首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
Fast-spiking parvalbumin-expressing basket cells (BCs) represent a major type of inhibitory interneuron in the hippocampus. These cells inhibit principal cells in a temporally precise manner and are involved in the generation of network oscillations. Although BCs show a unique expression profile of Ca(2+)-permeable receptors, Ca(2+)-binding proteins and Ca(2+)-dependent signalling molecules, physiological Ca(2+) signalling in these interneurons has not been investigated. To study action potential (AP)-induced dendritic Ca(2+) influx and buffering, we combined whole-cell patch-clamp recordings with ratiometric Ca(2+) imaging from the proximal apical dendrites of rigorously identified BCs in acute slices, using the high-affinity Ca(2+) indicator fura-2 or the low-affinity dye fura-FF. Single APs evoked dendritic Ca(2+) transients with small amplitude. Bursts of APs evoked Ca(2+) transients with amplitudes that increased linearly with AP number. Analysis of Ca(2+) transients under steady-state conditions with different fura-2 concentrations and during loading with 200 microm fura-2 indicated that the endogenous Ca(2+)-binding ratio was approximately 200 (kappa(S) = 202 +/- 26 for the loading experiments). The peak amplitude of the Ca(2+) transients measured directly with 100 microm fura-FF was 39 nm AP(-1). At approximately 23 degrees C, the decay time constant of the Ca(2+) transients was 390 ms, corresponding to an extrusion rate of approximately 600 s(-1). At 34 degrees C, the decay time constant was 203 ms and the corresponding extrusion rate was approximately 1100 s(-1). At both temperatures, continuous theta-burst activity with three to five APs per theta cycle, as occurs in vivo during exploration, led to a moderate increase in the global Ca(2+) concentration that was proportional to AP number, whereas more intense stimulation was required to reach micromolar Ca(2+) concentrations and to shift Ca(2+) signalling into a non-linear regime. In conclusion, dentate gyrus BCs show a high endogenous Ca(2+)-binding ratio, a small AP-induced dendritic Ca(2+) influx, and a relatively slow Ca(2+) extrusion. These specific buffering properties of BCs will sharpen the time course of local Ca(2+) signals, while prolonging the decay of global Ca(2+) signals.  相似文献   

2.
The goal of this review is an overview of the structural elements of the entorhinal–hippocampal connection. The development of the dendrites of hippocampal neurons will be outlined in relation to afferent pathway specificity and the mature dendritic structure compared. Interneurons will be contrasted to pyramidal cells in terms of processing of physiological signals and convergence and divergence in control of hippocampal circuits. Mechanisms of axonal guidance and target recognition, target structures, the involvement of receptor distribution on hippocampal dendrites and the involvement of non-neuronal cellular elements in the establishment of specific connections will be presented. Mechanisms relevant for the maintenance of shape and morphological specializations of hippocampal dendrites will be reviewed. One of the significant contexts in which to view these structural elements is the degree of plasticity in which they participate, during development and origination of dendrites, mature synaptic plasticity and after lesions, when the cells must continue to maintain and reconstitute function, to remain part of the circuitry in the hippocampus. This review will be presented in four main sections: (1) interneurons—development, role in synchronizing influence and hippocampal network functioning; (2) principal cells in CA1, CA3 and dentate gyrus regions—their development, function in terms of synaptic integration, differentiating structure and alterations with lesions; (3) glia and glia/neuronal interactions—response to lesions and developmental guidance mechanisms; and (4) network and circuit aspects of hippocampal morphology and functioning. Finally, the interwoven role of these various elements participating in hippocampal network function will be discussed.  相似文献   

3.
1. The role of synaptic activation of NMDA (N-methyl-D-aspartate) receptor-mediated conductances on CA1 hippocampal pyramidal cells in short-term excitability changes was studied with the use of a computational model. Model parameters were based on experimental recordings from dendrites and somata and previous hippocampal simulations. Representation of CA1 neurons included NMDA and non-NMDA excitatory dendritic synapses, dendritic and somatic inhibition, five intrinsic membrane conductances, and provision for activity-dependent intracellular and extracellular ion concentration changes. 2. The model simulated somatic and dendritic potentials recorded experimentally. The characteristic CA1 spike afterdepolarization was a consequence of the longitudinal spread of dendritic charge, reactivation of slow Ca(2+)-dependent K+ conductances, slow synaptic processes (NMDA-dependent depolarizing and gamma-aminobutyric acid-mediated hyperpolarizing currents) and was sensitive to extracellular potassium accumulation. Calcium currents were found to be less important in generating the spike afterdepolarization. 3. Repetitive activity was influenced by the cumulative activation of the NMDA-mediated synaptic conductances, the frequency-dependent depression of inhibitory synaptic responses, and a shift in the potassium reversal potential. NMDA receptor activation produced a transient potentiation of the excitatory postsynaptic potential (EPSP). The frequency dependence of EPSP potentiation was similar to the experimental data, reaching a maximal value near 10 Hz. 4. Although the present model did not have compartments for dendritic spines, Ca2+ accumulation was simulated in a restricted space near the intracellular surface of the dendritic membrane. The simulations demonstrated that the Ca2+ component of the NMDA-operated synaptic current can be a significant factor in increasing the Ca2+ concentration at submembrane regions, even in the absence of Ca2+ spikes. 5. Elevation of the extracellular K+ concentration enhanced the dendritic synaptic response during repetitive activity and led to an increase in intracellular Ca2+ levels. This increase in dendritic excitability was partly mediated by NMDA receptor-mediated conductances. 6. Blockade of Ca(2+)-sensitive K+ conductances in the dendrites increased the size of EPSPs leading to a facilitation of dendritic and somatic spike activity and increased [Ca2+]i. NMDA receptor-mediated conductances appeared as an amplifying component in this mechanism, activated by the relatively depolarized membrane potential. 7. The results suggest that dendritic NMDA receptors, by virtue of their voltage-dependency, can interact with a number of voltage-sensitive conductances to increase the dendritic excitatory response during periods of repetitive synaptic activation. These findings support experimental results that implicate NMDA receptor-mediated conductances in the short-term response plasticity of the CA1 hippocampal pyramidal neuron.  相似文献   

4.
The magnitude of postsynaptic Ca(2+) transients is thought to affect activity-dependent synaptic plasticity associated with learning and memory. Large Ca(2+) transients have been implicated in the induction of long-term potentiation (LTP), while smaller Ca(2+) transients have been associated with long-term depression (LTD). However, a direct relationship has not been demonstrated between Ca(2+) measurements and direction of synaptic plasticity in the same cells, using one induction protocol. Here, we used glutamate iontophoresis to induce Ca(2+) transients in hippocampal CA1 neurons injected with the Ca(2+)-indicator fura-2. Test stimulation of one or two synaptic pathways before and after iontophoresis showed that the direction of synaptic plasticity correlated with glutamate-induced Ca(2+) levels above a threshold, below which no plasticity occurred (approximately 180 nM). Relatively low Ca(2+) levels (180-500 nM) typically led to LTD of synaptic transmission and higher levels (>500 nM) often led to LTP. Failure to show plasticity correlated with Ca(2+) levels in two distinct ranges: <180 nM and approximately 450-600 nM, while only LTD occurred between these ranges. Our data support a class of models in which failure of Ca(2+) transients to affect transmission may arise either from insufficient Ca(2+) to affect Ca(2+)-sensitive proteins regulating synaptic strength through opposing activities or from higher Ca(2+) levels that reset activities of such proteins without affecting the net balance of activities. Our estimates of the threshold Ca(2+) level for LTD (approximately 180 nM) and for the transition from LTD to LTP (approximately 540 nM) may assist in constraining the molecular details of such models.  相似文献   

5.
Pyramidal neuron dendrites express voltage-gated conductances that control synaptic integration and plasticity, but the contribution of the Ca(2+)-activated K(+)-mediated currents to dendritic function is not well understood. Using dendritic and somatic recordings in rat hippocampal CA1 pyramidal neurons in vitro, we analyzed the changes induced by the slow Ca(2+)-activated K(+)-mediated afterhyperpolarization (sAHP) generated by bursts of action potentials on excitatory postsynaptic potentials (EPSPs) evoked at the apical dendrites by perforant path-Schaffer collateral stimulation. Both the amplitude and decay time constants of EPSPs (tau(EPSP)) were reduced by the sAHP in somatic recordings. In contrast, the dendritic EPSP amplitude remained unchanged, whereas tau(EPSP) was reduced. Temporal summation was reduced and spatial summation linearized by the sAHP. The amplitude of the isolated N-methyl-D-aspartate component of EPSPs (EPSP(NMDA)) was reduced, whereas tau(NMDA) was unaffected by the sAHP. In contrast, the sAHP did not modify the amplitude of the isolated EPSP(AMPA) but reduced tau(AMPA) both in dendritic and somatic recordings. These changes are attributable to a conductance increase that acted mainly via a selective "shunt" of EPSP(NMDA) because they were absent under voltage clamp, not present with imposed hyperpolarization simulating the sAHP, missing when the sAHP was inhibited with isoproterenol, and reduced under block of EPSP(NMDA). EPSPs generated at the basal dendrites were similarly modified by the sAHP, suggesting both a somatic and apical dendritic location of the sAHP channels. Therefore the sAHP may play a decisive role in the dendrites by regulating synaptic efficacy and temporal and spatial summation.  相似文献   

6.
Shany B  Vago R  Baranes D 《Tissue engineering》2005,11(3-4):585-596
Tissue-like structures of hippocampal neurons were established in a crystalline three-dimensional (3D) aragonite biomatrix obtained from the exoskeleton of the coral Porites lutea. Cultures were maintained in vitro for up to 5 weeks. Cell viability and regeneration of neuronal properties were studied by immunocytochemical methods, light microscopy image analysis techniques, and scanning electron microscopy. Some portions of the cell population acquired the morphological characteristics of hippocampal pyramidal or granule neurons with axons and dendrites extending in a 3D manner along the surfaces of the crystalline biomatrix. The neurons usually grew on a sheet of glial cells. Within the pore void areas, multiple layers of neurons were formed, many of the neurons growing with no attachment to the crystalline surfaces. The neurons developed mature synaptic connections, with presynaptic sites expressing the synaptic vesicle protein 2 and postsynaptic sites having the shape of dendritic spines and expressing type 1 glutamate receptors, as these cells do under conventional culture conditions. The findings of the present study suggest that neuronal networks growing in a strong 3D aragonite support may find application as tissue replacement material for the central nervous system.  相似文献   

7.
There is increasing evidence that brain-derived neurotrophic factor (BDNF) modulates synaptic and morphological plasticity in the developing and mature nervous system. Plasticity may be modulated partially by BDNF's effects on dendritic structure. Utilizing transgenic mice where BDNF overexpression was controlled by the beta-actin promoter, we evaluated the effects of long-term overexpression of BDNF on the dendritic structure of granule cells in the hippocampal dentate gyrus. BDNF transgenic mice provided the opportunity to investigate the effects of modestly increased BDNF levels on dendrite structure in the complex in vivo environment. While the elevated BDNF levels were insufficient to change levels of TrkB receptor isoforms or downstream TrkB signaling, they did increase dendrite complexity of dentate granule cells. These cells showed an increased number of first order dendrites, of total dendritic length and of total number of branch points. These results suggest that dendrite structure of granule cells is tightly regulated and is sensitive to modest increases in levels of BDNF. This is the first study to evaluate the effects of BDNF overexpression on dendrite morphology in the intact hippocampus and extends previous in vitro observations that BDNF influences synaptic plasticity by increasing complexity of dendritic arbors.  相似文献   

8.
In the hippocampus, antibody raised against vasoactive intestinal polypeptide (VIP) labeled perikarya and processes of non-pyramidal neurons whereas these structures remained unlabeled in pyramidal cells and granule cells. In the present study, VIP-immunostaining was used to investigate the fine structure and synaptic connections of identified non-pyramidal neurons and of imrnunoreactive axon terminals in the CA1 region of the rat hippocampus by means of electron microscopic immunocytochemistry.From a number of cells studied, two VIP-like imrnunoreactive non-pyramidal neurons in the regio superior were selected for an electron microscopic analysis of serial thin sections. These cells were different with regard to the location of their cell bodies and the orientation of their dendrites. One cell was located in the stratum lacunosum-moleculare with dendritic processes oriented parallel to the hippocampal fissure. The second neuron was found in the inner one-third of the stratum radiatum. The dendrites of this cell ran nearly parallel to the ascending apical dendrites of the pyramidal cells. Both cells had a round or ovoid perikaryon and an infolded nucleus. The aspinous dendrites of both neurons were densely covered with synaptic boutons. These terminals were small, filled with spherical vesicles and established asymmetric synaptic contacts. No variations in the fine structure of the presynaptic boutons were found along the course of the labeled dendrites through the various hippocampal layers, although different afferents are known to terminate in these layers.Vasoactive intestinal polypeptide-like immunopositive axon terminals course through all layers of the hippocampus. In the stratum pyramidale they established symmetric synaptic contacts with the perikarya of pyramidal cells. In the stratum radiatum they made symmetric contacts with the shafts of apical dendrites of pyramidal cells but never contacted dendritic spines.The symmetric contacts with pyramidal cell perikarya suggest an involvement of the VIP-like immunoreactive axon terminals in pyramidal cell inhibition.  相似文献   

9.
Microcircuits composed of principal neuron and interneuron dendrites have an important role in shaping the representation of sensory information in the olfactory bulb. Here we establish the physiological features governing synaptic signaling in dendrodendritic microcircuits of olfactory bulb glomeruli. We show that dendritic gamma-aminobutyric acid (GABA) release from periglomerular neurons mediates inhibition of principal tufted cells, retrograde inhibition of sensory input and lateral signaling onto neighboring periglomerular cells. We find that L-type dendritic Ca(2+) spikes in periglomerular cells underlie dendrodendritic transmission by depolarizing periglomerular dendrites and activating P/Q type channels that trigger GABA release. Ca(2+) spikes in periglomerular cells are evoked by powerful excitatory inputs from a single principal cell, and glutamate release from the dendrites of single principal neurons activates a large ensemble of periglomerular cells.  相似文献   

10.
Here we demonstrate that cerebellar stellate cells diffusionally isolate synaptically evoked signals in dendrites and are capable of input-specific synaptic plasticity. Sustained activity of parallel fibers induces a form of long-term depression that requires opening of calcium (Ca(2+))-permeable AMPA-type glutamate receptors (CP-AMPARs) and signaling through class 1 metabotropic glutamate receptors (mGluR1) and CB1 receptors. This depression is induced by postsynaptic increases in Ca(2+) concentration ([Ca(2+)]) and is limited to activated synapses. To understand how synapse-specific plasticity is induced by diffusible second messengers in aspiny dendrites, we examined diffusion of Ca(2+) and small molecules within stellate cell dendrites. Activation of a single parallel fiber opened CP-AMPARs, generating long-lived Ca(2+) transients that were confined to submicron dendritic stretches. The diffusion of Ca(2+) was severely retarded due to interactions with parvalbumin and a general restriction of small molecule mobility. Thus stellate cell dendrites spatially restrict signaling cascades that lead from CP-AMPAR activation to endocannabinoid production and trigger the selective regulation of active synapses.  相似文献   

11.
Hertle DN  Yeckel MF 《Neuroscience》2007,150(3):625-638
Activation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs) can lead to the release of Ca(2+) from intracellular stores and propagating Ca(2+) waves. Previous studies of these proteins in neurons have focused on their distribution in adult tissue, whereas, recent functional studies have examined neural tissue extracted from prenatal and young postnatal animals. In this study we examined the distribution of InsP(3)R isotypes 1-3 and RyR isotypes 1-3 in rat hippocampus during postnatal maturation, with a focus on InsP(3)R1 because it is most prominent in the hippocampus. InsP(3)R1 was observed in pyramidal cells and granule cells, InsP(3)R2 immunoreactivity was observed in perivascular astrocytes and endothelial cells, and InsP(3)R3 immunoreactivity was detected in axon terminals located in stratum pyramidale of CA1 and microvessels in stratum radiatum. RyR1 immunolabeling was enriched in CA1, RyR2 was most intense in CA3 and the dentate gyrus, and RyR3 immunolabeling was detected in all subfields of the hippocampus, but was most intense in stratum lacunosum-moleculare. During maturation from 2 to 10 weeks of age there was a shift in InsP(3)R1 immunoreactivity from a high density in the proximal apical dendrites to a uniform distribution along the dendrites. Independent of age, InsP(3)R1 immunoreactivity was observed to form clusters within the primary apical dendrite and at dendritic bifurcations of pyramidal neurons. As CA1 pyramidal neurons matured, InsP(3)R1 was often co-localized with the Ca(2+) binding protein calbindin D-28k. In contrast, InsP(3)R1 immunolabel was never co-localized with calbindin D-28k immunopositive interneurons located outside of stratum pyramidale or with parvalbumin, typically found in hippocampal basket cells, suggesting that InsP(3)R1s do not play a role in internal Ca(2+) release in these interneurons. These findings should help to interpret past functional studies and inform future studies examining the characteristics and consequences of InsP(3)R-mediated internal Ca(2+) release and Ca(2+) waves in hippocampal neurons.  相似文献   

12.
Protein kinase A regulates calcium permeability of NMDA receptors   总被引:3,自引:0,他引:3  
Calcium (Ca2+) influx through NMDA receptors (NMDARs) is essential for synaptogenesis, experience-dependent synaptic remodeling and plasticity. The NMDAR-mediated rise in postsynaptic Ca2+ activates a network of kinases and phosphatases that promote persistent changes in synaptic strength, such as long-term potentiation (LTP). Here we show that the Ca2+ permeability of neuronal NMDARs is under the control of the cyclic AMP-protein kinase A (cAMP-PKA) signaling cascade. PKA blockers reduced the relative fractional Ca2+ influx through NMDARs as determined by reversal potential shift analysis and by a combination of electrical recording and Ca2+ influx measurements in rat hippocampal neurons in culture and hippocampal slices from mice. In slices, PKA blockers markedly inhibited NMDAR-mediated Ca2+ rises in activated dendritic spines, with no significant effect on synaptic current. Consistent with this, PKA blockers depressed the early phase of NMDAR-dependent LTP at hippocampal Schaffer collateral-CA1 (Sch-CA1) synapses. Our data link PKA-dependent synaptic plasticity to Ca2+ signaling in spines and thus provide a new mechanism whereby PKA regulates the induction of LTP.  相似文献   

13.
To investigate the physiological consequences of the increase in spine density induced by estradiol in pyramidal neurons of the hippocampus, we performed simultaneous whole cell recordings and Ca2+ imaging in CA1 neuron spines and dendrites in hippocampal slices. Four- to eight-days in vitro slice cultures were exposed to 17beta-estradiol (EST) for an additional 4- to 8-day period, and spine density was assessed by confocal microscopy of DiI-labeled CA1 pyramidal neurons. Spine density was doubled in both apical and basal dendrites of the CA1 region in EST-treated slices; consistently, a reduction in cell input resistance was observed in EST-treated CA1 neurons. Double immunofluorescence staining of presynaptic (synaptophysin) and postsynaptic (alpha-subunit of CaMKII) proteins showed an increase in synaptic density after EST treatment. The slopes of the input/output curves of both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) postsynaptic currents were steeper in EST-treated CA1 neurons, consistent with the observed increase in synapse density. To characterize NMDA-dependent synaptic currents and dendritic Ca2+ transients during Schaffer collaterals stimulation, neurons were maintained at +40 mV in the presence of nimodipine, picrotoxin, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). No differences in resting spine or dendritic Ca2+ levels were observed between control and EST-treated CA1 neurons. Intracellular Ca2+ transients during afferent stimulation exhibited a faster slope and reached higher levels in spines than in adjacent dendrites. Peak Ca2+ levels were larger in both spines and dendrites of EST-treated CA1 neurons. Ca2+ gradients between spine heads and dendrites during afferent stimulation were also larger in EST-treated neurons. Both spine and dendritic Ca2+ transients during afferent stimulation were reversibly blocked by D, L-2-amino-5-phosphonovaleric acid (D,L-APV). The increase in spine density and the enhanced NMDA-dependent Ca2+ signals in spines and dendrites induced by EST may underlie a threshold reduction for induction of NMDA-dependent synaptic plasticity in the hippocampus.  相似文献   

14.
Previous studies in our laboratory demonstrated a reversal of anesthetic actions on aged neurons by decreasing extracellular [Ca(2+)] in hippocampal slices. Such maneuver indirectly attenuated Ca(2+) influx, hence decreased exogenous intraneuronal Ca(2+) loads during neuronal activity and consequently improved intracellular Ca(2+) concentration homeostasis. Therefore, in the present study we hypothesized that decreasing exogenous Ca(2+) loads by blocking voltage-gated calcium influx in aged neurons would oppose isoflurane actions. Conversely, increasing endogenous Ca(2+) loads by suppressing calcium efflux during forced reversal of Na(+)/Ca(2+) exchanger function would enhance anesthetic effects. Hippocampal slices were prepared from young (2-4 months) and old (24-26 months) Fischer 344 rats. Isoflurane depressed the evoked dendritic field excitatory postsynaptic potentials by approximately 45% in slices taken from old animals. However, application of isoflurane in addition with CoCl(2) or nifedipine opposed the anesthetic actions, which then depressed the evoked dendritic field postsynaptic potentials by only 15%. Selective blockade of the N-type and P/Q-type calcium channels with omega-conotoxin GVIA and omega-conotoxin MVIIC respectively caused rapid but partial depression of synaptic transmission in slices taken from old Fischer 344 rats. However, isoflurane actions in these aged slices were not affected compared with slices perfused only with normal artificial cerebrospinal fluid. Young and aged slices were then exposed to a low sodium perfusate that forces the Na(+)/Ca(2+) exchanger protein into a reverse mode, thus increasing intracellular Ca(2+) concentration. Isoflurane actions under such conditions were profoundly potentiated in aged slices but were not altered in young hippocampi. The current results show that in aged central neurons, selectively blocking L-type calcium channels opposes anesthetic-induced depression of excitatory synaptic transmission. On the contrary, increasing calcium loads in aged neurons potentiates these actions.  相似文献   

15.
Zhao C  Braunewell KH 《Neuroscience》2008,153(4):1202-1212
Visinin-like protein-1 (VILIP-1) belongs to the neuronal calcium sensor (NCS) family of EF-hand Ca(2+)-binding proteins which are involved in a variety of Ca(2+)-dependent signal transduction processes in neurons. VILIP-1 has been implicated in the pathology of CNS disorders including Alzheimer's disease and schizophrenia, but its expression has also been found to be regulated following induction of hippocampal synaptic plasticity underlying learning and memory processes. VILIP-1 is strongly expressed in different populations of principal and non-principal neurons in the rat hippocampus. VILIP-1-containing interneurons are morphologically and neurochemically heterogeneous. On the basis of co-localizing markers, VILIP-1 is rarely present in perisomatic inhibitory parvalbumin containing cells. However, VILIP-1 is frequently expressed in mid-proximal dendritic inhibitory cells characterized by calbindin immunoreactivity, and most strongly co-expressed in calretinin-positive disinhibitory interneurons. Partial co-localization of the metabotropic glutamate receptor mGluR1alpha with VILIP-1 was often found in interneurons located in the stratum oriens of the hippocampal CA1 region and in hilar interneurons. Partial co-localization of alpha4beta2 nicotinic acetylcholine receptor with VILIP-1 was seen in stratum oriens interneurons and particularly at the border of the hilus in the dentate gyrus, where VILIP-1 also strongly co-localized with calretinin. We speculate that depending on the regulation of the expression of VILIP-1 in hippocampal pyramidal cells or defined types of interneurons, it may have different effects on hippocampal synaptic plasticity and network activity in health and disease.  相似文献   

16.
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are subthreshold, voltage-gated ion channels that are highly expressed in hippocampal and cortical pyramidal cell dendrites, where they are important for regulating synaptic potential integration and plasticity. We found that HCN1 subunits are also localized to the active zone of mature asymmetric synaptic terminals targeting mouse entorhinal cortical layer III pyramidal neurons. HCN channels inhibited glutamate synaptic release by suppressing the activity of low-threshold voltage-gated T-type (Ca(V)3.2) Ca2(+) channels. Consistent with this, electron microscopy revealed colocalization of presynaptic HCN1 and Ca(V)3.2 subunit. This represents a previously unknown mechanism by which HCN channels regulate synaptic strength and thereby neural information processing and network excitability.  相似文献   

17.
In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippocampal slices prepared from kainate-treated epileptic rats (KA rats). In 14 of 24 slices from KA rats, hilar stimulation evoked a large depolarization in almost the entire molecular layer in which granule cell apical dendrites are located. The signals were identified as postsynaptic responses because of their dependence on extracellular Ca(2+). The depolarization amplitude was largest in the inner molecular layer (the target area of sprouted mossy fibers) and declined with increasing distance from the granule cell layer. In the inner molecular layer, a good correlation was obtained between depolarization size and the density of mossy fiber terminals detected by Timm staining methods. Blockade of GABAergic inhibition by bicuculline enlarged the depolarization in granule cell dendrites. Our data indicate that mossy fiber sprouting results in a large and prolonged synaptic depolarization in an extensive dendritic area and that the enhanced GABAergic inhibition partly masks the synaptic depolarization. However, despite the large dendritic excitation induced by the sprouted mossy fibers, seizure-like activity of granule cells was never observed, even when GABAergic inhibition was blocked. Therefore, mossy fiber sprouting may not play a critical role in epileptogenesis.  相似文献   

18.
Layer V principal neurons of the medial entorhinal cortex receive the main hippocampal output and relay processed information to the neocortex. Despite the fundamental role hypothesized for these neurons in memory replay and consolidation, their dendritic features are largely unknown. High-speed confocal and two-photon Ca(2+) imaging coupled with somatic whole cell patch-clamp recordings were used to investigate spike back-propagation in these neurons. The Ca(2+) transient associated with a single back-propagating action potential was considerably smaller at distal dendritic locations (>200 μm from the soma) compared with proximal ones. Perfusion of Ba(2+) (150 μM) or 4-aminopyridine (2 mM) to block A-type K(+) currents significantly increased the amplitude of the distal, but not proximal, Ca(2+) transients, which is strong evidence for an increased density of these channels at distal dendritic locations. In addition, the Ca(2+) transients decreased with each subsequent spike in a 20-Hz train; this activity-dependent decrease was also more prominent at more distal locations and was attenuated by the perfusion of the protein kinase C activator phorbol-di-acetate. These data are consistent with a phosphorylation-dependent control of back-propagation during trains of action potentials, attributable mainly to an increase in the time constant of recovery from voltage-dependent inactivation of dendritic Na(+) channels. In summary, dendritic Na(+) and A-type K(+) channels control spike back-propagation in layer V entorhinal neurons. Because the activity of these channels is highly modulated, the extent of the dendritic Ca(2+) influx is as well, with important functional implications for dendritic integration and associative synaptic plasticity.  相似文献   

19.
The functional significance of cyclooxygenases (COX-1 and -2), the key enzymes that convert arachidonic acid (AA) to prostaglandins (PGs) in brain, is unclear, although they have been implicated in cellular functions and in some neurologic disorders, including stroke, epilepsy, and Alzheimer's disease. Recent evidence that COX-2 is expressed in postsynaptic dendritic spines (which are specialized structures involved in synaptic signaling) and is regulated by synaptic activity implies participation of COX-2 in neuronal plasticity. However, direct evidence is lacking. Here we demonstrate that selective COX-2 inhibitors significantly reduced postsynaptic membrane excitability, back-propagating dendritic action potential-associated Ca2+ influx, and long-term potentiation (LTP) induction in hippocampal dentate granule neurons, while a COX-1 inhibitor is ineffective. All of these actions were effectively reversed by exogenous application of PGE2 but not of PGD2 or PGF(2alpha). Our results indicate that COX-2-generated PGE2 regulates membrane excitability and long-term synaptic plasticity in hippocampal perforant path-dentate gyrus synapses.  相似文献   

20.
Glutamate stimulation of hippocampal CA1 neurons in slice was delivered via iontophoresis from a microelectrode. Five pulses (approximately 5 muA, 10 s duration, repeated at 1 min intervals) were applied with the electrode tip positioned in the stratum radiatum near the dendrites of a neuron filled with the Ca(2+) indicator fura-2. A single stimulus set produced Ca(2+) elevations that ranged from several hundred nM to several microM and that, in all but a few neurons, recovered within 1 min of stimulus termination. Subsequent identical stimulation produced Ca(2+) elevations that outlasted the local glutamate elevations by several minutes as judged by response recoveries in neighboring cells or in other parts of the same neuron. These long responses ultimately recovered but persisted for up to 10 min and were most prominent in the mid and distal dendrites. Recovery was not observed for responses that spread to the soma. The elevated Ca(2+) levels were accompanied by membrane depolarization but did not appear to depend on the depolarization. High-resolution images demonstrated responsive areas that involved only a few mu(m) of dendrite. Our results confirm the previous general findings from isolated and cell culture neurons that glutamate stimulation, if carried beyond a certain range, results in long-lasting Ca(2+) elevation. The response characterized here in mature in situ neurons was significantly different in terms of time course and reversibility. We suggest that the extended Ca(2+) elevations might serve not only as a trigger for delayed neuron death but, where more spatially restricted, as a signal for local remodeling in dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号