首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondria produce adenosine triphosphate (ATP) for energy requirements via the mitochondrial oxidative phosphorylation (OXPHOS) system. One of the hallmarks of cancer is the energy shift toward glycolysis. Low OXPHOS activity and increased glycolysis are associated with aggressive types of cancer. Mitochondria have their own genome (mitochondrial DNA [mtDNA]) encoding for 13 essential subunits of the OXPHOS enzyme complexes. We studied mtDNA in childhood acute lymphoblastic leukemia (ALL) to detect potential pathogenic mutations in OXPHOS complexes. The whole mtDNA from blood and bone marrow samples at diagnosis and follow‐up from 36 ALL patients were analyzed. Novel or previously described pathogenic mtDNA mutations were identified in 8 out of 36 patients. Six out of these 8 patients had died from ALL. Five out of 36 patients had an identified poor prognosis genetic marker, and 4 of these patients had mtDNA mutations. Missense or nonsense mtDNA mutations were detected in the genes encoding subunits of OXPHOS complexes, as follows: MT‐ND1, MT‐ND2, MT‐ND4L and MT‐ND6 of complex I; MT‐CO3 of complex IV; and MT‐ATP6 and MT‐ATP8 of complex V. We discovered mtDNA mutations in childhood ALL supporting the hypothesis that non‐neutral variants in mtDNA affecting the OXPHOS function may be related to leukemic clones.  相似文献   

2.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are severe autosomal recessive disorders associated with decreased mtDNA copy number in clinically affected tissues. The hepatocerebral form (mtDNA depletion in liver and brain) has been associated with mutations in the POLG, PEO1 (Twinkle), DGUOK and MPV17 genes, the latter encoding a mitochondrial inner membrane protein of unknown function. The aims of this study were to clarify further the clinical, biochemical, cellular and molecular genetic features associated with MDS due to MPV17 gene mutations. We identified 12 pathogenic mutations in the MPV17 gene, of which 11 are novel, in 17 patients from 12 families. All patients manifested liver disease. Poor feeding, hypoglycaemia, raised serum lactate, hypotonia and faltering growth were common presenting features. mtDNA depletion in liver was demonstrated in all seven cases where liver tissue was available. Mosaic mtDNA depletion was found in primary fibroblasts by PicoGreen staining. These results confirm that MPV17 mutations are an important cause of hepatocerebral mtDNA depletion syndrome, and provide the first demonstration of mosaic mtDNA depletion in human MPV17 mutant fibroblast cultures. We found that a severe clinical phenotype was associated with profound tissue-specific mtDNA depletion in liver, and, in some cases, mosaic mtDNA depletion in fibroblasts.  相似文献   

3.
Mitochondrial DNA was found to be highly mutated in colorectal cancer cells. One of the key molecules involved in the maintenance of the mitochondrial genome is the nuclear‐encoded polymerase gamma. The aim of our study was to determine if there is a link between polymorphisms within the polymerase gamma gene (POLG) and somatic mutations within the mitochondrial genome in cancer cells. We investigated POLG sequence variability in 50 colorectal cancer patients whose complete mitochondrial genome sequences were determined. Relative mtDNA copy number was also determined. We identified 251 sequence variants in the POLG gene. Most of them were germline‐specific (~92%). Twenty‐one somatic changes in POLG were found in 10 colorectal cancer patients. We have found no association between the occurrence of mtDNA somatic mutations and the somatically occurring variants in POLG. MtDNA content was reduced in patients carrying somatic variants in POLG or germline nucleotide variants located in the region encoding the POLG polymerase domain, but the difference did not reach statistical significance. Our findings suggest that somatic mtDNA mutations occurring in colorectal cancer are not a consequence of somatic mutations in POLG. Nevertheless, POLG nucleotide variants may lead to a decrease in mtDNA content, and consequently result in mitochondrial dysfunction.  相似文献   

4.
Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis, and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Although dominantly inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remains challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase-deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G>C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G>C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells, and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the 19th locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes.  相似文献   

5.
6.
The diagnosis of mitochondrial disorders is challenging because of the clinical variability and genetic heterogeneity. Conventional analysis of the mitochondrial genome often starts with a screening panel for common mitochondrial DNA (mtDNA) point mutations and large deletions (mtScreen). If negative, it has been traditionally followed by Sanger sequencing of the entire mitochondrial genome (mtWGS). The recently developed “Next‐Generation Sequencing” (NGS) technology offers a robust high‐throughput platform for comprehensive mtDNA analysis. Here, we summarize the results of the past 6 years of clinical practice using the mtScreen and mtWGS tests on 9,261 and 2,851 unrelated patients, respectively. A total of 344 patients (3.7%) had mutations identified by mtScreen and 99 (3.5%) had mtDNA mutations identified by mtWGS. The combinatorial analyses of mtDNA and POLG revealed a diagnostic yield of 6.7% in patients with suspected mitochondrial disorders but no recognizable syndromes. From the initial mtWGS–NGS cohort of 391 patients, 21 mutation‐positive cases (5.4%) have been identified. The mtWGS–NGS provides a one‐step approach to detect common and uncommon point mutations, as well as deletions. Additionally, NGS provides accurate, sensitive heteroplasmy measurement, and the ability to map deletion breakpoints. A new era of more efficient molecular diagnosis of mtDNA mutations has arrived.  相似文献   

7.
Individuals with Down syndrome (DS, trisomy 21) exhibit a pro‐oxidative cellular environment as well as mitochondrial dysfunction. Increased oxidative stress may damage the mitochondrial DNA (mtDNA). The coexistence of mtDNA variants in a cell or tissue (i.e., heteroplasmy) may contribute to mitochondrial dysfunction. Given the evidence on mitochondrial dysfunction and the relatively high incidence of multiorganic disorders associated with DS, we hypothesized that cardiac tissue from subjects with DS may exhibit higher frequencies of mtDNA variants in comparison to cardiac tissue from donors without DS. This study documents the analysis of mtDNA variants in heart tissue samples from donors with (n = 12) and without DS (n = 33) using massively parallel sequencing. Contrary to the original hypothesis, the study's findings suggest that the cardiac mitochondrial genomes from individuals with and without DS exhibit many similarities in terms of (1) total number of mtDNA variants per sample, (2) the frequency of mtDNA variants, (3) the type of mtDNA variants, and (4) the patterns of distribution of mtDNA variants. In both groups of samples, the mtDNA control region showed significantly more heteroplasmic variants in comparison to the number of variants in protein‐ and RNA‐coding genes (P < 1.00×10?4, ANOVA).  相似文献   

8.
Mitochondrial DNA (mtDNA) rearrangements cause a wide variety of highly debilitating and often fatal disorders and have been implicated in aging and age‐associated disease. Here, we present a meta‐analytical study of mtDNA deletions (n = 730) and partial duplications (n = 37) using information from more than 300 studies published over the last 30 years. We show that both classes of mtDNA rearrangements are unequally distributed among disorders and their breakpoints have different genomic locations. We also demonstrate that 100% of cases with sporadic mtDNA deletions and 97.3% with duplications have no breakpoints in the 16,071 breakage hotspot site, in contrast with deletions from healthy and aged tissues. Notably, most deletions removing a section of the D‐loop are found in tumors. Deleted mtDNA molecules lacking the origin of L‐strand replication (OL) represent only 9.5% of all reported cases, whereas extra origins of replication occur in all duplications. As previously shown for deletions, imperfect stretches of homology are common in duplication breakpoints. Finally, we provide a dedicated Website with detailed information on deleted/duplicated mtDNA regions to facilitate the design of efficient methods for identification and screening of rearranged mitochondrial genomes (available at http://www.portugene.com/mtDNArearrangements.html ).  相似文献   

9.
10.
Alpers’ syndrome is an early‐onset neurodegenerative disorder often caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase‐gamma (POLG) which is essential for mitochondrial DNA (mtDNA) replication. Alpers’ syndrome is characterized by intractable epilepsy, developmental regression and liver failure which typically affects children aged 6 months–3 years. Although later onset variants are now recognized, they differ in that they are primarily an epileptic encephalopathy with ataxia. The disorder is progressive, without cure and inevitably leads to death from drug‐resistant status epilepticus, often with concomitant liver failure. Since our understanding of the mechanisms contributing the neurological features in Alpers’ syndrome is rudimentary, we performed a detailed and quantitative neuropathological study on 13 patients with clinically and histologically‐defined Alpers’ syndrome with ages ranging from 2 months to 18 years. Quantitative immunofluorescence showed severe respiratory chain deficiencies involving mitochondrial respiratory chain subunits of complex I and, to a lesser extent, complex IV in inhibitory interneurons and pyramidal neurons in the occipital cortex and in Purkinje cells of the cerebellum. Diminished densities of these neuronal populations were also observed. This study represents the largest cohort of post‐mortem brains from patients with clinically defined Alpers’ syndrome where we provide quantitative evidence of extensive complex I defects affecting interneurons and Purkinje cells for the first time. We believe interneuron and Purkinje cell pathology underpins the clinical development of seizures and ataxia seen in Alpers’ syndrome. This study also further highlights the extensive involvement of GABAergic neurons in mitochondrial disease.  相似文献   

11.
3‐Methylglutaconic aciduria (3‐MGA‐uria) syndromes comprise a heterogeneous group of diseases associated with mitochondrial membrane defects. Whole‐exome sequencing identified compound heterozygous mutations in TIMM50 (c.[341 G>A];[805 G>A]) in a boy with West syndrome, optic atrophy, neutropenia, cardiomyopathy, Leigh syndrome, and persistent 3‐MGA‐uria. A comprehensive analysis of the mitochondrial function was performed in fibroblasts of the patient to elucidate the molecular basis of the disease. TIMM50 protein was severely reduced in the patient fibroblasts, regardless of the normal mRNA levels, suggesting that the mutated residues might be important for TIMM50 protein stability. Severe morphological defects and ultrastructural abnormalities with aberrant mitochondrial cristae organization in muscle and fibroblasts were found. The levels of fully assembled OXPHOS complexes and supercomplexes were strongly reduced in fibroblasts from this patient. High‐resolution respirometry demonstrated a significant reduction of the maximum respiratory capacity. A TIMM50‐deficient HEK293T cell line that we generated using CRISPR/Cas9 mimicked the respiratory defect observed in the patient fibroblasts; notably, this defect was rescued by transfection with a plasmid encoding the TIMM50 wild‐type protein. In summary, we demonstrated that TIMM50 deficiency causes a severe mitochondrial dysfunction by targeting key aspects of mitochondrial physiology, such as the maintenance of proper mitochondrial morphology, OXPHOS assembly, and mitochondrial respiratory capacity.  相似文献   

12.
13.
The metabolites of the tobacco‐specific nitrosamine 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone (NNK) form DNA adducts in animal models. While there are many reports of formation of nuclear DNA adducts, one report also detected NNK‐induced damage to the mitochondrial genome in rats. Using a different DNA damage detection technology, we tested whether this finding could be repeated in the nematode Caenorhabditis elegans. We treated N2 strain (wild‐type) nematodes with NNK in liquid culture, and applied quantitative PCR to analyze NNK‐induced nuclear and mitochondrial DNA (mtDNA) damage. Our results confirm that NNK causes both nuclear and mtDNA damage. However, we did not detect a difference in the level of nuclear versus mtDNA damage in C. elegans. To test whether the mtDNA damage was associated with mitochondrial dysfunction, we used a transgenic nematode strain that permits in vivo measurement of ATP levels and found lower levels of ATP in NNK‐exposed animals when compared with the unexposed controls. To test whether the lower levels of ATP could be attributed to inhibition of respiratory chain components, we investigated oxygen consumption in whole C. elegans and found reduced oxygen consumption in exposed animals when compared with the unexposed controls. Our data suggest a model in which NNK exposure causes damage to both C. elegans nuclear and mitochondrial genomes, and support the hypothesis that the mitochondrial damage is functionally important in this model. These results also represent a first step in developing this genetically tractable organism as a model for assessing NNK toxicity. Environ. Mol. Mutagen. 55:43–50, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Mutations in FASTKD2, a mitochondrial RNA binding protein, have been associated with mitochondrial encephalomyopathy with isolated complex IV deficiency. However, deficiencies related to other oxidative phosphorylation system (OXPHOS) complexes have not been reported. Here, we identified three novel FASTKD2 mutations, c.808_809insTTTCAGTTTTG, homoplasmic mutation c.868C>T, and heteroplasmic mutation c.1859delT/c.868C>T, in patients with mitochondrial encephalomyopathy. Cell‐based complementation assay revealed that these three FASTKD2 mutations were pathogenic. Mitochondrial functional analysis revealed that mutations in FASTKD2 impaired the mitochondrial function in patient‐derived lymphocytes due to the deficiency in multi‐OXPHOS complexes, whereas mitochondrial complex II remained unaffected. Consistent results were also found in human primary muscle cell and zebrafish with knockdown of FASTKD2. Furthermore, we discovered that FASTKD2 mutation is not inherently associated with epileptic seizures, optic atrophy, and loss of visual function. Alternatively, a patient with FASTKD2 mutation can show sinus tachycardia and hypertrophic cardiomyopathy, which was partially confirmed in zebrafish with knockdown of FASTKD2. In conclusion, both in vivo and in vitro studies suggest that loss of function mutation in FASTKD2 is responsible for multi‐OXPHOS complexes deficiency, and FASTKD2‐associated mitochondrial disease has a high degree of clinical heterogenicity.  相似文献   

15.
16.
This study reports clinical, biochemical and histopathological findings associated with a novel homozygous MPV17 mutation in four patients with mitochondrial depletion syndrome. The severe course of the disease, which started in the first weeks of life, was dominated by a failure to thrive, hypotonia and liver dysfunction, with relatively mild neurological involvement. All affected infants died by 1 year of age. Laboratory findings included progressive liver failure (hypertransaminasaemia, icterus, and coagulopathy), recurrent hypoglycaemia, lactic acidaemia, hyperferritinaemia, and increased transferrin saturation. Histological and ultrastructural analyses uncovered significant lipid accumulation in hepatocytes and myocytes. A severe decrease in the mitochondrial/nuclear DNA (mtDNA/nDNA) ratio was found post‐mortem in the livers (and in one muscle specimen) of both examined patients. Oxidative phosphorylation system (OXPHOS) Western blotting revealed low levels of complexes I, III and IV subunits. The highlights of our findings are as follows: (i) The novel p.Pro64Arg mutation is the second recurrent MPV17 mutation reported. The phenotype associated with the p.Pro64Arg mutation differs from the phenotype of the relatively common p.Arg50Gln mutation, suggesting the existence of a genotype–phenotype correlation. (ii) Tissues collected from patients during autopsy may be useful for both mtDNA/nDNA ratio assessment and OXPHOS Western blotting.  相似文献   

17.
The common 4977 base pair mitochondrial deletion has been identified in association with a number of distinct clinical phenotypes. These include the Kearns‐Sayre syndrome, the Pearson marrow‐pancreas syndrome, and chronic progressive external ophthalmoplegia. We report the clinical and pathological findings in two siblings in whom the 4977 base pair mitochondrial DNA deletion was identified in muscle‐derived mitochondrial DNA. One sibling manifested early onset liver and renal failure, and both developed prominent peripheral sensorimotor neuropathy. These clinical findings have not been previously described in association with the 4977bp mtDNA deletion and thus represent a further expansion of the spectrum of mitochondrial disease. © 2002 Wiley‐Liss, Inc.  相似文献   

18.
Possible correlations among clinical data, serum aminotransferase levels and histological features were assessed in a series of 37 adult patients with non‐alcoholic fatty liver disease (NAFLD), consisting of nine patients with fatty liver (FL) and 28 with non‐alcoholic steatohepatitis (NASH). In each liver biopsy, the NAFLD activity score (NAS) and the stage of fibrosis were determined. Additionally, the number of Kupffer cell aggregates (microgranulomas) per centimeter of biopsy length (MG/cm ratio) was assessed on immunohistochemical stains for CD68 antigen. Definite NASH (NAS ≥ 5) was strongly correlated with serum aspartate aminotransferase (AST) level (P= 0.003), stage of fibrosis (P= 0.003) and age (P= 0.014). On multivariate analysis, age >46 years and AST level above normal values were found to be independent clinical predictors of established NASH. The MG/cm ratio increased from control liver to FL to NASH (P < 0.001), and was correlated with the NAS (P= 0.003) and with the stage of fibrosis (P= 0.004), but not with the serum aminotransferase levels. In conclusion, persistent AST elevation in patients with suspected NAFLD should be an indication for liver biopsy, in order to determine the severity of necroinflammatory activity and the stage of fibrosis. Microgranuloma counting may represent a useful complementary marker of necroinflammatory activity in patients with NAFLD.  相似文献   

19.
Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile‐onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17‐related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early‐onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late‐onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.  相似文献   

20.
Low oocyte mitochondrial DNA content in ovarian insufficiency   总被引:9,自引:0,他引:9  
BACKGROUND: Mitochondrial biogenesis and bioenergetics play an important role in oocyte maturation and embryo development. We have investigated the relationship between defective mitochondrial biogenesis and the lack of oocyte maturity observed during IVF procedures with patients suffering from ovarian dystrophy and ovarian insufficiency. METHODS: We used real-time quantitative PCR to quantify mitochondrial DNA (mtDNA) in 116 oocytes obtained from 47 women undergoing the ICSI procedure. We compared the mtDNA content of oocytes from women with a normal ovarian profile with that of oocytes from women with ovarian dystrophy and ovarian insufficiency. RESULTS: We found an average of 256,000 +/- 213,000 mitochondrial genomes per cell. The mean mtDNA copy number was not significantly different in ovarian dystrophy compared with controls, but it was significantly lower in oocytes from women with ovarian insufficiency (100,000 +/- 99,000, P < 0.0001). CONCLUSIONS: Our results suggest that low mtDNA content is associated with the impaired oocyte quality observed in ovarian insufficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号