首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: To establish the extent of inter-hospital spread of methicillin-resistant Staphylococcus aureus (MRSA) in Zagreb and to determine the most suitable method for typing local strains.
Methods: We analyzed a collection of 33 MRSA isolates from three Zagreb hospitals together with five unrelated British MRSA isolates by antibiogram typing, bacteriophage typing, randomly amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis (PFGE) after digestion with Smal restriction endonuclease. Bacteriophage typing was done with the international set of S. aureus typing phages. RAPD and PFGE profiles were analyzed visually and by using the 'GelCompar' computer program.
Results: Antibiogram typing provided eight profiles. Thirty (91%) of the 33 Croatian strains of MRSA were non-typable by phage typing. Visual analysis of RAPD products identified six, and visual analysis of PFGE fragments nine, distinct profiles. Computer analysis of RAPD data separated British isolates from the Croatian ones, but did not cluster the visually determined RAPD types. PFGE computer analysis separated British isolates and clustered isolates in concordance with visual interpretation. Thirty-one of the 38 isolates (82%) were visually grouped in the same clusters by both molecular methods. The dominant strain was present in each of the three hospitals.
Conclusions: Bacteriophage typing was unhelpful for the analysis of Croatian MRSA, since most strains were untypable with the international set of bacteriophages. RAPD and PFGE were more successful in typing the organisms and showed evidence of inter-hospital spread of one predominant MRSA strain in all three Zagreb hospitals. Thus RAPD and PFGE proved to be a useful aid in elucidating the epidemiology of MRSA infection in Zagreb hospitals and should be established in Croatia for typing MRSA.  相似文献   

2.
Enterobacter sakazakii, designated a unique species in 1980, has been implicated as the causative organism in a rare but severe form of neonatal meningitis. Dried infant formula milk has been identified as a potential source of the organism. E. sakazakii isolates from dried infant formula available in Canada and clinical isolates obtained from Canadian hospital culture collections were characterised by phenotypic (biotype and antibiograms) and genotypic (ribotyping, random amplification of polymorphic DNA and pulsed-field gel electrophoresis) methods. Three biotypes and four antibiogram patterns were observed in the 18 isolates examined. Ribotyping with the Dupont Riboprinter microbial identification system divided the 18 isolates into 10 ribotypes. Three isolates from the same hospital had indistinguishable ribotyping patterns although each was isolated in a different year, as did three food isolates from one company. Pulsed-field gel electrophoresis (PFGE) and random amplification of polymorphic DNA (RAPD) profiles indicated minor differences between the isolates that were indistinguishable by ribotyping. PFGE (with the restriction endonucleases Xba1 and Spe1) and RAPD gave discrete patterns that enabled easy comparison of E. sakazakii isolates, with a high degree of discrimination. The discriminatory index showed RAPD and PFGE were shown to be the most discriminatory typing schemes for E. sakazakii, followed by ribotyping, biotyping and antibiograms.  相似文献   

3.
During 1994, 10 isolates of extended-spectrum beta-lactamase-producing Salmonella typhimurium were recovered from children transferred to our hospital from two different centers. Two additional isolates were recovered from two nurses from one of these centers. The aim of this study was to determine if there is any relationship between these isolates. The characterization was done by phenotypic and genotypic methods: biotyping, phage typing, antibiotic susceptibility pattern determination, plasmid analysis, ribotyping (by the four endonucleases EcoRI, SmaI, BglII, and PvuII), pulsed-field gel electrophoresis (PFGE) of genome macrorestriction patterns with XbaI, and randomly amplified polymorphic DNA (RAPD) pattern determination (with the three primers 217 d2, B1, and A3). The same biotype, the same serotype, and an identical antibiotype were found. All isolates were resistant to oxyimino-beta-lactams, gentamicin, tobramycin, and sulfamethoxazole-trimethoprim. All isolates showed an indistinguishable pattern by ribotyping and very similar patterns by PFGE and RAPD. The overall results indicated the spread of a closely related strain of S. typhimurium in children and nurses.  相似文献   

4.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become an increasing problem worldwide in recent decades. Molecular typing methods have been developed to identify clonality of strains and monitor spread of MRSA. We compared a new commercially available DiversiLab (DL) repetitive element PCR system with spa typing, spa clonal cluster analysis, and pulsed-field gel electrophoresis (PFGE) in terms of discriminatory power and concordance. A collection of 106 well-defined MRSA strains from our hospital was analyzed, isolated between 1994 and 2006. In addition, we analyzed 6 USA300 strains collected in our institution. DL typing separated the 106 MRSA isolates in 10 distinct clusters and 8 singleton patterns. Clustering analysis into spa clonal complexes resulted in 3 clusters: spa-CC 067/548, spa-CC 008, and spa-CC 012. The discriminatory powers (Simpson's index of diversity) were 0.982, 0.950, 0.846, and 0.757 for PFGE, spa typing, DL typing, and spa clonal clustering, respectively. DL typing and spa clonal clustering showed the highest concordance, calculated by adjusted Rand's coefficients. The 6 USA300 isolates grouped homogeneously into distinct PFGE and DL clusters, and all belonged to spa type t008 and spa-CC 008. Among the three methods, DL proved to be rapid and easy to perform. DL typing qualifies for initial screening during outbreak investigation. However, compared to PFGE and spa typing, DL typing has limited discriminatory power and therefore should be complemented by more discriminative methods in isolates that share identical DL patterns.  相似文献   

5.
A cluster of methicillin-resistant Staphylococcus aureus (MRSA) infections among patients on an intensive care unit (ICU) was detected by routine infection control surveillance. In the period from 5 January to 22 June 1995, 10 patients on the ICU and a further 6 patients (5 on one ward that had received colonized patients transferred from the ICU) were affected by MRSA strains with the same antibiotic susceptibility patterns. Seven (44%) of these 16 colonized patients developed MRSA bacteremia. MRSA isolates with the same characteristics were also found on the hands of one member of the ICU staff. The isolates were untypeable by phage typing, but 15 of 17 outbreak strains analyzed genetically had identical randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) profiles. A single strain of MRSA that was nontypeable by phage typing and that was isolated on the ICU on 1 January and six nontypeable and epidemiologically unrelated MRSA isolates all had RAPD profiles distinct from that of the outbreak strain. Implementation of strict infection control measures stopped the further spread of MRSA on the ICU, the affected general ward, and seven other wards that received MRSA carriers from the ICU. Although nontypeable by phage typing and not previously recognized as an epidemic strain, this strain of MRSA was readily transmissible and highly virulent. RAPD typing was found to be a simple, rapid, and effective method for the epidemiological investigation of this outbreak, and performance of typing by this method was simpler and less time-consuming than that of typing by PFGE. RAPD typing may have more general application for the study of S. aureus infections in hospitals.  相似文献   

6.
A total of 61 isolates of Salmonella enteritidis were analyzed by the techniques of pulsed-field gel electrophoresis (PFGE) and ribotyping. Twenty-three of the isolates were from Zurich, Switzerland, and 38 isolates were from the University Hospital, Kuala Lumpur, Malaysia. Five of the Malaysian isolates were hospital-related outbreak strains and were shown to be indistinguishable by PFGE analysis following digestion with three different restriction endonucleases, XbaI (5'-TCTAGA-3'), SpeI (5'-ACTAGT-3'), and AvrII (5'-CCTAGG-3'). The PFGE pattern of an isolate from a suspected carrier staff nurse was found to be identical to those of the hospital outbreak isolates. These isolates were also indistinguishable by ribotyping with SmaI and SphI. The same single PFGE pattern was also detected in 29 of 32 sporadic isolates of S. enteritidis. Four closely related ribotypes were detected among these 29 isolates. Similarly, outbreak-related strains from Switzerland showed close genetic identity by PFGE and ribotyping. Strains obtained from poultry showed more variations in their PFGE patterns and ribotypes, although the patterns were still closely related. In addition, SphI ribotypes A and D among the Swiss strains correlated with phage types 4 and 8, respectively. No correlation of phage types with PFGE pattern was noted. Both PFGE and ribotyping indicate that the S. enteritidis strains circulating in Malaysia and Switzerland are very similar and may be clonally related. Comparison of the PFGE patterns with the ribotypes for 23 Swiss and 16 Malaysian isolates showed that there was a 69% concordance in the grouping of isolates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Six methods for subtyping of Campylobacter jejuni were compared and evaluated with a collection of 90 isolates from poultry, cattle, and sporadic human clinical cases as well as from a waterborne outbreak. The applied methods were Penner heat-stable serotyping; automated ribotyping (RiboPrinting); random amplified polymorphic DNA typing (RAPD); pulsed-field gel electrophoresis (PFGE); restriction fragment length polymorphisms of the flagellin gene, flaA (fla-RFLP); and denaturing gradient gel electrophoresis of flaA (fla-DGGE). The methods were evaluated and compared on the basis of their abilities to identify isolates from one outbreak and discriminate between unrelated isolates and the agreement between methods in identifying clonal lines. All methods identified the outbreak strain. For a collection of 80 supposedly unrelated isolates, RAPD and PFGE were the most discriminatory methods, followed by fla-RFLP and RiboPrinting. fla-DGGE and serotyping were the least discriminative. All isolates included in this study were found to be typeable by each of the methods. Thirteen groups of potentially related isolates could be identified using a criterion that at least four of the methods agreed on clustering of isolates. None of the subtypes could be related to only one source; rather, these groups represented isolates from different sources. Furthermore, in two cases isolates from cattle and human patients were found to be identical according to all six methods.  相似文献   

8.
Automated ribotyping, pulsed-field gel electrophoresis (PFGE) and serotyping were evaluated for the epidemiological study of isolates of Listeria monocytogenes collected in Finland in 1997-1999 from human blood (n = 116) and the food industry (n = 72). The isolates divided into six serotypes, 23 EcoRI ribotypes, 54 AscI PFGE types, and 57 final subtypes if all results were combined. The discrimination index of ribotyping was lower (0.873) than that of PFGE (0.946). Two final subtypes dominated among human isolates, and identical subtypes were also found among food industry isolates. All PFGE types were serotype-specific, whereas two ribotypes included isolates of two serotypes. Isolates of serotype 3a, involved in an outbreak in Finland in 1999, matched one of these ribotypes, which also included some food industry isolates of serotype 1/2a. Ribotyping with EcoRI would not have been sufficient to define the outbreak in Finland caused by serotype 3a isolates. Although ribotyping is applicable as the first method in outbreak situations, human and food isolates with identical ribotypes should be investigated further by PFGE.  相似文献   

9.
A variety of methods is used for a molecular typing of Enterococcus spp. and related gram-positive bacteria including macrorestriction analysis using pulsed-field gel electrophoresis (PFGE), ribotyping, rapid amplification of polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP). To test the influence of transferable determinants on the outcome of different typing methods commonly used for enterococci, we established a homogenous strain collection of 24 transconjugants resulting from filter matings with antibiotic-resistant Enterococcus faecium. As expected, AFLP, RAPD, and PFGE all identified our model bacteria as strongly related. However, distinct differences in the resolving and discriminatory power of the tested methods could be clearly addressed. In PFGE, 22 of 24 transconjugants possessed less than a three-band difference to the recipient pattern and would be regarded as strongly related. Three different RAPD PCRs were tested; in two reactions, identical patterns for all transconjugants and the recipient were produced. One RAPD PCR produced an identical pattern for 18 transconjugants and the recipient and a clearly different pattern for the remaining 6 transconjugants due to a newly appearing fragment resulting from acquisition of the tetL gene. AFLP clusters all transconjugants into a group of major relatedness. Percent similarities were highly dependent on the method used for calculating the similarity coefficient (curve-based versus band-based similarity coefficient). Fragment patterns of digested plasmids showed the possession of nonidentical plasmids in most transconjugants. PFGE still could be recommended as the method of choice. Nevertheless, the more-modern AFLP approach produces patterns of comparable discriminatory power while possessing some advantages over PFGE (less-time-consuming internal standards). Plasmid fingerprints can be included to subdifferentiate enterococcal isolates possessing identical macrorestriction and PCR typing patterns.  相似文献   

10.
Fifty-seven independent isolates of Pseudomonas aeruginosa from blood specimens were typed with 3 different methods: ribotyping, random amplified polymorphic DNA (RAPD) typing, and pyocin typing. Ribotyping was performed by probing the rRNA genes of genomic DNA that was digested separately with 4 different restriction enzymes. Digestion of DNA from 57 P. aeruginosa isolates with BamHI, ClaI, EcoRI, and PstI produced 4, 4, 6, and 7 patterns, respectively. As a result, ribotyping classified the 57 isolates into 22 types. Six new ribotypes that had not been described previously were found. One BamHI, 1 ClaI, 2 EcoRI, and 2 PstI patterns were novel. RAPD typing was performed with two different polymerase chain reaction (PCR) primers (RAPD1 and RAPD2). Both primers classified the 57 isolates into 15 RAPD types and produced identical patterns. The pyocin typing method classified the 57 isolates into 10 types. According to the results obtained in this study, the ribotyping has a discriminatory index of 0.865, RAPD, 0.785, and pyocin typing, 0.676, respectively. The ribotyping method was the most effective among the 3 methods compared for typing P. aeruginosa isolates.  相似文献   

11.
The diphtheria epidemic in the Russian Federation in the 1990s made diphtheria a focus of global concern once again. The development of rapid and reproducible typing methods for the molecular characterization of Corynebacterium diphtheriae has become a priority in order to be able to monitor the spread of this important pathogen on a global scale. We report on a comparison of four molecular typing methods (ribotyping, pulsed-field gel electrophoresis [PFGE], random amplification of polymorphic DNA [RAPD], and amplified fragment length polymorphism [AFLP]) for the characterization of C. diphtheriae strains. Initially, 755 isolates originating from 26 countries were analyzed by ribotyping. One strain of each ribotype was then randomly chosen and characterized by PFGE, RAPD, and AFLP. In order to ascertain whether the Eastern European epidemic ribotype could be further discriminated, 10 strains of ribotype D1 (the epidemic ribotype) from different geographical regions were randomly chosen and subjected to analysis by PFGE, RAPD, and AFLP. The results revealed that ribotyping is highly discriminatory and reproducible and is currently the method of choice for typing C. diphtheriae. PFGE and AFLP were less discriminatory than ribotyping and RAPD. An assessment of the transcontinental spread of the organism showed that several genotypes of C. diphtheriae circulated on different continents of the world and that each outbreak was caused by a distinct clone. The ribotypes seen in Europe appeared to be distinct from those seen elsewhere, and certain ribotypes appeared to be unique to particular countries.  相似文献   

12.
Rapid and sensitive methods for accurate strain delineation are essential for monitoring and preventing transmission of methicillin-resistant Staphylococcus aureus (MRSA). Pulsed-field gel electrophoresis (PFGE) has been the standard technique for strain typing most bacterial species including MRSA. The goal of this study was to compare the performance of the DiversiLab microbial typing system (Bacterial BarCodes, Inc., Houston, TX) (rep-PCR) to that of PFGE for typing MRSA isolates from five well-defined outbreaks. The DiversiLab rep-PCR assay is a rapid, semiautomated method based on PCR amplification of specific regions between noncoding repetitive sequences in the bacterial genome. rep-PCR was performed according to the manufacturer's recommendations, and the results were analyzed and dendrograms were generated using the DiversiLab analysis software (version 2.1.66 a). PFGE was performed and interpreted according to published procedures. rep-PCR results using similarity indices (SI) of 80%, 85%, and 90% were compared to PFGE analysis. In addition, intra- and interrun reproducibility was determined for rep-PCR. Overall, correct assignment to outbreak versus nonoutbreak clusters occurred for 91 of 109 isolates (85% agreement) when using a SI of 85%. For each specific outbreak, concordance between rep-PCR and PFGE ranged from 73% to 100%. There were 18 discrepant results (17%). Fourteen isolates were unique by PFGE, but they were placed in clusters by rep-PCR; the other 4 were placed in clusters different from those assigned by PFGE. Intra- and interrun reproducibility was excellent. Times to results were 12 to 24 h for rep-PCR compared to 2 to 4 days for PFGE. Rapid, standardized results and excellent reproducibility make rep-PCR a valuable tool for use in MRSA investigations. However, since rep-PCR was less discriminatory than PFGE, we recommend that it be used to screen isolates, followed by testing isolates which share the same rep-PCR pattern with a more sensitive method, such as PFGE or multilocus sequence typing.  相似文献   

13.
In this study, we have compared genomic DNA fingerprintings among isolates of methicillin-resistant Staphylococcus aureus (MRSA) by using pulsed-field gel electrophoresis (PFGE). Chromosomal fragments digested with SmaI were most suitable for the PFGE separation. SmaI cut genomic DNA into 15 to 20 fragments whose sizes ranged from about 30 to 1,500 kb. Thirty-one distinctive fragment patterns were identified in 111 infecting and colonizing MRSA isolates from six different hospitals in Japan. On the basis of the genomic typing by PFGE, we performed an epidemiological investigation of an outbreak of nosocomial MRSA infections among inpatients in Nagoya University Hospital. Ten types of chromosomal digestion were identified in the 20 strains isolated from 18 infected patients and 1 from colonized hospital personnel. According to the restriction patterns, we found that four types of these strains had caused epidemic infections among 13 patients in the outbreak. Two types (types 1 and 4) of the strains were involved in the death of five patients. The other infections were sporadic. The clarity and polymorphism of the chromosomal digestion patterns enabled us to discriminate between isolates which could not be differentiated by antibiogram or plasmid analysis. Classification of the genomic DNA fingerprinting patterns by PFGE is therefore proposed as a useful method for investigating the source, transmission, and spread of nosocomial MRSA infections.  相似文献   

14.
Since 1990, the frequency of Neisseria meningitidis serogroup C (NMSC) outbreaks in the United States has increased. Based on multilocus enzyme electrophoresis (MEE), the current molecular subtyping standard, most of the NMSC outbreaks have been caused by isolates of several closely related electrophoretic types (ETs) within the ET-37 complex. We chose 66 isolates from four well-described NMSC outbreaks that occurred in the United States from 1993 to 1995 to evaluate the potential of pulsed-field gel electrophoresis (PFGE) to identify outbreak-related isolates specific for each of the four outbreaks and to differentiate between them and 50 sporadic isolates collected during the outbreak investigations or through active laboratory-based surveillance from 1989 to 1996. We tested all isolates collected during the outbreak investigations by four other molecular subtyping methods: MEE, ribotyping (ClaI), random amplified polymorphic DNA assay (two primers), and serotyping and serosubtyping. Among the 116 isolates, we observed 11 clusters of 39 NheI PFGE patterns. Excellent correlation between the PFGE and the epidemiological data was observed, with an overall sensitivity of 85% and specificity of 71% at the 95% pattern relatedness breakpoint using either 1.5 or 1.0% tolerance. For all four analyzed outbreaks, PFGE would have given public health officials additional support in declaring an outbreak and making appropriate public health decisions.  相似文献   

15.
Seventy-three isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex, including 26 isolates from 10 hospital outbreaks, were typed by ribotyping with EcoRI and ClaI and by pulsed-field gel electrophoresis (PFGE) of genomic DNA after digestion with ApaI. Ribotyping with EcoRI distinguished 31 ribopatterns. Digestion with ClaI generated another eight ribotypes. PFGE, in contrast, identified 49 distinct patterns with seven variants. Both methods detected all outbreak-related isolates. By ribotyping, nine epidemiologically unrelated strains could not be differentiated from outbreak strains, in contrast to only one isolate not identified by PFGE. Thus, PFGE was more discriminating than ribotyping. However, ribotyping is known to generate banding patterns specific to each DNA group in the A. calcoaceticus-A. baumannii complex that may be used for taxonomic identification of the strains. PFGE was shown to lack this property. Both methods are therefore useful for strain differentiation in epidemiological studies of Acinetobacter isolates.  相似文献   

16.
Serogroup C of Clostridium difficile is the serogroup most frequently related to outbreaks. Fifty-six toxigenic serogroup C isolates of C. difficile were genotyped by ribotyping PCR (ribo-PCR), random amplified polymorphic DNA (RAPD) assay, and pulsed-field gel electrophoresis (PFGE). Thirty-five of the 56 isolates were recovered from four unrelated outbreaks (Belgium, 1987, 1992, and 1995; France, 1992 to 1993) 7 derived from a spatiotemporal cluster in Cotonou, Benin (1992), and 14 were sporadic isolates. The serogroup C reference strain, also isolated during an outbreak (Belgium, 1983), was genotyped too. Ribo-PCR, the RAPD assay, and PFGE generated 2, 5, and 11 major genotypes, respectively. Combination of the three methods finally yielded 13 general types, although ribo-PCR did not play any role in enhancing resolution. Three general types were recovered from all the isolates from the five outbreaks and the cluster, with two types being predominant. The 14 sporadic serogroup C isolates were divided into 11 overall genotypes. These results indicate that genotyping methods, and more particularly the combination of the RAPD assay and PFGE, can resolve genetic diversity within toxigenic, serogroup C C. difficile strains. Also, this study suggests that outbreak-related serogroup C strains are limited to a few genetically stable and apparently very widely (internationally and intercontinentally) distributed genotypes.  相似文献   

17.
A combined clinical and molecular epidemiologic analysis of 46 strains of Clostridium difficile, including 16 nosocomial isolates from one ward (outbreak ward) plus 17 other nosocomial isolates and 13 community-acquired isolates, was performed. HindIII digests of total cellular DNA were analyzed by restriction enzyme analysis (REA) and ribotyping; SmaI digests were analyzed by pulsed-field gel electrophoresis (PFGE). Isolates were assigned to typing groups on the basis of the profiles detected; isolates with closely related profiles were assigned to subgroups. The 16 isolates from the outbreak ward were resolved by both REA and PFGE into five distinct groups; 13 isolates represented two REA groups and three PFGE groups and two isolates were resolved as distinct groups by both techniques. DNA obtained from one isolate was persistently partially degraded, precluding analysis by PFGE. Seventeen sporadic nosocomial isolates were resolved by REA and PFGE into comparable numbers of groups (i.e., nine groups) and subgroups (i.e., 15 and 14 subgroups, respectively), with two isolates not evaluable by PFGE. The 13 epidemiologically unrelated community-acquired isolates were assigned to 11 groups by REA and to 12 groups by PFGE. Overall, ribotyping identified only nine groups among the 46 isolates. We conclude that REA and PFGE have comparable discriminatory powers for epidemiologic typing of C. difficile isolates and that ribotyping is appreciably less discriminatory. For a few isolates, partial DNA degradation prevented analysis by PFGE but not by REA or ribotyping; the cause of the degradation is unknown.  相似文献   

18.
BACKGROUND AND PURPOSE: Methicillin-resistant Staphylococcus aureus (MRSA) has been the leading cause of nosocomial infections in many hospitals. To investigate the impact of carriage by health care workers (HCWs) on patient transmission, surveillance culture was performed following an outbreak of MRSA in a pediatric intensive care unit (PICU). METHODS: Isolates from 61 HCWs and 10 environmental sites were collected. Pulsed-field gel electrophoresis (PFGE) and antibiogram analysis were performed to determine the clonal relationship between isolates and potential routes of transmission. RESULTS: The overall carriage rate of HCWs was 67.2% (41/61) for S. aureus and 26.2% (16/61) for MRSA. One MRSA was isolated from the 10 environmental sites sampled. Two major MRSA clusters were identified based on the PFGE patterns. Isolates with indistinguishable PFGE patterns (pulsotype A) were found in all patient isolates from the outbreak, from several HCWs plus the environmental isolate; all were resistant to ciprofloxacin, clindamycin, erythromycin, gentamicin, tetracycline, and trimethoprim-sulfamethoxazole. Interestingly, the isolate from a patient who had prolonged hospitalization in PICU had PFGE patterns (pulsotype B) distinct from the strains involved in the outbreak. This strain was susceptible to ciprofloxacin and trimethoprim-sulfamethoxazole, and was also found in several HCWs. Thus, there appeared to be 2 main MRSA clones circulating in the PICU of our hospital. CONCLUSIONS: Person-to-person and environment-to-person (or vice versa) transmissions are documented in this study. Strict hand washing before and after patient contact must be enforced and closely monitored, as it is the principal preventive measure in containing the spread of MRSA. To prevent the emergence of vancomycin-resistant MRSA and the further transmission of multidrug-resistant organisms, implementation of periodic and routine active surveillance cultures as part of infection control measures may also be evaluated.  相似文献   

19.
A random amplified polymorphic DNA (RAPD) fingerprinting method has been developed to differentiate Salmonella enteritidis isolates. A total of 65 arbitrary primers were screened with S. enteritidis isolates of different phage types. This allowed selection of a panel of primers capable of detecting DNA polymorphisms among S. enteritidis isolates. This panel was used to examine a panel of 29 isolates of S. enteritidis which had been previously characterized by other subtyping methods, including phage typing (PT) (n = 7), ribotyping (RT) (n = 13), and pulsed-field gel electrophoresis (PFGE). Applied collectively, these three methods resolved the collection into 20 different subtypes. However, by the RAPD fingerprinting method alone, 14 RAPD subtypes were revealed. Eight isolates of S. enteritidis phage type 8 that failed to be discriminated by other typing methods (PT, RT, and PFGE) were resolved into three different subtypes by RAPD analysis. In contrast, isolates that were derived from the same sources were not differentiated by any of the subtyping methods employed, including PT, RT, PFGE, and RAPD analysis. This RAPD approach to S. enteritidis subtyping provided more discriminatory power than did any of several other subtyping methods applied individually. Once the challenging step of primer identification was accomplished, determinations of the appropriate concentrations of arbitrary primer, DNA template, and MG2+ ion were also necessary for optimal discriminatory power. The bacterial DNA used in this RAPD protocol was obtained by boiling the bacterial sample. This simple procedure yielded DNA that produced fingerprint patterns as consistent as those obtained from phenol-chloroform-extracted DNA. Clearly, when appropriately constituted primer sets are identified and employed, RAPD analysis provides a simple, rapid, and powerful subtyping method for S. enteritidis.  相似文献   

20.
A total of 63 clinical isolates of Proteus mirabilis collected over a 19-month period were typed by the Dienes test and ribotyping. Ribotyping was performed using the fully automated RiboPrinter Microbial Characterization System (Qualicon, Wilmington, Del.). Isolates that were indistinguishable by the Dienes test and/or ribotyping were characterized further by pulsed-field gel electrophoresis (PFGE). Most of the isolates represented unique strains as judged by the Dienes test and ribotyping. Forty isolates represented 40 different ribotypes and Dienes types. The remaining 23 isolates were grouped into 13 Dienes types, 12 ribotypes, and 14 PFGE types. The index of discrimination was 0.980 for the Dienes test, 0.979 for ribotyping, and 0.992 for PFGE. Both the Dienes test and ribotyping are useful methods for identifying individual strains of P. mirabilis. The Dienes test is simple, inexpensive, and easy to perform. It can be performed in virtually any laboratory and should be used in the initial epidemiologic characterization of P. mirabilis isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号