement; grip force rises as the load force increases and falls as load force decreases. The same finding is observed in vertical and horizontal movements performed at various rates. In vertical movements, maximum grip force coincides in time with maximum load force. The maxima occur early in upward and later in downward movements. In horizontal movements, where peaks in load force are observed during both the acceleratory and deceleratory phases, grip force rises at the beginning of the movement and remains high until the end. The results suggest that when moving an object with the hand the programming of grip force is an integral part of the planning process.  相似文献   

6.
An object held in precision grip creates predictable load forces on the hand during voluntary hand movement and these are associated with anticipatory modulation of grip force. Conflicting results have been obtained over whether predictable external load perturbations result in anticipatory grip force responses (e.g. Blakemore et al. in J Neurosci 18(18):7511–7518, 1998; Weeks et al. in Exp Brain Res 132:404–410, 2000). This paper investigated whether the discrepancies reflect differences in the methods used in estimating the time delay. Subjects held a manipulandum that delivered load force perturbations in the form of pulses of variable duration and interval or periodic 0.5 and 1 Hz square waves or sinusoids. The grip forces exerted by the subjects were measured. Two methods were used to assess the time delay of the grip force in relation to the load force: (1) cross-spectral analysis, (2) a single threshold method applied on time-locked averaged data. Despite a phase lag shown by the cross-spectral analysis, the threshold method revealed grip force increased 264.8±40.2 ms before the onset of the load force when 0.5 Hz square waves were used as the load force perturbation and 70.2±17.0 ms before the load force when 1 Hz square waves were used. Computer simulations indicated that the single threshold method gives a more sensitive estimate of the onset time than the cross-spectral analysis. We conclude that discrepancies in previous studies reflect differences in the methods used to assess the time-delay and that there is an anticipatory component in the grip force response to predictable external load perturbation.  相似文献   

7.
Summary Adjustment of arm posture associated with rapid wrist movements was studied by EMG analysis. Seven healthy adults, seated and holding their right arm with the shoulder in a neutral position with the elbow in 90° flexion and the wrist position neutral, were instructted to flex or extend the wrist as fast as possible. To examine whether the activity patterns of the upper arm muscles were related to the prime mover or the direction of the movement in space, the forearm was in two postures, supinate and pronate. The surface EMGs of biceps brachii, brachialis, triceps brachii and the prime movers were recorded along with the angular displacement of the wrist. The sequences of the upper arm muscle activities changed in relation to the direction of the movement. The earliest activities of the upper arm muscles were considered to counteract the dynamic perturbation induced by the rapid wrist movement. The onsets of the earliest activity of the upper arm muscles preceded the movement onset by 50–60 ms. These results revealed that the activity patterns of the arm muscles associated with the rapid wrist movements were functionally compatible with the anticipatory postural adjustment and were controlled according to the direction of the movement in space.  相似文献   

8.
Subjects with carpal tunnel syndrome (CTS) typically describe self-perceived pinch grip deficits, clumsiness sensations and difficulty with grasping small objects, which suggest the existence of a fine motor control deficit. No previous studies have investigated fine motor control and pinch grip force bilaterally in patients diagnosed with moderate CTS. Our aim was to investigate differences in fine motor control ability and pinch grip force between patients with unilateral CTS and healthy controls. Subtests of the Purdue Pegboard Test (one-hand, bilateral and assembly) and pinch grip force were evaluated bilaterally in 20 women with unilateral CTS (aged 22–66 years), and 20 age and hand dominance-matched healthy women. Differences between sides (affected/unaffected or dominant/non-dominant) and groups (patients or controls) were analysed with an analysis of variance (ANOVA). The ANOVA found significant differences between both groups (F = 65.7; P < 0.001) and between sides (F = 5.4; P = 0.02) for the one-hand pin placement subtest: CTS patients showed bilateral worse scores on one-hand pin placement than controls (P < 0.001). Patients also showed significantly lower scores in bilateral pin placement and assembly subtests when compared to healthy controls (P < 0.001). The ANOVA also revealed significant differences between groups (F = 141.2; P < 0.001), and fingers (F = 142.2; P < 0.001), but not between sides (F = 0.9; P = 0.4) for pinch grip strength: CTS patients showed bilateral lower pinch grip force levels in all fingers when compared to controls (P < 0.001). Fine motor control and pinch grip were negatively related to the hand pain intensity and duration of symptoms history (all, P < 0.01). Our findings revealed bilateral deficits in fine motor control ability and pinch grip force in patients with unilateral moderate CTS when compared to controls.  相似文献   

9.
Alternate grip strategies are often used for object manipulation in individuals with sensorimotor deficits. To determine the effect of grip type on force control, ten healthy adult subjects were asked to grip and lift a small manipulandum using a traditional precision grip (lateral pinch), a pinch grip with the fingers oriented downwards (downward pinch) and a key grip between the thumb and the side of the index finger. The sequence of grip type and hand used was varied randomly after every ten lifts. Each of the three grips resulted in different levels of force, with the key grip strategy resulting in the greatest grip force and the downward pinch grip using the least amount of grip force to lift the device. Cross-correlation analysis revealed that the ability to scale accurately the rate of grip force and load force changes was lowest in the downward pinch grip. This was also associated with a more variable time-shift between the two forces, indicating that the precise anticipatory control when lifting an object is diminished in this grip strategy. There was a difference between hands across all grips, with the left non-dominant hand using greater grip force during the lift but not the hold phase. Further, in contrast with the right hand, the left hand did not reduce grip force during the lift or the hold phase over the ten lifts, suggesting that the non-dominant hand did not quickly learn to optimise grip force. These findings suggest that the alternate grip strategies used by patients with limited fine motor control, such as following stroke, may partly explain the disruption of force control during object manipulation.  相似文献   

10.
Skilled object manipulation relies on the capability to adjust the grip force according to the consequences of our movements in terms of the resulting load force of the object. Such predictive grip force control requires (at least) two neural processes: (1) predicting the kinematic characteristics of the unfolding arm trajectory and (2) predicting the load force on the object resulting, among other factors, from the arm movement. The goal of this study was to examine whether subjects can still anticipate the resulting load force on the object when the moving arm is submitted to a type of load that does not contribute to the object load. To this end, 12 subjects were asked to rhythmically move a 0.4 kg object under three different conditions. In the first condition (ARM), an elastic cord was attached to the upper arm. In the second condition, the elastic cord was attached to the object (OBJECT). In the third condition, the elastic cord was absent (NO ELAST). At the kinematic level, results showed no influence of the elastic cord on the pattern of movement of the object. At the kinetic level, cross-correlation analyses between grip force and load force acting on the object revealed significant correlations with minimal delays. In addition, grip force profiles were similar under the ARM and NO ELAST conditions, both differing from the OBJECT condition. Overall, we interpret these results as evidence that the neural processes involved in the prediction of the arm trajectory and those involved in the prediction of the load on the object held can take into account different external force fields, thereby preserving the functionality of the behaviour.  相似文献   

11.
Summary The effect of muscle tendon vibration on the performance of some simple motor tasks and on kinesthesia was studied in normal humans. Subjects performed non-visually-guided slow arm movements to match either the position or the velocity of a visual target. In the experiments designed to study kinesthesia subjects indicated the perceived position or velocity of their passively moved arm. Vibration was applied over either the biceps or the triceps tendon. Position and velocity matching were found to be disturbed by vibration in essentially different ways, as were the perception of imposed position and the perception of imposed velocity. However, the vibration induced disturbance of position matching was congruent with the distortion of position perception. The effect of vibration on velocity matching was in accordance with the effect of vibration on the perception of velocity. It is concluded that the afferent information pathways that give rise to the perception of position and velocity respectively can be used separately in the control of slow movements under different conditions.  相似文献   

12.
We investigated to what extent subjects base anticipatory activity patterns of trunk muscles before lifting a load on knowledge of the inertial properties of the load. Eight healthy male subjects performed rapid arm lifts of a load with a varying center of mass position in the frontal plane. In one set of trials subjects were familiar with the center of mass position, in another set of trials they were not. In both cases trunk extensor muscles were active before the onset of lift force applied to the load. In the trials with load knowledge this anticipatory activity was specific with respect to center of mass position. In the absence of load knowledge left and right extensor muscles were equally active before the lift and the rate of lifting was reduced. Thus anticipatory control of trunk muscles appears specifically tuned to counteract the expected perturbation. In the absence of load knowledge trunk stiffness is increased by bilateral activity and the perturbation is attenuated since the rate of lifting is reduced. Received: 25 August 1998 / Accepted: 24 March 1999  相似文献   

13.
When walking with a hand-held object, grip force is coupled in an anticipatory manner to changes in inertial force resulting from the accelerations and decelerations of gait. However, it is not known how grip and inertial forces are organized at the onset of gait, and if the two forces are coupled in the early phases of gait initiation. Moreover, initiating walking with an object involves the coordination of anticipatory postural (e.g., ground reaction force changes) and grasping adjustments. The aim of this study was to investigate the relationship of ground reaction, grip, and inertial force onsets, and the subsequent development of the coupling of grip and inertial forces during gait initiation with a hand-held object. Ten subjects performed gait initiation with a hand-held object following predictable and unpredictable start signals. We found that ground reaction and grip force onsets were closely linked in time regardless of the predictability of the start signal. In the early period of gait initiation, the grip force started to increase prior to inertial force changes. While the strength of the coupling of grip and inertial forces was moderate in this early phase, it increased to values observed during steady-state gait after the swing foot left the ground. The early grip force increase and the coupling of grip and inertial forces represent an anticipatory control process. This process establishes an appropriate grip-inertial force ratio to ensure object stability during acceleration after foot-off and maintains this increased ratio thereafter. The results suggest that grasping and whole body movements are governed by a common internal representation.  相似文献   

14.
Summary This study investigated the influence of object weight and instructions on grip force responses in humans. Using a precision grip, subjects lifted a small instrumented test object to a predetermined height. Prior to each set of 40 trials, subjects were verbally instructed to either hold or let go of the object in response to any change in weight. Unpredictably on some trials (< 20%), a sudden sustained increase (load) or decrease (unload) in vertical load was applied to the object. Grip responses to these induced weight changes were evaluated by measuring grip force, object position, and associated electromyographic (EMG) activity. Grip force changes for a load were over three times greater than those for an unload. Such asymmetry may reflect everyday grasp and manipulation in a gravity-influenced world. Grip force adjustments to loads following hold instructions were on the average somewhat larger than those following let go instructions, but there was no influence of instructions on responses to unloads. These findings contrast with more robust influences of verbal instruction on automatic postural and proximal upper limb responses and also may suggest that grip force adjustments are influenced to a greater extent by intrinsic task variables than by extrinsic volitional intent. Such organization appears tailored to functional task requirements in natural environmental contexts.  相似文献   

15.
We investigated age related changes in the control of precision grip in 29 healthy adults spanning early adulthood to middle age (21–67 years). Subjects performed a visually guided, isometric precision grip ramp-and-hold force-tracking task. Target force levels were 3, 6, and 9 N. Precision and performance of force regulation was quantified. Larger errors were made during the ramp than during the hold phase. Age correlated positively with the amount of error at the lowest (3 N) force level in both phases. Force onsets were systematically earlier in middle-aged subjects and the average slope of the force during the ramp decreased with increasing age. The results show that precision during low grip force control decreases already during middle age and those subjects may modify their force generation strategies to compensate for early and subtle degenerative changes in the motor system before decline in grip strength is apparent.  相似文献   

16.
This study investigated the influence of fear of falling or postural threat on the control of posture and movement during a voluntary rise to toes task for 12 healthy young adults. Postural threat was modified through alterations to the surface height at which individuals stood (low or high platform) and changes in step restriction (away from or at the edge of the platform) creating four levels of postural threat: LOW AWAY, LOW EDGE, HIGH AWAY and HIGH EDGE. To rise to the toes, an initial postural adjustment must destabilise the body so that it can be moved forward and elevated to a new position of support over the toes. Centre of pressure and centre of mass profiles, as well as tibialis anterior (TA), soleus (SO) and gastrocnemius (GA) muscle activity patterns were used to describe this behaviour. The results showed that the performance of the rise to toes task was significantly modified when positioned at the edge of the high platform. In this situation, the central nervous system reduced the magnitude and rate of the postural adjustments and subsequent voluntary movement. Although the duration of the movement was lengthened for this most threatening condition, the sequencing and relative timing of TA, SO and GA muscle activity was preserved. These changes in rise to toes behaviour were accompanied by evidence of increased physiological arousal and participant reports of decreased confidence, increased anxiety and decreased stability. Evidence of fear of falling effects on anticipatory postural control is clinically relevant as it may explain deficits in this control observed in individuals with balance disorders. For example, individuals with Parkinson's disease or cerebellar dysfunction demonstrate impaired performance on the rise to toes task as reflected in alterations of both the timing and magnitude of their anticipatory postural adjustments. Our findings suggest alterations in the magnitude of postural adjustments may be magnified by fear of falling while changes in the timing of postural adjustments may reflect underlying pathology.  相似文献   

17.
Summary 1. The control of pointing arm movements in the absence of visual guidance was investigated in unpracticed human subjects. The right arm grasped a lever which restricted the movement of the right index fingertip to a horizontal arc, centered between the axes of eye rotation. A horizontal panel directly above the arm prevented visual feedback of the movement. Visual stimuli were presented in discrete positions just above panel and fingertip. A flag provided visual feedback on fingertip position before each pointing movement (Exp. A and B), or before a movement sequence (Exp. C). 2. When subjects pointed from straight ahead to eccentric stimulus positions (Exp. A), systematic and variable pointing errors were observed; both kinds of errors increased with stimulus eccentricity. When subjects pointed from 30 deg left to stimuli located further right (Exp. B), errors increased with stimulus position to the right. Taken together, these findings suggest that pointing accuracy depends not primarily on stimulus position, but rather on required movement amplitude. 3. When subjects performed sequences of unidirectional movements (Exp. C), systematic and variable errors increased within the sequence. A quantitative analysis revealed that this increase can be best described as an accumulation of successive pointing errors. 4. We conclude that both findings, error increase with amplitude, and accumulation of successive errors, when considered together strongly support the hypothesis that amplitude, rather than final position, is the controlled variable of the investigated movements.  相似文献   

18.
This study investigated differences in adaptation to a novel dynamic environment between the dominant and nondominant arms in 16 naive, right-handed, neurologically intact subjects. Subjects held onto the handle of a robotic manipulandum and executed reaching movements within a horizontal plane following a pseudo-random sequence of targets. Curl field perturbations were imposed by the robot motors, and we compared the rate and quality of adaptation between dominant and nondominant arms. During the early phase of the adaptation time course, the rate of motor adaptation between both arms was similar, but the mean peak and figural error of the nondominant arm were significantly smaller than those of the dominant arm. Also, the nondominant limb’s aftereffects were significantly smaller than in the dominant arm. Thus, the controller of the nondominant limb appears to have relied on impedance control to a greater degree than the dominant limb when adapting to a novel dynamic environment. The results of this study imply that there are differences in dynamic adaptation between an individual’s two arms.  相似文献   

19.
In this paper we examine the coordination of grip force and load during brisk cyclic arm movements with a hand-held object under a range of conditions. We show that, regardless of the surface texture of the object or movement frequency, grip force is modulated in parallel with load. Thus, the tight coupling between grip force and load observed in short-duration tasks such as lifting or point-to-point movements is also seen in longer-duration cyclic movements. Moreover, the gain of the relation between grip force and load remains essentially constant over time. Across conditions, we find a dissociation between the gain of the relation between grip force and load and the grip force offset. With a more slippery surface texture both the gain and offset increase, whereas increases in frequency lead to an increase in the offset but a decrease in gain. This suggests that these two parameters are under independent high-level control. We also observe that when subjects were instructed to maintain a high-baseline grip force during the movement, grip force was still modulated with load even though an increase in grip was not necessary to prevent slip. This suggests that there is an obligatory coupling between grip force and load. This coupling might be subserved by low-level mechanisms not under high-level control.  相似文献   

20.
A nonlinear model for the stretch reflex has recently been used to study the interactions between voluntary and reflex controls during fast, targeted movements. The present study explores the topography of a ‘behaviour space’ generated by computer simulations of this model under various combinations of values for the gain parameters and time constants in the model's feedback loops. In general, we define a behaviour space to be any set of behavioural characteristics of the simulated movement, such as movement time, peak acceleration or peak velocity. The mathematical model can therefore be viewed as an M×N dimensional map from its parameter space N to a behaviour space M. Here, a one-dimensional behaviour space is explored. This provides a method for quantitatively comparing the different control strategies that might be employed by the nervous system for integrating reflex and descending signals during fast, voluntary movements. The results indicate that an optimal strategy will employ proprioceptive feedback as a means of fine-tuning the braking and clamping activities of fast, goal-directed movements and that descending signals are primarily important for initiating the movement and for controlling reciprocal patterns of muscle activity during the end phase of the movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号