首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Cord blood from deliveries at term can be used for HPC transplantation. The objective of this study was to determine the amounts of cord blood nucleated cells (NCs) and HPCs that were collectable from preterm deliveries. STUDY DESIGN AND METHODS: Cord blood collected from preterm deliveries between 22 and 36 weeks of gestation was compared with regard to volume, NC count (/mL), CD34+ cell count (/mL), and the NC and CD34+ cell counts per cord blood sample and at different gestational ages. RESULTS: A correlation was found between gestational age and NC count (r = 0.52, p<0.001), and an inverse relation was found between gestational age and CD34+ cell count (r = - 0.68, p<0.001). The CD34+ cell count per cord blood sample was independent of gestational age (r = - 0.13, p = NS), and no significant difference between early (22-32 week) and late (33-36 week) preterm deliveries was found (p = 0.870). Comparison with published data from cord blood transplantations revealed that up to one-third of preterm samples contained at least as many NCs (or CD34+ cells) as the median cell dose transplanted (calculated for the median recipient weight) in the respective study. Furthermore, 77 percent of all preterm samples contained at least 1 x 10(7) NCs (and 42% at least 1 x 10(5) CD34+ cells) per kg for transplantation in a recipient of 20-kg body weight, which corresponds to the lower threshold of cells per kg in the graft recommended by Eurocord. CONCLUSION: Preterm delivery should not be a reason to exclude cord blood collection if allogeneic cord blood transplantation in a sibling is planned.  相似文献   

2.
Tsang KS  Li K  Huang DP  Wong AP  Leung Y  Lau TT  Chang AM  Li CK  Fok TF  Yuen PM 《Transfusion》2001,41(3):344-352
BACKGROUND: The results of current processing procedures for reducing volume and recovering HPCs from umbilical cord blood (UCB) before cryopreservation vary. STUDY DESIGN AND METHODS: Dextran was added to bags containing UCB, followed by sedimentation for 30 minutes. The processed UCB was then frozen. RBCs, nucleated cells, MNCs, CD34+ cells, CFUs and long-term culture-initiating cells (LTC-ICs), viability, and sterility were evaluated. Fractionations in ficoll-hypaque and hydroxyethyl starch (HES) were also run in parallel for comparison. RESULTS: The nucleated cell (NC) recovery and RBC depletion were 86.1 percent and 94.3 percent, respectively (n = 50). Sedimentation with dextran also enabled the recovery of 80.7 percent MNCs and 82.6 percent CD34+ cells (n = 30). Postsedimentation samples displayed no impairment of CFU growth (n = 42, 108.7% CFU-C, 104.6% CFU-GEMM, 107% CFU-GM, and 95.7% BFU-E). Long-term cultures on five paired samples before and after sedimentation generated similar numbers of CFU-C each week (p = 0.88). Limiting dilution analysis of 12 paired pre/postsedimentation samples showed comparable median proportions of LTC-ICs (1/6494 vs. 1/5236; p = 0.18). The cell viability of 24 samples of thawed UCB after sedimentation was 90.3 percent (77.5-96%) and the recovery of CFU-C, CFU-GEMM, CFU-GM, and BFU-E of 11 postsedimentation samples was 93.4 percent, 84.9 percent, 92.3 percent, and 83.4 percent, respectively. NC recovery was significantly higher after treatment with dextran than with ficoll-hypaque (n = 30; 88.5% vs. 29.1%; p<0.005) and HES treatment (n = 21; 88.5% vs. 76.4%; p = 0.004). However, MNCs, CD34+ cells, CFUs, LTC-ICs, and RBCs were comparable. Two cycles of dextran sedimentation recovered 93.9 percent of NCs with cell viability of 98.6 percent (96.5-100%), whereas 11.7 percent of RBCs were retained (n = 20). The final yield volume was 33.5 (28-41) mL. CONCLUSION: In a semi-closed system, dextran sedimentation enabled volume reduction of UCB without significant quantitative and qualitative losses of HPCs.  相似文献   

3.
BACKGROUND: The peripheral blood progenitor cell (PBPC) mobilization capacity of EPO in association with either G-CSF or sequential GM-CSF/G-CSF was compared in a randomized fashion after epirubicin, paclitaxel, and cisplatin (ETP) chemotherapy. STUDY DESIGN AND METHODS: Forty patients with stage IIIB, IIIC, or IV ovarian carcinoma were enrolled in this randomized comparison of mobilizing capacity and myelopoietic effects of G-CSF + EPO and GM-/G-CSF + EPO following the first ETP chemotherapy treatment. After ETP chemotherapy (Day 1), 20 patients received G-CSF 5 microg per kg per day from Day 2 to Day 13 and 20 patients received GM-CSF 5 microg per kg per day from Day 2 to Day 6 followed by G-CSF 5 microg per kg per day from Day 7 to Day 13. EPO (150 IU per kg) was given every other day from Day 2 to Day 13 to all patients in both arms of the study. Apheresis (two blood volumes) was performed during hematologic recovery. RESULTS: The magnitude of CD34+ cell mobilization and the abrogation of patients' myelosuppression were comparable in both study arms; however, GM-/G-CSF + EPO patients had significantly higher CD34+ yields because of a higher CD34+ cell collection efficiency (57.5% for GM-/G-CSF + EPO and 46.3% for G-CSF + EPO patients; p = 0.0009). Identical doses of PBPCs mobilized by GM-/G-CSF + EPO and G-CSF + EPO drove comparable hematopoietic recovery after reinfusion in patients treated with identical high-dose chemotherapy. CONCLUSION: The sequential administration of GM-CSF and G-CSF in combination with EPO is feasible and improves the PBPC collection efficiency after platinum-based intensive polychemotherapy, associating high PBPC mobilization to high collection efficiency during apheresis.  相似文献   

4.
Xu R  Reems JA 《Transfusion》2001,41(2):213-218
BACKGROUND: Because of the limitation of cell numbers associated with cord blood harvests, there is a need to determine the efficacy of using ex vivo-expanded cord blood cells in a transplantation setting. In this study, limiting-dilution analysis was used in nonobese diabetic mice with severe combined immunodeficiency (NOD/SCID) to compare the engraftment potential of progeny cells expressing the CD34+ phenotype after expansion with that of uncultured CD34+ cells. STUDY DESIGN AND METHODS: Cord blood CD34+ cells were cultured in Iscove's modified Dulbecco medium supplemented with 10-percent fetal calf serum (FCS) and IL-6, SCF, megakaryocyte growth and development factor, and Flt3 ligand. The resulting ex vivo-expanded products were assessed for total numbers of nucleated cells, CD34+ cells, and CFUs and long-term culture-initiating cell activity. The engraftment potentials of cultured progeny CD34+ cells and uncultured CD34+ cells were determined by using NOD/SCID mice. RESULTS: After 14 days of culture, total nucleated cell counts increased over input values by 180 +/- 59-fold, CD34+ cell numbers by 44 +/- 13-fold, CFU activity by 23 +/- 5-fold, and long-term culture-initiating cell activity by 20 +/- 6-fold (mean +/- SD; n = 6). The frequency of SCID-repopulating cells (SRC) in mice transplanted with uncultured products was 1 per 20,000 CD34+ cells (95% CI, 1:10,000-1:38,000) and that in mice receiving ex vivo-expanded products was 1 per 418,000 progeny CD34+ cells (95% CI, 1:158,000-1:1,100,000). Taken together, these data indicated that, after 2 weeks of culture, there was a modest twofold increase in the total number of SRCs. However, the levels of human CD45 cell engraftment in NOD/SCID recipients of progeny CD34+ cells were significantly lower than those in mice receiving equivalent numbers of uncultured CD34+ cells (p<0.05). CONCLUSION: Umbilical cord blood progeny cells retaining a CD34+ phenotype after ex vivo expansion have less engraftment potential than do unexpanded CD34+ cells.  相似文献   

5.
目的探讨人脐血间充质干细胞(MSC)联合人脐血CD34+细胞移植,能否促进CD34+细胞在NOD/SCID小鼠体内植入及加速其造血恢复.方法NOD/SCID小鼠于60Co 2.5 Gy照射后24h内由尾静脉输注胎儿脐血CD34+细胞1×105/只(低细胞量移植组)或1×106/只(高细胞量移植组),联合移植组同时输注脐血MSC 1×106/只.动态观察移植后小鼠外周血白细胞、血红蛋白和血小板恢复情况,于移植后第8周用流式细胞术检测存活小鼠骨髓中人CD45+、CD45+CD3+、CD45+CD19+和CD45+CD33+细胞的含量.结果①低细胞量移植时,联合移植组的植入率明显高于单纯移植组,分别为26.02%和16.52%(P<0.05);高细胞量移植时,联合移植组和单纯移植组的植入率相近,分别为43.71%和39.23%(P>0.05).②高细胞量联合移植组和单纯移植组的存活率分别为80%和70%;低细胞量联合移植组和单纯移植组的存活率分别为70%和50%.③无论高细胞量还是低细胞量组,联合移植小鼠白细胞、血红蛋白和血小板的恢复明显早于单纯移植组.④移植8周后,小鼠骨髓中人CD45+CD19+、CD45+CD33+细胞含量在低细胞量移植时,联合移植组高于单纯移植组;但在高细胞量移植时,两组之间差异无统计学意义.CD45+CD41a+细胞的含量无论在低细胞量和高细胞量移植时,联合移植组均高于单纯移植组.各组小鼠骨髓中CD45+CD3+细胞的含量均较少,且各组之间差异无统计学意义.结论①低细胞量移植时,人脐血MSC联合移植可提高人脐血CD34+细胞在小鼠体内的植入率.②人脐血MSC与人脐血CD34+细胞联合移植,加速NOD/SCID小鼠各系造血恢复,提高移植小鼠存活率.③MSC联合移植可促进人脐血CD34+细胞在NOD/SCID小鼠体内向粒系、B淋巴系和巨核系定向分化.  相似文献   

6.
BACKGROUND: Ex vivo expansion of cord blood (CB) hematopoietic stem and progenitor cells increases cell dose and may reduce the severity and duration of neutropenia and thrombocytopenia after transplantation. This study's purpose was to establish a clinically applicable culture system by investigating the use of cytokines, serum-free media, and autologous plasma for the expansion of CB cells and the engraftment of expanded product in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. STUDY DESIGN AND METHODS: Enriched CB CD34+ cells were cultured in four media (Iscove's modified Dulbecco's medium with FCS, Gibco; X-Vivo-10, BioWhittaker; QBSF-60, Quality Biological; and StemSpan SFEM, Stem Cell Technologies) with four cytokine combinations (thrombopoietin [TPO], SCF, Flt-3 ligand [FL] with and without G-CSF, and/or IL-6). The effect of autologous CB plasma was also investigated. The read-out measures were evaluated on Days 8 and 12. After expansion at the optimized condition, cultured cells were transplanted into sublethally irradiated NOD/SCID mice. The engraftment of human CD45+ cells and subsets in the bone marrow, spleen, and peripheral blood was determined. RESULTS: QBSF-60 or StemSpan SFEM supported high yields of early progenitors (CD34+ cells, 相似文献   

7.
目的 观察间充质干细胞(MSC)与不同比例脐血CD34+细胞共移植对NOD/SCID小鼠造血重建的影响,明确MSC与脐血CD34+细胞共移植的最适数量.方法 给60Coγ射线照射的雌性NOD/SCID小鼠共移植人MSC和不同比例的脐血CD34+细胞,观察共移植后42 d内小鼠外周血白细胞和血小板变化,并于移植后42 d处死小鼠,用流式细胞术检测外周血、骨髓和脾脏人源细胞含量.结果 与单纯脐血CD34+细胞移植相比较:①脐血CD34+细胞与1、5和10倍数量的MSC共移植时,可明显减轻外周血白细胞和皿小板的下降幅度(P<0.01),提前1周使白细胞和血小板恢复至正常水平(P<0.05),三组间差异无统计学意义(P>0.05);②MSC与不同比例的脐血CD34+细胞共移植均可明显提高外周血、骨髓和脾脏造血细胞植入率.比例为10:1时,外周血、骨髓和脾脏中的人源细胞(huCD45+细胞)含量分别增加了(2.8±0.6)倍、(3.5±0.9)倍和(5.2±0.6)倍,增加倍数差异均有统计学意义(P<0.01),达到了最佳的植入效果.结论 脐血CD34+细胞与10倍数量的MSC共移植可达到最佳的促进造血重建作用.  相似文献   

8.
目的:探讨人脐血单个核细胞和脐带间充质干细胞(MSCs)移植对脊髓损伤功能恢复的影响,寻找一种更适合治疗脊髓损伤的细胞源。方法:采集新鲜人脐带血和脐带,分离培养单个核细胞和MSCs。将脊髓损伤模型随机分成3组:单个核细胞移植组、MSCs移植组和低糖必需培养基(L-DMEM)培养组。采用免疫组化和免疫荧光检测细胞移植后1—4周细胞在脊髓内的存活情况和迁移情况,使用BBB行为学评分评估大鼠脊髓功能恢复情况。结果:L-DMEM培养液组在术后各时间点观察评分无明显差异,而细胞移植组脊髓功能处于逐渐恢复过程,与L-DMEM培养液比较,差异有显著性意义。单个核细胞移植组对损伤脊髓功能的修复作用较MSCs移植组显著,且差异有显著性意义。结论:与MSCs相比较,人脐血单个核细胞更适合作为治疗脊髓损伤的细胞源。  相似文献   

9.
目的 探讨小鼠骨髓腔内输注能否增强人脐血造血干/祖细胞(HS/PC)异种移植的植活能力.方法 将不同数量(1×103、1×104、0.5×105、1×105、5×105)的人脐血CD34+细胞经尾静脉和骨髓腔途径移植入经亚致死剂量照射的NOD/SCID小鼠.于指定时间点处死小鼠,用PCR法检测人17号染色体α-微卫星特异性片段及用流式细胞术检测人源CD45+细胞,观察脐血CD34+细胞在移植小鼠左、右两侧胫骨和股骨及脾脏等部位的归巢及其长期植活能力.结果 异种移植后24h,经骨髓腔移植5×105 CD34+细胞的小鼠肝、脾、肺组织,外周血,左右两侧胫骨和股骨、骨髓细胞均表达人17号染色体α-卫星特异性片段.不同数量的人脐血CD34+细胞经骨髓腔途径移植入NOD/SCID小鼠后,8周时其植活良好(检测部位包括输注部位右侧胫骨,以及非输注部位右侧股骨、左侧胫骨、左侧股骨、脾脏及外周血).分别经尾静脉和骨髓腔两种途径输注同一来源的人脐血CD34+细胞1.0×105,8周时两组间人造血细胞植活水平分别为(44.063±20.095)%和(45.881±22.316)%,差异无统计学意义(P<0.05);而将移植CD34+细胞数降至1.0×104时,则经骨髓腔途径输注的人脐血CD34+细胞小鼠植活水平(54.019±31.338)%显著优于尾静脉输注途径[(12.197±10.350)%,P<0.01)];当CD34+细胞输注量降至1.0×103时,仅有骨髓腔内输注组小鼠能见到人脐血CD34+细胞植活,且植活部位通常为非输注部位骨骼.结论 小鼠骨髓腔内移植能够增强人脐血造血干/祖细胞的植活水平.  相似文献   

10.
目的 探讨脐带来源间充质干细胞(MSC)对脐血来源CD34+细胞在NOD/SCID小鼠体内归巢的影响及其可能的机制.方法 将CD34+细胞与MSC细胞共移植入经放射线照射后的NOD/SCID小鼠,采用流式细胞术和RT-PCR检测移植后20 h NOD/SCID小鼠骨髓及脾脏中人CD34+细胞,计算其相应的骨髓和脾脏的归巢效率.将脐血CD34+细胞与脐带MSC体外共培养,检测MSC细胞对CD34+细胞趋化功能的影响;并于培养4、7 d检测培养后CD34+细胞表面CD49e、CD31、CD62L、CD11a等归巢相关黏附分子表达情况.结果 ①移植后20 h采用流式细胞术成功在小鼠骨髓和脾脏中检测到人CD45+细胞.共移植组CD34+细胞骨髓归巢率[(7.2±1.1)%]高于单移植组[(5.4±0.9)%](P<0.05).②RT-PCR结果 显示共移植组小鼠骨髓细胞和脾脏细胞,单移植组小鼠脾脏细胞扩增得到人GAPDH基因片段,而单移植组小鼠骨髓细胞未见明显扩增条带.③MSC存在时,CD34+细胞的体外迁移能力为(35.7±5.8)%,显著高于CD34+细胞自发迁移率[(3.5±0.6)%,P<0.05].④CD34+细胞与MSC体外共培养后细胞表面CD49e、CD31和CD62L黏附分子的表达水平高于CD34+细胞单独培养组.结论 MSC细胞与CD34+细胞共移植有利于CD34+细胞向骨髓、脾脏等造血器官归巢,这可能与MSC促进CD34+细胞迁移以及维持CD34+细胞表面归巢相关黏附分子的表达相关.  相似文献   

11.
BACKGROUND: The transplantation of autologous peripheral blood progenitor cells (PBPCs) after high-dose chemotherapy is a valuable therapy for patients with hematologic and solid malignancies. Several methods are used for harvesting PBPCs. The efficiency of intermittent- and continuous-flow blood cell separators in collecting progenitor cells from the blood of patients undergoing myeloablative treatment for cancer was compared. STUDY DESIGN AND METHODS: PBPC components (n = 133) were obtained from 72 patients by leukapheresis with continuous-flow machines (Spectra, COBE; CS 3000 Plus, Baxter) and with an intermittent-flow machine (MCS 3P, Haemonetics). The data were analyzed retrospectively. Blood samples obtained from the patients before leukapheresis and samples of the leukapheresis components themselves were analyzed for their content of RBCs, WBCs, platelets, and CD34+ cells. RESULTS: The Spectra processed more than twice the blood volume in the shortest time (15 L in 178 min), whereas the Baxter CS 3000 Plus (10 L in 185 min) and the MCS 3P (4.8 L in 239 min) processed significantly smaller volumes in a longer time. The mean ACD consumption was 403 mL with the MCS 3P, 900 mL with the CS 3000 Plus, and 1000 mL with the Spectra. The product volumes were 50 mL (CS 3000 Plus), 69 mL (MCS 3P), and 166 mL (Spectra). In all groups, differences in the preapheresis hemograms were not significant, but the Spectra group had fewer CD34+ cells than the other groups. Despite this, the differences in the number of CD34+ cells in the leukapheresis components of all groups were without statistical significance. In the Spectra group, the collection of MNCs of 104 percent and CD34+ cells of 154 percent was significantly more efficient than that in the MCS 3P group (42.2% and 56%, respectively) or the CS 3000 Plus group (50.8% and 47.15%) as related to the patients' blood volume. CONCLUSION: PBPC collection can be performed successfully with continuous-flow and intermittent-flow blood cell separators. The Spectra had the best recovery of CD34+ cells within the shortest time. Leukapheresis with the MCS 3P is indicated if only a single venous access is available.  相似文献   

12.
BACKGROUND: The collection of peripheral blood stem and progenitor cells (PBPCs) for transplantation can be time-consuming and expensive. Thus, the utility of counting CD34+ cells and white cells (WBCs) in the peripheral blood was evaluated as a predictor of CD34+ cell yield in the apheresis component. STUDY DESIGN AND METHODS: The WBC and CD34+ cell counts in the peripheral blood and the apheresis components from 216 collections were assessed. Sixty-three patients underwent mobilization with chemotherapy plus filgrastim, and 17 patients and 14 allogeneic PBPC donors did so with filgrastim alone. The relationship between the number of WBC and CD34+ cells in the peripheral blood and in the apheresis component was analyzed by using rank correlation and linear regression analysis. RESULTS: The correlation coefficient for CD34+ cells per liter of peripheral blood with CD34+ cell yield (x 10(6)/kg) was 0.87 (n = 216 collections). This correlation existed for many patient and collection variables. However, patients with acute myeloid leukemia had fewer CD34+ cells in the apheresis component at any level of peripheral blood CD34+ cell count. Components collected from patients with CD34+ cell counts below 10 x 10(6) per L in the peripheral blood contained a median of 0.75 x 10(6) CD34+ cells per kg. When the WBC count in the blood was below 5.0 x 10(9) per L, the median number of CD34+ cells in the peripheral blood was 5.6 x 10(6) per L (range, 1.0-15.5 x 10(6)/L). A very poor correlation was found between the WBC count in the blood and the CD34+ cell yield (p = 0.12, n = 158 collections). CONCLUSION: The number of CD34+ cells, but not WBCs, in the peripheral blood can be used as a predictor for timing of apheresis and estimating PBPC yield. This is a robust relationship not affected by a variety of patient and collection factors except the diagnosis of acute myeloid leukemia. Patients who undergo mobilization with chemotherapy and filgrastim also should undergo monitoring of peripheral blood CD34+ cell counts, beginning when the WBC count in the blood exceeds 1.0 to 5.0 x 10(9) per L.  相似文献   

13.
14.
BACKGROUND: Ex vivo expansion strategies with different cytokine combinations are currently used by several groups as a means of increasing the number of HPCs for a variety of special clinical applications. Because there is little information on the potential role of IL-10 in such ex vivo expansion models, the effect of this cytokine on the generation of myeloid progenitor cells in suspension cultures was investigated. STUDY DESIGN AND METHODS: On the basis of data from the literature and from new experiments, the combination of SCF and IL-3 at concentrations of 100 ng per mL and 100 U per mL, respectively, was chosen as the standard cocktail. The addition of IL-10 to such cultures resulted in a marked and dose-dependent potentiation of myeloid progenitor cell production. RESULTS: Using unmanipulated leukapheresis components from 13 individuals (including lymphoma and cancer patients and normal donors), the expansion multiple of CFU-GM after 14 days as compared with pre-expansion values was 9.54 +/- 2.31 times by SCF/IL-3 and 46.38 +/- 7.37 times by the combination of SCF/IL-3 and 100 ng per mL of IL-10 (p<0.001). IL-10 also potentiated CFU-GM generation from selected CD34 PBMNCs (n = 9) with an expansion of 17.22 +/- 7.04 times versus 45.67 +/- 16.78 times using the SCF/IL-3 and SCF/IL-3/IL-10 combination, respectively (p<0.05). Moreover, expansion-promoting effects of IL-10 were observed in liquid cultures containing MNCs from bone marrow (n = 4) and cord blood (n = 3), but did not reach statistical significance because of the small number of samples. CONCLUSION: These results suggest IL-10 as a useful cytokine to optimize progenitor cell-expansion strategies for clinical application.  相似文献   

15.
BACKGROUND: The isolation of CD34+ cells from mobilized peripheral blood is being increasingly used in the setting of allogeneic or autologous hematopoietic cell transplantation. Investigation of variables that may influence the effectiveness of CD34+ cell selection is of interest. STUDY DESIGN AND METHODS: Fifty-one CD34+ cell selections from peripheral blood progenitor cells (PBPCs) (39 allogeneic and 12 autologous) were performed using a magnetic cell separator (Isolex 300i, Baxter), including version 2.0 software. The results obtained were analyzed for different processing variables. The feasibility of transplanting these isolated CD34+ cells was also analyzed. RESULTS: The isolated CD34+ cell fraction had a median purity of 88.9 percent (range, 47.8-98.3). The median recovery of CD34+ cells was 45.1 percent (13.8-76.2), and the median colony-forming unit- granulocyte-macrophage (CFU-GM) content was 17. 2 percent (0.8-58.6). Logarithms of T- and B-cell depletion had median values of 3.7 and 2.8, respectively. The version 2.0 software of the Isolex 300i gave a higher CD34+ cell recovery in the enriched cell fraction (median 57.8%) than did version 1.11 (39.4%) or 1.12 (44.4%) (p = 0.01). The use of recombinant human deoxyribonuclease I during cell processing yielded more CD34+ cells (53% vs. 41%, p = 0. 01) and higher purity (92.8% vs. 87%, p = 0.03). There was a correlation between the percentage of CD34+ cells labeled with the monoclonal antibody 8G12 clone and the percentage of CD34+ cells labeled with the monoclonal antibody used during the processing technique (9C5 clone) in the initial, enriched, and depleted CD34+ cell fractions (R(2) = 0.95; 0.92; 0.78, p< 0.005, respectively). Median times for recovering >0.5 x 10(9) per L of granulocytes and >20 x 10(9) per L of platelets were 13 and 16 days in the allograft patients and 13 and 14 days in the autograft patients. CONCLUSION: CD34+ cells can be highly and effectively isolated from allogeneic and autologous grafts by use of this automated technique, with a high grade of T- and B-cell depletion. These purified CD34+ cell components can engraft normally.  相似文献   

16.
BACKGROUND: The optimal time for postchemotherapy granulocyte-colony stimulating factor (G-CSF) administration before peripheral blood stem and progenitor cell (PBPC) collection is not well defined. The impact of G-CSF scheduling on the number of CD34+ cells collected by leukapheresis from 65 patients with malignant disease was studied retrospectively. STUDY DESIGN AND METHODS: Chemotherapy was performed on Days 1 and 2 and was followed by G-CSF to mobilize PBPCs. In Group 1, 30 patients received the first dose of G-CSF immediately after the end of chemotherapy, as commonly recommended. In Group 2, 35 patients received the first G-CSF dose after the end of chemotherapy (Days 7 or 8). RESULTS: No difference was observed between the two groups in white cell recovery and the median number of CD34+ cells harvested. The number of leukapheresis procedures necessary to obtain the minimal number of 3 x 10(6) CD34+ cells per kg was the same. The proportion of patients with a failure of PBPC collection was similar, and G-CSF consumption was reduced in Group 2 without increasing infectious risks. CONCLUSION: Early administration of G-CSF after chemotherapy appears not to be a prerequisite for satisfactory PBPC collection. This approach could allow significant savings in terms of medical cost. A randomized and prospective study would be necessary, however, to assess the validity of these conclusions.  相似文献   

17.
Tsang KS  Li CK  Wong AP  Leung Y  Lau TT  Li K  Shing MM  Chik KW  Yuen PM 《Transfusion》1999,39(11-12):1212-1219
BACKGROUND: Various open and semi-closed methods are used for red cell (RBC) depletion and hematopoietic progenitor cell (HPC) enrichment of bone marrow (BM) in vitro, but with variable efficacy. A simple, efficient, and safe method using dextran 110k was developed. STUDY DESIGN AND METHODS: An equal volume of 4.5-percent dextran was applied to major ABO-incompatible BM in transfer bags and sedimentation was allowed for 30 minutes. RBCs, nucleated cells (NCs), and mononuclear cells (MNCs) from BM allografts before and after dextran sedimentation (DS) were counted. Flow cytometry, short-term cultures, and long-term cultures were performed to assay the respective recovery of CD34+ cells, colony-forming units (CFUs), and long-term culture-initiating cells (LTC-ICs). RESULTS: Sixteen BM collections were processed.The mean volume was 666 mL (range, 189-1355 mL).The mean +/-1 SD post-DS NC, MNC, CD34+ cell, and CFU counts per kg of the recipient's body weight were 4.11 +/-1.74 x 10(8), 8.98 +/- 3.68 x 10(7), 2.90 +/- 1.95 x 10(6), and 2.03 +/- 2.01 x 10(5), respectively, with the corresponding post-DS recovery being 90.6 percent, 90 percent, 92.4 percent, and 100.8 percent. The numbers of LTC-ICs in cultures (up to 12 weeks) of pre-DS and post-DS samples of five BM allografts were comparable (p = 0.91). Residual RBCs were 5.1 +/- 4.6 (0.1-14) mL with depletion of 96.5 +/- 3.2 percent. There was no significant difference in the mean absolute RBC count in post-DS BM allografts and in four ficoll-treated BM allografts (8.09 x 10(10) vs. 4.9 x 10(9); p = 0.206) and in eight major ABO-incompatible peripheral blood HPC collections (8.09 x 10(10) vs. 9.81 x 10(10); p = 0.87). No posttransplant hemolysis was encountered. Engraftment occurred at 22 +/- 7 days, which is similar to that of four transplants with ficoll-treated BM allografts (22 +/- 9; p = 0.611) and 54 unprocessed BM allografts (19 +/- 6; p = 0.129). CONCLUSION: DS is an efficient method of depleting RBCs in major ABO-incompatible BM allografts without significant loss of HPCs.  相似文献   

18.
目的比较脐血和骨髓中造血干/祖细胞(HSPC)的免疫表型差异.方法使用流式细胞术(FCM)双标法对38份脐血及10份骨髓HSPC进行免疫表型分析.结果①脐血有核细胞中CD34+细胞所占比例与骨髓中相近,约为0.5%;②脐血CD34+细胞中CD34+CD38-[(17.C4±5.37)%]、CD34+HLA-DR-[(32.65±10.71)%]及CD34+H-CAM+(CD44+)[(77.84±7.69)%]亚群含量均高于骨髓[含量分别为(8.26±3.19)%、(14.05±1.67)%和(70.02±6.40)%],CD34+CD13+、CD34+CD19+亚群比例低于骨髓.结论脐血与骨髓CD34+细胞比例相近,但前者较原始的干细胞含量更高,故脐血是极具潜力的HSPC来源;而脐血CD34+细胞中髓系及淋系祖细胞含量低于骨髓,可能是脐血移植后造血及免疫重建缓慢的原因之一.  相似文献   

19.
BACKGROUND: Phthalocyanines are useful sensitizers for photodynamic sterilization of red cell concentrates. Various lipid-enveloped viruses can be inactivated with only limited red cell damage. Because white cells are involved in the immunomodulatory effects of blood transfusions, the study of the effect of photodynamic treatment on these cells is imperative. STUDY DESIGN AND METHODS: White cell-enriched red cell suspensions were photodynamically treated with either the hydrophobic Pc4 (HOSiPcOSi-(CH3)2(CH2)3N(CH3)2) or water-soluble aluminum phthalocyanine tetrasulfonate (AIPCS4) under virucidal conditions. Viability of white cell subpopulations on Days 0, 1, and 4 after treatment was determined by fluorescence-activated cell sorting by flow cytometric analysis of propidium iodide uptake. Apoptosis induction was studied by DNA ladder formation and staining for an early marker of apoptosis (annexin V). RESULTS: Treatment with Pc4 causes a significant decrease in cell viability of all white cells, as shown by prodidium iodide uptake. Monocytes and granulocytes are the most sensitive, and lymphocytes are relatively more resistant. Some of the cells die by apoptosis, which is induced within 30 minutes after treatment. Treatment with AIPCS4 damages only monocytes; other cell populations are not affected. CONCLUSIONS: Physicochemical properties of the photosensitizers partly determine their effect on white cells. Differences in intracellular localization are likely to be responsible for the effects observed.  相似文献   

20.
BACKGROUND: Mobilization with chemotherapy and G-CSF may result in poor peripheral blood HPC collection, yielding <2 x 10(6) CD34+ cells per kg or <10 x 10(4) CFU-GM per kg in leukapheresis procedures. The best mobilization strategy for oncology patients remains unclear. STUDY DESIGN AND METHODS: In 27 patients who met either the CD34 (n = 3) or CFU-GM (n = 2) criteria or both (n = 22), the results obtained with two successive strategies-that is, chemotherapy and G-CSF at 10 microg per kg (Group 1, n = 7) and G-CSF at 10 microg per kg alone (Group 2, n = 20) used for a second mobilization course-were retrospectively analyzed. The patients had non-Hodgkin's lymphoma (5), Hodgkin's disease (3), multiple myeloma (5), chronic myeloid leukemia (1), acute myeloid leukemia (1), breast cancer (6), or other solid tumors (6). Previous therapy consisted of 10 (1-31) cycles of chemotherapy with additional chlorambucil (n = 3), interferon (n = 3), and radiotherapy (n = 7). RESULTS: The second collection was undertaken a median of 35 days after the first one. In Group 1, the results of the two mobilizations were identical. In Group 2, the number of CD34+ cells per kg per apheresis (0.17 [0.02-0.45] vs. 0.44 [0.11-0.45], p = 0. 00002), as well as the number of CFU-GM (0.88 [0.00-13.37] vs. 4.19 [0.96-21.61], p = 0.00003), BFU-E (0.83 [0.00-12.72] vs. 8.81 [1. 38-32.51], p = 0.00001), and CFU-MIX (0.10 [0.00-1.70] vs. 0.56 [0. 00-2.64], p = 0.001134) were significantly higher in the second peripheral blood HPC collection. However, yields per apheresis during the second collection did not significantly differ in the two groups. Six patients in Group 1 and 18 in Group 2 underwent transplantation, and all but one achieved engraftment, with a median of 15 versus 12 days to 1,000 neutrophils (NS), 22 versus 16 days to 1 percent reticulocytes (NS), and 26 versus 26 days to 20,000 platelets (NS), respectively. However, platelet engraftment was particularly delayed in many patients. CONCLUSION: G-CSF at 10 microg per kg alone may constitute a valid alternative to chemotherapy and G-CSF to obtain adequate numbers of peripheral blood HPCs in patients who previously failed to achieve mobilization with chemotherapy and G-CSF. This strategy should be tested in prospective randomized trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号