首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Endometriosis is a debilitating disease found in 10-15% of reproductive-age women and is characterized by the presence of endometrial tissue outside of the uterus. The present study characterizes the expression of AhR and ARNT mRNA in a human endometrial explant culture model in the absence and presence of TCDD exposure. In a parallel, companion study using this model, TCDD exposure was shown to induce CYP1A1 mRNA, CYP1B1 mRNA, EROD (7-ethoxyresorufin-O-deethylase) activity, and CYP1B1 protein in human endometrial explants. Explants were prepared from specimens obtained at laparoscopy or laparotomy from women undergoing surgery for tubal ligation, endometriosis, or pelvic pain unrelated to endometriosis. These specimens were a subset of the specimens used in the parallel study. The explants were cultured in medium containing 10 nM estradiol (E(2)) or 1 nM estradiol plus 500 nM progesterone (E(2) + P(4)) with or without TCDD (first 24 h). After culture, AhR and ARNT mRNA expression were quantified by RT-PCR. TCDD treatment significantly increased the expression of AhR mRNA, but not ARNT mRNA. The expression of both genes was similar for all individual explants and the ratio of AhR:ARNT mRNA expression across all samples was 1.7 to 1.8. Constitutive AhR mRNA expression was donor age dependent (increasing with age), while ARNT mRNA expression was donor age and tissue phase dependent (increased in older and proliferative phase specimens). Similar to results in the parallel study on expression of CYP1A1 mRNA, CYP1B1 mRNA, EROD activity, and CYP1B1 protein, the presence of endometriosis did not affect the expression of AhR or ARNT mRNA, either constitutively or following TCDD exposure. However, the detection of disease-specific change was limited by small sample size and variability in tissue cycle phase. The human endometrial explant culture model will be useful for future studies of the effects of dioxin-like compounds on human endometrium in relationship to cycle phase, hormonal exposure, and donor age.  相似文献   

3.
4.
Cytochrome P-450 (CYP) 1B1 expression in mouse hepatoma (Hepa-1) wild-type (WT) cells was compared with responses in Hepa-1 variants LA1 and LA2, which, respectively, exhibit low aryl hydrocarbon receptor (AhR) level and defective AhR nuclear translocator (ARNT) protein. 10T1/2 mouse embryo fibroblasts express predominantly CYP1B1 and at a 100 times higher level than in Hepa-1 cells, whereas they express about 300-fold lower CYP1A1 than Hepa-1 cells. The expression of CYP1B1 in WT and LA1 variant, although at a much lower level, follows that of CYP1A1, reflecting their common regulation through the AhR. The LA2 (ARNT-defective) cells showed a major difference between CYP1B1 and CYP1A1 expression. Although CYP1A1 mRNA levels in LA2 were extremely low and unresponsive to 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), basal CYP1B1 mRNA and protein were expressed at levels similar to those seen in TCDD-induced WT. The elevated basal CYP1B1 mRNA in LA2 cells decreased by 50% after transient transfection of ARNT cDNA, in parallel with substantial restoration of CYP1A1 induction. This implicates ARNT as a suppressor of CYP1B1 basal expression in Hepa cells. In transient CYP1B1-luciferase constructs in LA2 cells, ARNT shows stimulatory effects in the enhancer region but an inhibitory effect on the proximal promoter. Two CYP1B1 enhancer elements [xenobiotic-responsive element (XRE) 1/2 and XRE4] formed TCDD-unresponsive complexes of similar mobility to TCDD-stimulated AhR-ARNT complex with XRE5. However, because these two complexes were formed to the same extent in LA2 as in WT cells, they cannot be due to ARNT or contribute to ARNT-regulated suppression.  相似文献   

5.
6.
The aryl hydrocarbon receptor (AhR) mediates a wide variety of toxic effects due to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The human hepatoma cell line SK-HEP-1 expresses AhR and ARNT. However, TCDD failed to induce CYP1A1 and XRE-dependent reporter genes in these cells. Although CYP1A1 was not induced by TCDD exposure, both CYP1B1 and AhR repressor (AhRR) were constitutively expressed. The AhR antagonist alpha-naphthoflavone altered the basal level of XRE-dependent reporter gene expression dose-dependently. As our results suggested the activation of AhR signals by putative endogenous ligands, we established SK-HEP-1-derived cell lines that stably expressed CYP1A1. The inducibility of XRE-dependent reporter genes and CYP1B1 by TCDD was restored in these cells. Our findings demonstrated the presence of endogenous ligands in SK-HEP-1 cells due to the absence of the metabolizing enzyme CYP1A1, but not CYP1B1, which allowed the constitutive expression of AhR target genes.  相似文献   

7.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an extremely potentenvironmental contaminant that produces a wide range of adversebiological effects, including the induction of cytochrome P4501A1(CYP1A1) that may enhance the toxic effects of TCDD. Severalstudies indicated that concurrent supplementation of vitaminA could reduce the toxicity, and potentially inhibit CYP1A1activity (measured as ethoxyresorufin-O-deethylase [EROD] activity).In the present study, we investigated the in vivo effects ofvitamin A on EROD activities and the expression of CYP1A1 inthe liver of TCDD-treated mice. In Experiment I, the mice weregiven a single oral dose of 40 µg TCDD/kg body weightwith or without the continuous administration of 2500 IU vitaminA/kg body weight/day, and were killed on day 1, 3, 7, 14, or28. In Experiment II, the mice were given daily an oral doseof 0.1 µg TCDD/kg body weight with or without supplementof 2000 IU vitamin A/kg body weight, and were killed on day14, 28, or 42. In both experiments, TCDD caused liver damageand increase in relative liver weights, augmented the EROD activitiesand CYP1A1 expression, and increased the aryl hydrocarbon receptor(AhR) mRNA expression, but did not alter the AhR nuclear translocator(ARNT) mRNA expression. CYP1A1 mRNA expression and AhR mRNAexpression showed a similar time course. The liver damage inTCDD + vitamin A–treated mice was less severe than thatin TCDD-treated mice. EROD activities, CYP1A1 expression, andAhR mRNA expression in vitamin A + TCDD–treated mice werelower than those in TCDD-treated mice, indicating that supplementationof vitamin A might attenuate the liver damage caused by TCDD.  相似文献   

8.
Wu Q  Ohsako S  Baba T  Miyamoto K  Tohyama C 《Toxicology》2002,174(2):119-129
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent environmental contaminant that can exert developmental toxicity. To investigate the stage-specific effects of TCDD on preimplantation embryos, we exposed mouse embryos to TCDD at different stages (1-, 2-, and 8-cell) and collected them at different stages of development (the 1- or 2-, 8-cell, and blastocyst stage, respectively). Semiquantitative RT-PCR revealed increased constitutive gene expression of the arylhydrocarbon receptor (AhR) and AhR nuclear translocator (Arnt) at the 1-cell stage, decreased expression at the 2- to 8-cell stage, and increased expression again at the blastocyst stage, and addition of TCDD to media did not affect their mRNA levels. Interestingly, no cytochrome P4501A1 (CYP1A1) mRNA was detected in embryos at the 1-, 2-, and 8-cell stages after exposure to 10 nM TCDD for 12 or 24 h, whereas CYP1A1 mRNA was significantly increased at the blastocyst stage in response to TCDD, and its induction was found to be concentration-dependent on TCDD exposure from 0.01 to 10 nM for 24 h. In addition, no significant differences in development rate of preimplantation embryos, cell number of blastocyst embryos, or apoptotic indices, such as TUNEL-positive cell number or Bax/Bcl-2 expression ratios were observed at the blastocyst stage between TCDD-exposed groups and non-exposed group. These results suggest that the sensitivity to TCDD differs with the embryonic stage, which may reflect an ability of embryos to adapt to environmental stressors, such as dioxins.  相似文献   

9.
10.
11.
Cytochrome P4501B1 (CYP1B1), the major constitutively expressed CYP in the rat mammary gland, is induced by Ah-receptor (AhR) ligands, while CYP1A1 is predominantly expressed only after induction. These CYPs contribute to carcinogenic activation of polycyclic aromatic hydrocarbons (PAHs). AhR, ARNT, and CYP1B1 were only weakly expressed, even after 2,3,7,8-tetrachlorodibenzo-p-dioxin induction, when rat mammary epithelial cells (RMEC) were cultured on plastic. RMEC cultured on the extracellular matrix (ECM), Matrigel, or on a floating gel of collagen I demonstrated branching morphogenesis and substantially increased basal CYP1B1 and induced CYP1A1 expression, in parallel with large increases in AhR and ARNT expression. Branching was more pronounced in the Wistar Kyoto than in the Wistar Furth rat strain. Although EGF enhanced branching, neither strain nor growth factor treatment substantially impacted CYP expression. Increased AhR and ARNT expression is observed within 24 h of dispersal on Matrigel, substantially prior to branch formation. Culture on thin layers of collagen I, collagen IV, and laminin, respectively, failed to reproduce the branching morphogenesis or increases in AhR, ARNT, or CYP expression. However, adherent, gelled collagen I recapitulated the increased protein expression, without supporting branching. This increased protein expression was closely paralleled by enhanced expression of beta-catenin and E-cadherin, components of cell-cell adhesion complexes. A synthetic peptide that selectively antagonizes integrin-ECM interactions reduced branch formation, without diminishing AhR, ARNT, and CYP expression. These data demonstrate that early ECM surface adhesion interactions mediate AhR and ARNT expression, which enhances CYP expression, independent of branching morphogenesis.  相似文献   

12.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related substances are ubiquitous environmental pollutants causing a wide variety of pathological alterations, with the most severe being progressive anorexia and body weight loss. These features suggest a possible involvement of the nervous system and neuroendocrine-related organs including the pituitary gland. However, so far there is little evidence for direct effects of TCDD on these areas. In the present study, male Sprague-Dawley rats were treated with a single oral dose of TCDD (10 microg/kg) and euthanized 1, 3, or 28 days after treatment. The expression of cytochrome P450 1A1 (CYP1A1), the aryl hydrocarbon receptor (AHR), and the aryl hydrocarbon receptor nuclear translocator (ARNT) were analyzed in different brain regions and pituitaries using semiquantitative RT-PCR and Western blotting. Relative levels of CYP1A1 mRNA and protein were dramatically increased in the pituitary. A significant increase in CYP1A1 mRNA was also detected in all the brain regions examined including olfactory bulb, striatum-caudate, hypothalamus, hippocampus, cortex, cerebellum, and substantia nigra. The increase in the expression was time-dependent with the highest level observed 1 day after TCDD treatment. The AHR and ARNT mRNAs were detected in the same areas but in contrast to CYP1A1 the changes in AHR and ARNT mRNA expression were limited to the 28-day time point. The present results provide evidence for the presence of CYP1A1, AHR, and ARNT in the central nervous system and in the pituitary, suggesting that TCDD may exert a direct effect on these regions.  相似文献   

13.
The aryl hydrocarbon receptor (AhR) is targeted by ubiquitination for degradation by the proteasome shortly after its activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In silico screening identified p-anilinoaniline (pAA) as a putative inhibitor of an E2 ligase that partners with an E3 ligase implicated in AhR ubiquitination. We investigated whether pAA could modify AhR-dependent activation of its target gene CYP1A1. pAA (1-200 μM) alone did not affect AhR content, or stimulate CYP1A1 mRNA accumulation in human mammary epithelial MCF10A cultures. However, pretreatment with ≥100 μM pAA suppressed TCDD-induced CYP1A1 activation and AhR degradation via its functioning as an AhR antagonist. At a lower concentration (25 μM), pAA cotreatment increased TCDD-induced CYP1A1 mRNA accumulation, without inhibiting AhR turnover or altering CYP1A1 mRNA half-life. Whereas TCDD alone did not affect MCF10A proliferation, 25 μM pAA was cytostatic and induced a G(1) arrest that lasted ~7 h and induced an S phase arrest that peaked 5 to 8 h later. TCDD neither affected MCF10A cell cycle progression nor did it alter pAA effects on the cell cycle. The magnitude of CYP1A1 activation depended upon the time elapsed between pAA pretreatment and TCDD addition. Maximal AhR occupancy of the CYP1A1 promoter and accumulation of CYP1A1 heterogeneous nuclear RNA and mRNA occurred when pAA-pretreated cultures were exposed to TCDD in late G(1) and early/mid S phase. TCDD-mediated induction of CYP2S1 was also cell cycle-dependent in MCF10A cultures. Similar studies with HepG2 cultures indicated that the cell cycle dependence of CYP1A1 induction is cell context-dependent.  相似文献   

14.
15.
Exposure of the human breast epithelial cell line MCF10A to > or = 1 microg/ml cycloheximide (CHX)-induced accumulations of CYP1A1 mRNA 6-fold greater than that achieved with only 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Cotreatment with CHX and TCDD caused superinduction of CYP1A1 with accumulations of CYP1A1 mRNA 30-fold greater than that achieved with only TCDD. Similar results were obtained with the protein translation inhibitors anisomycin (ANS) and puromycin (PUR). Intra- and interinhibitor comparisons of dose/concentration response curves demonstrated the absence of a quantitative relationship between [3H]leucine incorporation and CYP1A1 induction/superinduction. The inducing/superinducing activities of CHX were suppressed by coincubation with the aryl hydrocarbon receptor (AhR) antagonists alpha-naphthoflavone and 3'-methoxy-4'-nitroflavone (PD168641). Electrophoretic mobility shift assays demonstrated that nuclear extracts from CHX-treated and CHX + TCDD cotreated cultures formed approximately 58 and approximately 340% of the AhR/DNA complexes obtained with TCDD-treated cultures, respectively. In contrast, rat liver extracts did not form AhR/DNA complexes after in vitro transformation with CHX. AhR turnover in TCDD-treated hepatoma 1c1c7 cultures was suppressed by cotreatment with CHX. In contrast, CHX or ANS treatment of MCF10A cultures induced AhR loss and enhanced AhR loss in cultures cotreated with TCDD. Cotreatment with N-benzoyloxycarbonyl-(Z)-Leu-Leu-leucinal (MG132) but not leptomycin B suppressed AhR loss. Hence, in MCF10A cells, CHX is not an AhR agonist but can superinduce CYP1A1 via an AhR-dependent mechanism; CYP1A1 superinduction by translation inhibitors is neither quantitatively related to effects on protein synthesis nor due to a generalized prevention of AhR proteolysis, and proteasome-mediated degradation of the activated AhR can occur in the nucleus.  相似文献   

16.
17.
We have used polycyclic aromatic hydrocarbon (PAH) alkyne metabolism-based inhibitors to test whether CYP1B1 metabolism is linked to aryl hydrocarbon receptor (AhR) activation in mouse embryo fibroblasts (MEF). 1-ethynylpyrene (1EP) selectively inactivated CYP1B1 dimethylbenzanthracene (DMBA) metabolism in C3H10T1/2 MEFs; whereas 1-(1-propynyl)pyrene (1PP) preferentially inhibited CYP1A1 activity in Hepa-1c1c7 mouse hepatoma cells (Hepa). In each cell type >90% inhibition of DMBA metabolism after 1 h treatment with each inhibitor (0.1 microM) was progressively reversed and then increased to levels seen with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induction (fourfold stimulation). It was found that 0.1 microM 1EP and 1PP maximally induce CYP1B1 and CYP1A1 mRNA levels in10T1/2 and Hepa cells, respectively, after 6 h. 1-Ethylpyrene (EtP), which lacks the activatable acetylene moiety, was far less effective as an inhibitor and as an inducer. AhR activation is essential for 1EP induction as evidenced by the use of AhR antagonists and AhR-deficient MEFs and absence of induction following inhibition of DMBA metabolism with carbon monoxide (CO). Inhibition of CYP1B1 was linked to enhanced AhR activation even at early stages prior to significant ligand depletion. 1EP and EtP were similarly effective in stimulating AhR nuclear translocation, though 5-10 times slower compared with TCDD, and produced no significant down-regulation of the AhR. TCDD activated AhR/Arnt complex formation with an oligonucleotide xenobiotic response element far more extensively than 1EP or EtP, even at concentrations of 1EP that increased CYP1B1 mRNA to similar levels. CO did not influence these responses to EtP, event hough CO treatment potentiated EtP induction of CYP1B1 mRNA. These differences suggest a fundamental difference between PAH/AhR and TCDD/AhR complexes where CYP1B1 metabolic activity regulates the potency, rather than the formation of the AhR/Arnt complex.  相似文献   

18.
The aryl hydrocarbon receptor (AhR), when activated by exogenous ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), regulates expression of several phase I and phase II enzymes and is also involved in the regulation of cell proliferation. Several studies suggest that endogenous AhR ligand(s) may exist. One putative endogenous ligand is indirubin, which was recently identified in human urine and bovine serum. We determined the effect of indirubin in MCF-7 breast cancer cells on induction of the activities of cytochromes P450 (CYP) 1A1 and 1B1, as measured by estradiol and ethoxyresorufin metabolism, and on induction of the CYP1A1 and CYP1B1 mRNAs. With 4-hr exposure, the effects of indirubin and TCDD at 10nM on CYP activity were comparable, but the effects of indirubin, unlike those of TCDD, were transitory. Indirubin-induced ethoxyresorufin-O-deethylase activity was maximal by 6-9 hr post-exposure and had disappeared by 24 hr, whereas TCDD-induced activities remained elevated for at least 72 hr. The effects of indirubin on CYP mRNA induction were maximal at 3 hr. Indirubin was metabolized by microsomes containing cDNA-expressed human CYP1A1 or CYP1B1. The potency of indirubin was comparable to that of TCDD in a CYP1B1-promoter-driven luciferase assay, when MCF-7 cells were co-exposed to the AhR ligands together with the CYP inhibitor, ellipticine. Thus, if indirubin is an endogenous AhR ligand, then AhR-mediated signaling by indirubin is likely to be transient and tightly controlled by the ability of indirubin to induce CYP1A1 and CYP1B1, and hence its own metabolism.  相似文献   

19.
The aryl hydrocarbon receptor (AhR) is activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but activation without an exogenous ligand also occurs when normal cell-cell contact is prevented. Suspension of several C3H10T1/2 fibroblast clonal sub-lines that contain an integrated AhR-responsive reporter produced a time course and level of reporter activation and CYP1B1 induction that paralleled TCDD stimulation in confluent monolayer culture. Suspension activation was, however, more transient. Loss of cell-cell contact at low density also activated these reporters independent of cell cycle changes to levels comparable to TCDD stimulation of confluent cells. Loss of cell-cell contact may, therefore, activate AhR. Suspension and TCDD activations exhibited comparable nuclear translocation of AhR and then AhR/ARNT complex formation. Each AhR activation process was equally attenuated by inhibition of, respectively, HSP90 ATPase, the 26S proteosome, and by depletion of intracellular Ca2+. By contrast, the AhR antagonist alpha-naphthoflavone (alphaNF) blocked ligand-stimulated AhR activity, but not activation through loss of cell-cell contact. Suspension-induced reporter activation was selectively enhanced by LiCl, which prevented GSK-3beta effects on the simultaneously released beta-catenin. The effects of suspension and LiCl on reporters were reversed by Ro-31-8220, which did not affect beta-catenin, TCDD-activation processes, or AhR turnover. Neither LiCl nor Ro-31-8220 altered suspension-induced AhR/ARNT complex formation. Loss of cell-cell contact permits nuclear translocation and AhR activation that is largely replicated after TCDD binding, but with activity differences due to contact-sensitive factors functioning after AhR/ARNT complex formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号