首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been a great challenge to make the thickness of engineered cartilage adjustable to cover the range of both partial-thickness and full-thickness articular cartilage defects. We developed a novel kind of composite web scaffold that could be used for tissue enginnering of articular cartilage with the thickness adjustable between 200 microm and 8 mm. The composite web showed a unique structure having web-like collagen microsponges formed in the openings of a mechanically strong knitted mesh of poly(lactic-co-glycolic acid). The knitted mesh served as a skeleton reinforcing the composite web, while the web-like collagen microsponges facilitated cell seeding, cell distribution, and tissue formation. Bovine chondrocytes cultured in the composite web showed a spatially even distribution, maintained their natural morphology, and produced cartilaginous extracellular matrices such as type II collagen and aggrecan. The thickness of the implant can be simply adjusted by laminating or rolling the web sheets. Not only did the histological structure of the engineered cartilage patches match the bovine native articular cartilage, but also their dynamic complex modulus, structural stiffness, and phase lag reached 37.8, 57.0, and 86.3% of those of native bovine articular cartilage, respectively. The composite web could be an important scaffold for tissue engineering.  相似文献   

2.
A biodegradable hybrid sponge nested with collagen microsponges   总被引:8,自引:0,他引:8  
A biodegradable hybrid sponge of poly(DL-lactic-co-glycolic acid) (PLGA) and collagen was fabricated by forming microsponges of collagen in the pores of PLGA sponge. Observation of the PLGA-collagen hybrid sponge by scanning electron microscopy (SEM) showed that microsponges of collagen with interconnected pore structures were formed in the pores of PLGA sponge. The hybrid structure further was confirmed by scanning electron microscopy-electron probe microanalysis (SEM-EPMA), and elemental nitrogen was detected in the microsponges of collagen and on the pore surfaces of PLGA, but not in cross-sections of PLGA regions. The formation of collagen microsponges was dependent on collagen concentration, the effective range of which was from 0.1 to 1.5 (w/v) %. The mechanical strength of the hybrid sponge was higher than that of either PLGA or collagen sponges, in both dry and wet states. The wettability with water was improved by hybridization with collagen, which facilitated cell seeding in the hybrid sponge. Mouse fibroblast L929 cells attached well and spread on the surfaces of the microsponges of collagen in the hybrid sponge. The distribution of cells was spatially uniform throughout the hybrid sponge. Use of the PLGA sponge as a skeleton facilitated formation of the hybrid sponge into desired shapes with high mechanical strength while collagen microsponges contributed good cell interaction and hydrophilicity.  相似文献   

3.
A biodegradable hybrid scaffold of synthetic polymer, poly (DL-lactic-co-glycolic acid) (PLGA), and naturally derived polymer, collagen, was prepared by forming collagen microsponges in the pores of PLGA sponge. This was then used as the three-dimensional scaffold for tissue engineering of bovine articular cartilage, both in vitro and in vivo. In vitro studies show that hybridization with collagen facilitated cell seeding in the sponge and raised seeding efficiency. Chondrocytes adhered to the collagen microsponges, where they proliferated and secreted extracellular matrices with time, filling the space within the sponge. Hematoxylin and eosin staining revealed that most of the chondrocytes after 4 weeks of culture, and almost all cell types after 6 weeks of culture, maintained their phenotypically rounded morphology. While new tissue formed, the scaffold degraded and lost almost 36.9% of its original weight after 10 weeks. Subcutaneous implantation studies in nude mice demonstrated more homogeneous tissue formation in hybrid sponge than in PLGA sponge. The new tissue formed maintained the original shape of the hybrid sponge. The synthetic PLGA sponge, serving as a skeleton, facilitated easy formation into desired shapes and provided appropriate mechanical strength to define the ultimate shape of engineered tissue. Incorporation of collagen microsponges facilitated cell seeding and homogeneous cell distribution and created a favorable environment for cellular differentiation. The hybrid sponge could therefore represent a promising candidate as a three-dimensional scaffold for articular cartilage tissue engineering.  相似文献   

4.
Full-thickness skin defects represent a significant and urgent clinical problem. Dermal substitutes serving as a regenerative template to induce dermal reconstruction provide a promising method to treat serious skin defects. Although collagen–chitosan dermal scaffolds display good biocompatibility and a suitable porous structure for angiogenesis and tissue regeneration, their poor mechanical properties compromise their application. To develop a well-supported dermal substitute, a poly(l-lactide-co-glycolide) (PLGA) knitted mesh was fabricated and integrated with collagen–chitosan scaffold (CCS) to obtain a PLGA knitted mesh-reinforced CCS (PLGAm/CCS). The morphology of this PLGAm/CCS was investigated in vitro. To characterize the tissue response, specifically angiogenesis and tissue regeneration, the PLGAm/CCS was transplanted in combination with thin split-thickness autografts to repair full-thickness skin wounds using a one-step surgical procedure in Sprague–Dawley rats. These results were then compared with CCSs. At weeks 2, 4 and 8 after the operation, the healing wounds were imaged to analyse wound changes, and tissue specimens were harvested for histology, immunohistochemistry, real-time quantitative polymerase chain reaction and Western blot analysis. The results demonstrated that collagen–chitosan sponge in the PLGAm/CCS remained porous, interconnected and occupied the openings of PLGA mesh, and the incorporation of the PLGA knitted mesh into CCS improved the mechanical strength with little influence on its mean pore size and porosity. Following transplantation, PLGAm/CCS inhibited wound contraction, and effectively promoted neotissue formation and blood vessel ingrowth. In conclusion, the mechanical strength of the scaffolds plays an important role in the process of tissue regeneration and vascularization. The ability of PLGAm/CCS to promote angiogenesis and induce in situ tissue regeneration demonstrates its potential in skin tissue engineering.  相似文献   

5.
A novel three-dimensional porous scaffold has been developed for bone tissue engineering by hybridizing synthetic poly(DL-lactic-co-glycolic acid) (PLGA), naturally derived collagen, and inorganic apatite. First, a porous PLGA sponge was prepared. Then, collagen microsponges were formed in the pores of the PLGA sponge. Finally, apatite particulates were deposited on the surfaces of the collagen microsponges in the pores of PLGA sponge. The PLGA-collagen sponge served as a template for apatite deposition, and the deposition was accomplished by alternate immersion of PLGA-collagen sponge in CaCl(2) and Na(2)HPO(4) aqueous solutions and centrifugation. The deposited particulates were small and scarce after one cycle of alternate immersion. Their number and size increased with the number of alternate immersion cycles. The surfaces of collagen microsponges were completely covered with apatite after three cycles of alternate immersion. The porosity of the hybrid sponge decreased gradually as the number of alternate immersion increased. Energy-dispersive spectroscopy analysis and X-ray diffraction spectra showed that the calcium-to-phosphorus molar ratio of the deposited particulates and the level of crystallinity increased with the number of alternate immersion cycles, and became almost the same as that of hydroxyapatite after four cycles of alternate immersion.The deposition process was controllable. Use of the PLGA sponge as a mechanical skeleton facilitated formation of the PLGA-collagen-apatite hybrid sponge into desired shapes and collagen microsponges facilitated the uniform deposition of apatite particulates throughout the sponge. The PLGA-collagen-apatite hybrid sponge would serve as a useful three-dimensional porous scaffold for bone tissue engineering.  相似文献   

6.
Unlike braided fabrics, knitted scaffolds have been proven to favor deposition of collagenous connective tissue matrix, which is crucial for tendon/ligament reconstruction. But cell seeding of such scaffolds often requires a gel system, which is unstable in a dynamic situation, especially in the knee joint. This study developed a novel, biodegradable nano-microfibrous polymer scaffold by electrospinning PLGA nanofibers onto a knitted PLGA scaffold in order to provide a large biomimetic surface for cell attachment. Porcine bone marrow stromal cells were seeded onto either the novel scaffolds by pipetting a cell suspension (Group I) or the knitted PLGA scaffolds by immobilizing in fibrin gel (Group II). Cell attachment at 36 hours, cell proliferation and extracellular matrix synthesis at 1 week, and mechanical properties over 2 weeks were investigated. Cell attachment was comparable and cell proliferation was faster in Group I. Moreover, cellular function was more actively exhibited in Group I, as evident by the higher expression of collagen I, decorin, and biglycan genes. Thus, this novel scaffold, facilitating cell seeding and promoting cell proliferation, function, and differentiation, could be applied with promise in tissue engineering of tendon/ligament.  相似文献   

7.
Ng KW  Hutmacher DW 《Biomaterials》2006,27(26):4591-4598
In order to alleviate their extensive contraction, human fibroblast sheets were cultured in combination with three-dimensional matrices (knitted poly(lactic-co-glycolic acid) (PLGA) mesh and collagen-hyaluronic acid (CHA) sponge) to form contiguous dermal constructs for tissue engineering a bilayered skin equivalent. The resulting constructs were viable, and supported the development of bilayered skin equivalents which did not contract over the 4-week culture period. When implanted into full-thickness wounds in nude rats, cultured skin equivalents based on PLGA meshes registered a take rate of 100% and showed an extent of wound contraction that was statistically similar to autografts, while wounds grafted with PLGA meshes without cell sheets contracted more than autografts. On the other hand, skin equivalents based on CHA sponges were all sloughed off within 2 weeks of transplantation. In all cell sheet-incorporated specimens, cells from the constructs infiltrated and produced extracellular matrix within the neo-dermis, shown by positive human leukocyte antigen and collagen I expression. This technique offers an alternative approach for scaffold-based tissue engineering to produce mechanically stable grafts with matured neo-tissue.  相似文献   

8.
9.
Proper cell source is one of the key issues for tendon engineering. Our previous study showed that dermal fibroblasts could be used to successfully engineer tendon in vivo and tenocytes could engineer neo-tendon in vitro with static strain. This study further investigated the possibility of engineering human neo-tendon tissue in vitro using dermal fibroblasts. Human dermal fibroblasts were seeded on polyglycolic acid (PGA) fibers pre-fixed on a U-shape as a mechanical loading group, or simply cultured in a dish as a tension-free group. In addition, human tenocytes were also seeded on PGA fibers with tension as a comparison to human dermal fibroblasts. The results showed that human neo-tendon tissue could be generated using dermal fibroblasts during in vitro culture under static strain and the tissue structure became more mature with the increase of culture time. Longitudinally aligned collagen fibers and spindle shape cells were observed histologically and collagen fibril diameter and tensile strength increased with time and reached a peak at 14 weeks. In contrast, the dermal fibroblast-PGA constructs failed to form neo-tendon, but formed disorganized fibrous tissue in tension-free condition with significantly weaker strength and poor collagen fiber formation. Interestingly, neo-tendon tissues generated with human dermal fibroblasts were indistinguishable from the counterpart engineered with human tenocytes, which supports the viewpoint that human dermal fibroblasts is likely to replace tenocytes for future tendon graft development in vitro with dynamic mechanical loading in a bioreactor system.  相似文献   

10.
The concept of contact guidance utilizes the phenomenon of anchorage dependence of cells on the topography of seeded surfaces. It has been shown in previous studies that cells were guided to align along the topographical alignment of the seeding substrate and produced enhanced amounts of oriented extracellular matrix (ECM). In this study, we aimed to apply this concept to a three-dimensional full silk fibroin (SF) hybrid scaffold system, which comprised of knitted SF and aligned SF electrospun fibers (SFEFs), for ligament tissue engineering applications. Specifically, knitted SF, which contributed to the mechanical robustness of the system, was integrated with highly aligned SFEF mesh, which acted as the initial ECM to provide environmental cues for positive cellular response. Mesenchymal stem cells seeded on the aligned hybrid scaffolds were shown to be proliferative and aligned along the integrated aligned SFEF, forming oriented spindle-shaped morphology and produced an aligned ECM network. Expression and production of ligament-related proteins were also increased as compared to hybrid SF scaffolds with randomly arranged SFEFs, indicating differentiative cues for ligament fibroblasts present in the aligned hybrid SF scaffolds. Consequently, the tensile properties of cultured aligned constructs were significantly improved and superior to the counterpart with randomly arranged SFEF. These results thus show that the aligned hybrid scaffold system is promising for enhancing cell proliferation, differentiation, and function for ligament tissue engineering applications.  相似文献   

11.
In tissue engineering and wound-healing applications, dermal substitutes are used to provide fibroblasts with the mechanical support for their growth and then to facilitate the skin formation. In this study, three-dimensional porous poly(lactic-co-glycolic acid) (PLGA) 65/35 scaffolds were prepared and then the composites of the scaffolds and human fetal dermal fibroblasts were fabricated as a tissue-engineered dermal substitute. The function and tissue compatibility of the artificial dermal substitute were evaluated at the levels of gene expression (by RT-PCR) and protein expression (total collagen quantities), as well as by histological and immunohistochemical analysis. The PCR products indicated that the mRNA of type-I collagen, mainly secreted by the fibroblasts onto the PLGA scaffolds, was clearly expressed after 4 weeks. The amount of total collagen synthesized from the cells was shown to increase gradually during the initial culture period and slightly decreased afterwards. After 8 weeks of culture, the fibroblasts were well attached and migrated entirely throughout the pores of the PLGA scaffold with normal function. Furthermore, the positively stained type-I collagen was intensively detected throughout the pores. These results suggest that the function and tissue compatibility may be important criteria in evaluating an artificial tissue-engineered skin.  相似文献   

12.
In tissue engineering and wound-healing applications, dermal substitutes are used to provide fibroblasts with the mechanical support for their growth and then to facilitate the skin formation. In this study, three-dimensional porous poly(lactic-co-glycolic acid) (PLGA) 65/35 scaffolds were prepared and then the composites of the scaffolds and human fetal dermal fibroblasts were fabricated as a tissue-engineered dermal substitute. The function and tissue compatibility of the artificial dermal substitute were evaluated at the levels of gene expression (by RT-PCR) and protein expression (total collagen quantities), as well as by histological and immunohistochemical analysis. The PCR products indicated that the mRNA of type-I collagen, mainly secreted by the fibroblasts onto the PLGA scaffolds, was clearly expressed after 4 weeks. The amount of total collagen synthesized from the cells was shown to increase gradually during the initial culture period and slightly decreased afterwards. After 8 weeks of culture, the fibroblasts were well attached and migrated entirely throughout the pores of the PLGA scaffold with normal function. Furthermore, the positively stained type-I collagen was intensively detected throughout the pores. These results suggest that the function and tissue compatibility may be important criteria in evaluating an artificial tissue-engineered skin.  相似文献   

13.
Fabrication of branched hybrid vascular prostheses   总被引:3,自引:0,他引:3  
We devised a branched, or bifurcated, hybrid vascular prosthesis that was mainly composed of bovine smooth muscle cells (SMCs) and type I collagen with minimal reinforcement by a knitted fabric mesh made of segmented polyester. The tubular hybrid medial tissue with small (3 mm) or large (6 mm) inner diameter was prepared by pouring a cold mixed solution of SMCs and collagen into a corresponding tubular mold and by subsequent thermal gelation, followed by 7-day culturing. A branched hybrid medial tissue was prepared by an end-to-side anastomosis between these tubes of different sizes. Two-week culture of the branched tissue resulted in continuous tissue formation at the anastomotic site. Upon seeding and culture of bovine endothelial cells (ECs), a fully endothelialized branched hybrid vessel was prepared. Under a continuous pulsatile flow condition, morphological alterations of ECs, responding to local flow dynamics generated by the branched configuration, were seen. Reinforcement with an elastomeric mesh improved mechanical strength of the hybrid tissue and created compliance matching with native arteries. A branched hybrid graft with mesh reinforcement is expected to be applicable to arterial replacement in a branching region.  相似文献   

14.
Lee SY  Oh JH  Kim JC  Kim YH  Kim SH  Choi JW 《Biomaterials》2003,24(27):5049-5059
The in vivo reconstruction of conjunctiva was investigated by using modified poly(lactide-co-glycolide) (PLGA) 50/50 scaffolds. The porous PLGA matrices were prepared by a solvent-casting particulate-leaching method with NaCl, then modified with collagen, hyaluronic acid (HA) or/and human amniotic membrane (AM) component. The growth of corneal epithelial cells and human stromal fibroblasts on the scaffolds was investigated in vitro. All the modified PLGA scaffolds demonstrated enhanced cell adhesion and proliferation as compared to PLGA untreated, and the number of cells proliferated after 1 week was increased in the order of PLGA相似文献   

15.
Ng KW  Khor HL  Hutmacher DW 《Biomaterials》2004,25(14):2807-2818
The ideal dermal matrix should be able to provide the right biological and physical environment to ensure homogenous cell and extracellular matrix (ECM) distribution, as well as the right size and morphology of the neo-tissue required. Four natural and synthetic 3D matrices were evaluated in vitro as dermal matrices, namely (1) equine collagen foam, TissuFleece, (2) acellular dermal replacement, Alloderm, (3) knitted poly(lactic-co-glycolic acid) (10:90)-poly(-caprolactone) (PLGA-PCL) mesh, (4) chitosan scaffold. Human dermal fibroblasts were cultured on the specimens over 3 weeks. Cell morphology, distribution and viability were assessed by electron microscopy, histology and confocal laser microscopy. Metabolic activity and DNA synthesis were analysed via MTS metabolic assay and [(3)H]-thymidine uptake, while ECM protein expression was determined by immunohistochemistry. TissuFleece, Alloderm and PLGA-PCL mesh supported cell attachment, proliferation and neo-tissue formation. However, TissuFleece contracted to 10% of the original size while Alloderm supported cell proliferation predominantly on the surface of the material. PLGA-PCL mesh promoted more homogenous cell distribution and tissue formation. Chitosan scaffolds did not support cell attachment and proliferation. These results demonstrated that physical characteristics including porosity and mechanical stability to withstand cell contraction forces are important in determining the success of a dermal matrix material.  相似文献   

16.
Liu W  Chen B  Deng D  Xu F  Cui L  Cao Y 《Tissue engineering》2006,12(4):775-788
Harvesting autologous tenocytes for tendon engineering may cause secondary tendon defect at the donor site. Dermal fibroblasts are an easily accessible cell source and do not cause major donor site defect. This study aims to explore the possibility of tendon engineering using dermal fibroblasts. A total of 45 hybrid pigs were randomly divided into three groups: experimental group (n = 15)--repair of tendon defect with a dermal fibroblast engineered tendon; control group 1 (n = 15)--repair of defect with a tenocyte engineered tendon; and control group 2 (n = 15)-repair of defect with a scaffold alone. Both autologous dermal fibroblasts and tenocytes were seeded on polyglycolic acid (PGA) unwoven fibers to form a cell-scaffold construct and cultured in vitro for 7 days before in vivo implantation to repair a defect of flexor digital superficial tendon. Specimens were harvested at weeks 6, 14, and 26 for gross, histological, and mechanical analyses. Microscopy revealed good attachment of both dermal fibroblasts and tenocytes on PGA fibers and matrix production. In vivo results showed that fibroblast and tenocyte engineered tendons were similar to each other in their gross view, histology, and tensile strength. At 6 weeks, parallel collagen alignment was observed at both ends, but not in the middle in histology, with more cellular components than natural tendons. At weeks 14 and 26, both engineered tendons exhibited histology similar to that of natural tendon. Collagens became parallel throughout the tendon structure, and PGA fibers were completely degraded. Interestingly, dermal fibroblast and tenocyte engineered tendons did not express type III collagen at 26 weeks, which remained observable in normal pig skin and control group 2 tissue using polarized microscopy, suggesting a possible phenotype change of implanted dermal fibroblasts. Furthermore, both fibroblast and tenocyte engineered tendons shared similar tensile strength, about 75% of natural tendon strength. At 6 weeks in control group 2, neo-tissue was formed only at the peripheral area by host cells. A cord-like tissue was formed at weeks 14 and 26. However, the formed tissue was histologically disorganized and mechanically weaker than both cell-engineered tendons (p < 0.05). These results suggest that dermal fibroblasts may have the potential as seed cells for tendon engineering.  相似文献   

17.
In this study we have prepared a tubular knitted scaffold from a 9 ply multiwalled carbon nanotube (MWCNT) yarn and a composite scaffold, formed by electrospinning poly(lactic-co-glycolic acid) (PLGA) nanofibres onto the knitted scaffold. Both structures were assessed for in vitro biocompatibility with NR6 mouse fibroblast cells for up to 22 days and their suitability as tissue engineering scaffolds considered. The MWCNT yarn was found to support cell growth throughout the culture period, with fibroblasts attaching to, and proliferating on, the yarn surface. The knitted tubular scaffold contained large pores that inhibited cell spanning, leading to the formation of cell clusters on the yarn, and an uneven cell distribution on the scaffold surface. The smaller pores, created through electrospinning, were found to promote cell spanning, leading to a uniform distribution of cells on the composite scaffold surface. Evaluation of the electrical and mechanical properties of the knitted scaffold determined resistance levels of 0.9 kΩ/cm, with a breaking load and extension to break approaching 0.7 N and 8%, respectively. The PLGA/MWCNT composite scaffold presented in this work not only supports cell growth, but also has the potential to utilize the full range of electrical and mechanical properties that carbon nanotubes have to offer.  相似文献   

18.
The engineering of dermal skin substitutes, using autologous fibroblasts, requires high seeding efficiencies, a homogeneous cell distribution in the scaffolds, and optimal culture conditions. Dynamic seeding in spinner flasks was used to seed and subsequently culture fibroblasts in three-dimensional scaffolds. Several seeding and culture variables were investigated. Simulation of medium movement with microspheres showed that three different regions existed in medium (outer, middle, and inner), where overall particle movement was different. In the middle region the flow was turbulent and scaffolds were best placed in this region. After fibroblast seeding, methylene blue staining and scanning electron microscopy analysis of the scaffolds showed that at a low stirring speed (20 rpm) fibroblasts attached mainly onto the upper part of the scaffold, and at 40 and 60 rpm fibroblasts attached and spread throughout the scaffolds. Measurements of total DNA content per scaffold showed that lower stirring speeds (20 and 40 rpm) resulted in significantly higher cell-seeding efficiencies (20 rpm, 99.8 +/- 11.3%; 40 rpm, 93.8 +/- 10.5%) compared with 60 rpm (85.9 +/- 5.3%). Seeding kinetics were comparable for all three speeds investigated. In subsequent studies, 40 rpm was chosen for seeding. Using initial cell numbers ranging from 0.3 x 10(6) to 1.5 x 10(6) fibroblasts per scaffold, seeding efficiencies higher than 85% were consistently found (n = 4). The culture of fibroblast-seeded scaffolds at different stirring speeds (10-80 rpm) showed that stirring speeds higher than 10 rpm significantly stimulated fibroblast proliferation and glycosaminoglycan and collagen deposition as compared with 10 rpm. After 21 days, scaffolds cultured at 80 rpm showed significantly more collagen deposition as compared with those maintained at lower speeds. In conclusion, to achieve high seeding efficiencies, uniform fibroblast distribution and tissue formation in a three-dimensional scaffold, fibroblasts can be dynamically seeded at 40 rpm and subsequently cultured at a stirring speed of 60-80 rpm in spinner flasks. This flexible system shows that it is feasible to tissue engineer autologous dermal substitutes in a clinically acceptable time frame.  相似文献   

19.
Bone marrow stromal cells (BMSCs) have been shown to proliferate and produce matrix when seeded onto braided poly(L-lactide/glycolide) acid (PLGA) scaffolds. Mechanical stimulation may be applied to stimulate tissue formation during ligament tissue engineering. This study describes for the first time the effect of constant load on BMSCs seeded onto a braided PLGA scaffold. The seeded scaffolds were subjected to four different loading regimes: Scaffolds were unloaded, loaded during seeding, immediately after seeding, or 2 days after seeding. During the first 5 days, changing the mechanical environment seemed to inhibit proliferation, because cells on scaffolds loaded immediately after seeding or after a 2-day delay, contained fewer cells than on unloaded scaffolds or scaffolds loaded during seeding (p<0.01 for scaffolds loaded after 2 days). During this period, differentiation increased with the period of load applied. After day 5, differences in cell content and collagen production leveled off. After day 11, cell number decreased, whereas collagen production continued to increase. Cell number and differentiation at day 23 were independent of the timing of the mechanical stimulation applied. In conclusion, static load applied to BMSCs cultured on PLGA scaffolds allows for proliferation and differentiation, with loading during seeding yielding the most rapid response. Future research should be aimed at elucidating the biomechanical and biochemical characteristics of tissue formed by BMSCs on PLGA under mechanical stimulation.  相似文献   

20.
Healing of large open dermal wounds is associated with decreased values of the tensile strength even up to 6 months post-wounding. Results of previous studies have shown that healing is facilitated in the presence of a type I collagen sponge by promoting deposition of newly synthesized large-diameter collagen fibers parallel to the fibers of the sponge. In this study healing is evaluated in dermal wounds treated with a collagen sponge seeded with fibroblasts or coated with basic fibroblast growth factor (bFGF). Experimental results indicate that the presence of a collagen sponge results in increased wound tensile strength and increased collagen fiber diameters in the upper dermis 15 days post-wounding in an excisional guinea pig dermal wound model. In comparison, dermal wounds treated with collagen sponges seeded with fibroblasts or coated with bFGF showed increased tensile strengths 15 days postimplantation and increased degree of reepithelialization. These results indicate that fibroblast seeding and bFGF coating in conjunction with a type I collagen sponge matrix facilitate early dermal and epidermal wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号