首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Conjugated linoleic acid (CLA) is a naturally occurring fatty acid, which has been shown to exert beneficial effects against breast carcinogenesis. It has been reported that CLA could modulate cellular proliferation and differentiation through the activation of peroxisome proliferator-activated receptors (PPARs). Among different PPAR isotypes, PPAR gamma is involved in growth inhibition of transformed cells. Ligands of PPAR gamma are considered as potential anticancer drugs, so CLA was tested for its ability to induce PPAR gamma expression in MCF-7 breast cancer cells. The effects of CLA and of a specific synthetic PPAR gamma antagonist were evaluated on cell growth as well as on parameters responsible for cell growth regulation. We demonstrated here that CLA stimulated the expression of PPAR gamma to levels up to control and caused PPAR gamma translocation into the nucleus. Furthermore, the overexpression of PPAR gamma positively correlates with the inhibition of cell proliferation and with the modulation of ERK signaling induced by CLA; in all cases the administration of the antagonist reverted CLA effects. The PPAR-signaling pathway is connected with the beta-catenin/E-cadherin pathway, thus we evaluated CLA effects on the expression and cellular distribution of these proteins, which are involved in cell adhesion and responsible for invasive behavior. The treatment with CLA determined the up-regulation and the redistribution of beta-catenin and E-cadherin and the antagonist reverted only the effect on beta-catenin. These studies indicate that CLA regulates PPAR gamma expression by selectively acting as an agonist and may influence cell-cell adhesion and invasiveness of MCF-7 cells.  相似文献   

6.
7.
8.
9.
10.
The proto-oncogene c-Myc is overexpressed in 70% of colorectal tumours and can modulate proliferation and apoptosis after cytotoxic insult. Using an isogenic cell system, we demonstrate that c-Myc overexpression in colon carcinoma LoVo cells resulted in sensitisation to camptothecin-induced apoptosis, thus identifying c-Myc as a potential marker predicting response of colorectal tumour cells to camptothecin. Both camptothecin exposure and c-Myc overexpression in LoVo cells resulted in elevation of p53 protein levels, suggesting a role of p53 in the c-Myc-imposed sensitisation to the apoptotic effects of camptothecin. This was confirmed by the ability of PFT-alpha, a specific inhibitor of p53, to attenuate camptothecin-induced apoptosis. p53 can induce the expression of p21(Waf1/Cip1), an antiproliferative protein that can facilitate DNA repair and drug resistance. Importantly, although camptothecin treatment markedly increased p21(Waf1/Cip1) levels in parental LoVo cells, this effect was abrogated in c-Myc-overexpressing derivatives. Targeted inactivation of p21(Waf1/Cip1) in HCT116 colon cancer cells resulted in significantly increased levels of apoptosis following treatment with camptothecin, demonstrating the importance of p21(Waf1/Cip1) in the response to this agent. Finally, cDNA microarray analysis was used to identify genes that are modulated in expression by c-Myc upregulation that could serve as additional markers predicting response to camptothecin. Thirty-four sequences were altered in expression over four-fold in two isogenic c-Myc-overexpressing clones compared to parental LoVo cells. Moreover, the expression of 10 of these genes was confirmed to be significantly correlated with response to camptothecin in a panel of 30 colorectal cancer cell lines.  相似文献   

11.
Ca(2+) and the cell-surface calcium sensing receptor (CaSR) constitute a novel and robust ligand/receptor system in regulating the proliferation and differentiation of colonic epithelial cells. Here we show that activation of CaSR by extracellular Ca(2+) (or CaSR agonists) enhanced the sensitivity of human colon carcinoma cells to mitomycin C (MMC) and fluorouracil (5-FU). Activation of CaSR up-regulated the expression of MMC activating enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO-1) and down-regulated the expression of 5-FU target, thymidylate synthase (TS) and the anti-apoptotic protein survivin. Cells that were resistant to drugs expressed little or no CaSR but abundant amount of survivin. Disruption of CaSR expression by shRNA targeting the CaSR abrogated these modulating effects of CaSR activation on the expression of NQO1, TS, survivin and cytotoxic response to drugs. It is concluded that activation of CaSR can enhance colon cancer cell sensitivity to MMC and 5-FU and can modulate the expression of molecules involved in the cellular responses to these cytotoxic drugs.  相似文献   

12.
Although Smad signalling is known to play a tumour suppressor role, it has been shown to play a prometastatic function also in breast cancer and melanoma metastasis to bone. In contrast, mutation or reduced level of Smad4 in colorectal cancer is directly correlated to poor survival and increased metastasis. However, the functional role of Smad signalling in metastasis of colorectal cancer has not been elucidated. We previously reported that overexpression of Smad7 in colon adenocarcinoma (FET) cells induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis. Here, we have observed that abrogation of Smad signalling by Smad7 induces liver metastasis in a splenic injection model. Polymerase chain reaction with genomic DNA from liver metastases indicates that cells expressing Smad7 migrated to the liver. Increased expression of TGF-beta type II receptor in liver metastases is associated with phosphorylation and nuclear accumulation of Smad2. Immunohistochemical analyses have suggested poorly differentiated spindle cell morphology and higher cell proliferation in Smad7-induced liver metastases. Interestingly, we have observed increased expression and junctional staining of Claudin-1, Claudin-4 and E-cadherin in liver metastases. Therefore, this report demonstrates, for the first time, that blockade of TGF-beta/Smad pathway in colon cancer cells induces metastasis, thus supporting an important role of Smad signalling in inhibiting colon cancer metastasis.  相似文献   

13.
14.
TP63 is a member of the TP53 gene family that encodes for up to ten different TA and ΔN isoforms through alternative promoter usage and alternative splicing. Besides being a master regulator of gene expression for squamous epithelial proliferation, differentiation and maintenance, P63, through differential expression of its isoforms, plays important roles in tumorigenesis. All P63 isoforms share an immunoglobulin-like folded DNA binding domain responsible for binding to sequence-specific response elements (REs), whose overall consensus sequence is similar to that of the canonical p53 RE. Using a defined assay in yeast, where P63 isoforms and RE sequences are the only variables, and gene expression assays in human cell lines, we demonstrated that human TA- and ΔN-P63α proteins exhibited differences in transactivation specificity not observed with the corresponding P73 or P53 protein isoforms. These differences 1) were dependent on specific features of the RE sequence, 2) could be related to intrinsic differences in their oligomeric state and cooperative DNA binding, and 3) appeared to be conserved in evolution. Since genotoxic stress can change relative ratio of TA- and ΔN-P63α protein levels, the different transactivation specificity of each P63 isoform could potentially influence cellular responses to specific stresses.  相似文献   

15.
Oligodendrogliomas originate from oligodendrocyte progenitor cells (OPCs), whose development is regulated by the Sonic hedgehog and Wnt/beta-catenin pathways. We investigated the contribution of these pathways in the proliferation and differentiation of human oligodendroglioma cells (HOG). Inhibition of Hedgehog signaling with cyclopamine decreased cell survival and increased phosphorylated beta-catenin without altering myelin protein levels. Conversely, treatment of HOG with the Wnt antagonist secreted frizzled related protein (SFRP1), led to increased myelin protein levels and reduced cell proliferation, suggesting cell cycle arrest and differentiation. Unlike normal primary human OPCs, beta-catenin in HOG cells is not associated with endogenous Sox17 protein despite high levels of both proteins. Retroviral overexpression of recombinant Sox17 increased HOG cell cycle exit and apoptosis, and raised myelin protein levels and the percentage of O4+ cells, indicating increased differentiation. Recombinant Sox17 also increased beta-catenin-TCF4-Sox17 complex formation and decreased total cellular levels of beta-catenin. These changes were associated with increased SFRP1, and reduced expression of Wnt-1 and Frizzled-1, -3 and -7 RNA, indicating that Sox17 induced a Hedgehog target, and regulated Wnt signaling at multiple levels. Our studies indicate that Wnt signaling regulates HOG cell cycle arrest and differentiation, and that recombinant Sox17 mediates modulation of the Wnt pathway through changes in beta-catenin, SFRP1 and Wnt/Frizzled expression. Our results thus identify Sox17 as a potential molecular target to include in HOG therapeutic strategies.  相似文献   

16.
Calmodulin-dependent protein kinase III (CaM kinase III, elongation factor-2 kinase) is a unique member of the Ca2+/CaM-dependent protein kinase family. Activation of CaM kinase III leads to the selective phosphorylation of elongation factor 2 (eEF-2) and transient inhibition of protein synthesis. Recent cloning and sequencing of CaM kinase III revealed that this enzyme represents a new superfamily of protein kinases. The activity of CaM kinase III is selectively activated in proliferating cells; inhibition of the kinase blocked cells in G0/G1-S and decreased viability. To determine the significance of CaM kinase III in breast cancer, we measured the activity of the kinase in human breast cancer cell lines as well as in fresh surgical specimens. The specific activity of CaM kinase III in human breast cancer cell lines was equal to or greater than that seen in a variety of cell lines with similar rates of proliferation. The specific activity of CaM kinase III was markedly increased in human breast tumour specimens compared with that of normal adjacent breast tissue. The activity of this enzyme was regulated by breast cancer mitogens. In serum-deprived MDA-MB-231 cells, the combination of insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) stimulated cell proliferation and activated CaM kinase III to activities observed in the presence of 10% serum. Inhibition of enzyme activity blocked cell proliferation induced by growth factors. In MCF-7 cells separated by fluorescence-activated cell sorting. CaM kinase III was increased in S-phase over that of other phases of the cell cycle. In summary, the activity of Ca2+/CaM-dependent protein kinase III is controlled by breast cancer mitogens and appears to be constitutively activated in human breast cancer. These results suggest that CaM kinase III may contribute an important link between growth factor/receptor interactions, protein synthesis and the induction of cellular proliferation in human breast cancer.  相似文献   

17.
18.
Expression of the novel tumour suppressor p33(ING1)is independent of p53   总被引:10,自引:0,他引:10  
A recently cloned tumour suppressor candidate, p33ING1, has been shown in vitro to collaborate with p53 to execute growth arrest and apoptosis. However, it is unclear as to how the expression of ING1 is regulated in normal and stress conditions. Using a p53-knockout mouse model, we investigated if the expression of ING1 was dependent on p53. We found that there was no difference in ING1 mRNA and protein levels between p53+/+ and p53-/- murine organs. In addition, when normal human epithelial keratinocytes (NHEK) and a keratinocyte cell line, HaCaT, which lacks wild-type p53 function, were exposed to UVB irradiation, the expression levels of ING1 were elevated in both NHEK and HaCaT cells. It is interesting, however, that UVB irradiation did not induce ING1 expression in dermal fibroblasts isolated from p53+/+ and p53-/- mice. Based on our findings, we therefore conclude that the expression of ING1 is independent of p53 status. UV induction of ING1 in keratinocytes suggests that ING1 may play a role in cellular stress response and skin carcinogenesis.  相似文献   

19.
Nonsteriodal anti-inflammatory drugs (NSAIDs) are among the most commonly used medications in the United States and elsewhere, mainly for the treatment of arthritis. The NSAID sulindac causes regression and prevents the recurrence of premalignant colonic polyps in patients with familial adenomatous polyposis and inhibits colon carcinogenesis in rodents. Sulindac and sulindac sulfone, a metabolite of sulindac that lacks cyclooxygenase (cox) inhibitory activity, also inhibit mammary carcinogenesis in rats. To obtain insights into the relevance of these findings to human breast cancer, we examined the mechanism of action of sulindac and its sulfide and sulfone metabolites on the normal human mammary epithelial cell line MCF-10F and the human breast cancer cell line MCF-7. Of the three compounds, the sulfide was the most potent inhibitor of cell growth, although the sulfone and sulfoxide were also active at higher concentrations. Treatment of MCF-10F and MCF-7 cells with 100 µM sulindac sulfide resulted in accumulation of cells in the G1 phase of the cell cycle and induction of apoptosis. Apoptosis occurred within 24 h as determined by the TUNEL assay and DNA laddering was observed at 72 h. The accumulation of cells in G1 was associated with decreased levels of expression of cyclin D1 but no effect was seen on the expression of CDK4 or the immediate early response gene c-jun. Treatment with sulindac sulfide caused a striking induction of the CDK inhibitor p21WAF1 in MCF-10F cells. The MCF-7 cell line expressed a high basal level of p21WAF1 which did not change significantly after drug treatment. The pro-apoptotic gene BAX was not induced in either MCF-10F or MCF-7 cells by sulindac sulfide. Stable overexpression of cyclin D1, which frequently occurs in breast cancers, did not protect mammary epithelial cells from inhibition by the sulfide. These studies suggest that this class of compounds warrants further study with respect to breast cancer prevention and treatment.  相似文献   

20.
Epithelial-to-mesenchymal transition (EMT) is considered to play an essential role in progression and metastasis. This study aims to investigate the expression and underlying molecular targets of high-mobility group AT-hook 2 (HMGA2) in the progression of colon cancer. The expression of HMGA2 is upregulated by both active extracellular signal-regulated kinase (ERK)1/2 and TGF-β signaling in colon cancer cells through a series of lentiviral infection and pharmacological assays. HMGA2 knockdown by specific shRNAs attenuates proliferation, motility and invasion of colon cancer cells in vitro and in vivo. Besides, exogenous HMGA2 expression caused EMT in colon cancer cells, which was confirmed by the downregulation of the epithelial markers and the upregulation of the mesenchymal markers. Moreover, HMGA2 positively regulates the Slug expression by directly binding to the regulatory region in Slug promoter. Importantly, the knockdown of Slug could reverse the HMGA2-induced EMT and decrease the migration and invasion ability of colon cancer cells. Taken together, our results reveal a critical role for HMGA2 in promoting EMT, migration, invasion, and proliferation of colon cancer cells, suggesting HMGA2 as a potential molecular target to prevent colon cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号