首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irinotecan-containing nanoparticles (NP) were prepared by coprecipitation with addition of water to acetone solution of poly(DL-lactic acid), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) and irinotecan, and subsequent evaporation of organic solvent. NP were purified by gel filtration and used for experiments after condensation by evaporation. The obtained NP showed the drug content of 4.5% (w/w) and the mean particle diameter of 118 nm with the particle diameter distribution between 80-210 nm. When the antitumor effect was examined at a repeated dose of 20 mg irinotecan eq/kg for 3 d (3 x 20 mg/kg) using mice bearing Sarcoma 180 subcutaneously, only NP suppressed tumor growth significantly. After i.v. injection in rats, NP maintained irinotecan plasma concentration longer than CPT-11 aqueous solution. The present nanoparticle formation is suggested as a possibly useful dosage form of irinotecan against solid tumor.  相似文献   

2.
Mono-N-terminal poly(ethylene glycol)-protein conjugates   总被引:3,自引:0,他引:3  
A site-directed method of joining proteins to poly(ethylene glycol) is presented which allows for the preparation of essentially homogeneous PEG-protein derivatives with a single PEG chain conjugated to the amine terminus of the protein. This selectivity is achieved by conducting the reductive alkylation of proteins with PEG-aldehydes at lower pH. Working examples demonstrating the application of this method to improve the delivery characteristics and therapeutic value of several proteins are provided.  相似文献   

3.
Poly(ethylene glycol) or PEG is an ideal inactive component for preparing simple binary eutectic mixtures because of its low entropy of fusion ( approximately 0.0076 J/mol-K), lower melting point (approximately 62 degrees C) compared to most pharmaceuticals, miscibility with drugs at elevated temperatures, and its covalent crystalline lattice. Implication of these physicochemical properties on eutectic crystallization and size reduction of the drug is discussed. Enhancement of the dissolution rate of a poorly soluble compound through the formation of PEG-drug eutectics was investigated using fenofibrate. Solid dispersions of PEG-fenofibrate when characterized, revealed that PEG and fenofibrate form a simple eutectic mixture containing 20-25%(w/w) fenofibrate at the eutectic point. Eutectic crystallization led to the formation of an irregular microstructure in which fenofibrate crystals were found to be less than 10 microm in size. Dissolution rate improvement of fenofibrate correlated with the phase diagram, and the amount of fenofibrate released from the dispersions that contained fenofibrate as a eutectic mixture was at least 10-fold higher compared to untreated fenofibrate. On aging, the dissolution rate of the dispersion containing 15%(w/w) fenofibrate in PEG remained unaltered. The results indicate that PEG-drug eutectic formation is a valuable option for particle size reduction and subsequent dissolution rate improvement.  相似文献   

4.
5.

Objective

To develop and characterize a new class of temperature-sensitive hydrogel microspheres composed of poly(N-isopropylacrylamide)/poly(ethylene glycol) diacrylate (PNIPAAm/PEG-DA).

Methods

The PNIPAAm/PEG-DA hydrogel microspheres were fabricated in two aqueous systems as a result of polymer/polymer immiscibility. Both PNIPAAm and PEG-DA were used as the precursors; the PEG-DA was also used as a cross-linker for the formation of the hydrogel microspheres. Bovine serum albumin was used as the model protein drug to examine the effects of the thermo-responsive properties of the hydrogel microspheres on the release of a protein at two different temperatures (22°C and 37°C).

Results

The hydrated PNIPAAm/PEG-DA hydrogel microspheres exhibited a swollen diameter of 50µm, with a narrow particle-size distribution. Scanning electron microscopy and environmental scanning electron microscopy observations revealed that, upon swelling, the resulting hydrogel microspheres had a regular spherical and rough surface morphology. The lower critical solution temperature (LCST) of the PNIPAAm/PEG-DA hydrogel microspheres was around 29.1°C, based on differential scanning calorimetric data. The release of BSA from the hydrogel microspheres at 37°C was slower than that at 22°C because of the thermo-responsive nature of PNIPAAm at temperatures above its LCST.

Conclusions

We believe that these kinds of PNIPAAm/PEG-DA hydrogel microspheres may have wide applications as promising drug delivery systems, because of their intelligent nature upon external temperature change.  相似文献   

6.
Phase behaviour studies of low molecular weight poly(ethylene glycol) (denoted PEG 600 and PEG 1000, corresponding to molecular weights of 600 and 1000 g mol(-1), respectively) have been carried out in 2H,3H-perfluoropentane (HPFP) with and without added poly(vinyl pyrrolidone). The concentration and temperature dependencies of their phase behaviour and the effect of moisture on these systems have been established. Furthermore, the solubility of PEG 600 in binary mixtures of HPFP and perfluoropentane (PFP), as well as HPFP and perfluorodecalin (PFD) have been considered at high HPFP contents. A phase separation phenomenon in fluorinated non-aqueous media is reported for the first time: PEG 600 and PEG 1000 both show a lower critical solution temperature type phase separation boundary. The size of the PEGs was obtained from small-angle neutron scattering (radius of gyration) and pulsed-gradient spin-echo NMR (hydrodynamic radius) measurements. It is shown that polymer conformation follows a regular trend with solution concentration; the size increases from <10 A at 3 wt% in HPFP to 45 +/- 2 A at 20 wt% PEG. On changing the solvent composition by substitution of HPFP by PFP or PFD, the size decreases, consistent with a decrease in the hydrogen-bonding capacity of the solvent mixture. Computer modelling indicates an interaction between the PEG oxygen and the hydrogen of HPFP, an interaction that is absent for the fully fluorinated solvents. This indicates that hydrogen bonding is the driving force for polymer solubility in these solvents.  相似文献   

7.
In the present paper, different spectroscopic methods were applied to evaluate conformational changes of hen egg-white lysozyme (HEWL) in various solvents and in the presence of poly(ethylene glycol) (PEG). In citrate (0.007 M, pH=6), or in Tris (0.1 M, pH=7.4), no conformational change of the protein was measured across the range of concentrations tested. In addition, HEWL in ultra-pure water revealed no irreversible conformational change and no activity loss, at least at low concentrations (≤0.2 mg/ml). Whereas PEG can induce a reorganization of water molecules, no change of the secondary and tertiary protein conformations was observed in the presence of PEG. In addition, in the presence of PEG of various molecular weights, no change of enzymatic activity of the HEWL was observed across the range of concentrations tested.  相似文献   

8.
目的:合成聚乙二醇单甲醚接枝壳聚糖(monomethoxy poly(ethylene glycol)-grafted-chitosan,mPEG-g- CS),并制备自组装纳米球。方法:利用甲醛连接法将聚乙二醇单甲醚(monomethoxy poly(ethylene glycol),mPEG)接枝干壳聚糖(ehitosan,CS)分子,得到聚乙二醇(poly(ethylene glycol),PEG)改性的壳聚糖衍生物,并通过傅立叶红外光谱仪(Fourier transform infrared spectroscopy,FT-IR),核磁共振仪(proton nuclear magnetic resonance,~1H-NMR)对产物进行结构表征;采用超声透析法制备自组装纳米球,并通过透射电镜(transmission electron microscopy,TEM),动态激光粒度分析仪(dynamic laser light scattering,DLLS)表征了纳米球的形态和粒径;以芘为荧光探针,通过荧光检测分析测定了mPEG-g-CS的临界胶束浓度(critical micellar concentration,CMC)。结果:通过FT-IR,~1H- NMR确证了接枝产物的存在;mPEG-g-CS在水溶液中能够自组装形成球状纳米胶束,平均粒径为250 nm。结论:通过甲醛连接法制备mPEG-g-CS,具有制备方法简捷、反应周期短、易操作的优点。利用该产物制备的纳米球有望成为长循环纳米药物载体。  相似文献   

9.
Silybin is a main component in silymarin, which is an antihepatotoxic polyphenolic substance isolated from the milk thistle plant, Silybum marianum. A major problem in the development of an oral solid dosage form of this drug is the extremely poor aqueous solubility. In present work, the solubility of silybin in aqueous poly(ethylene glycol) 6,000 (PEG 6,000) solution at the temperature range from 293.15 to 313.15K was measured by a solid liquid equilibrium method. The aim of this study is to investigate the possible effect of poly(ethylene glycol) concentration and temperature on the solubility of the drug, and to reveal the solubilization capacity of the polymer for the drug. Experimental results reveal that the solubility of silybin increases with the increase both in PEG's concentration and temperature. With the increase in PEG's concentration, the transfer enthalpy and entropy for silybin from water to aqueous PEG solution increases first in a positive region, and then decreases to a negative region. The transfer enthalpy is lower than the entropy term. A modified Universal Quasi Chemical (UNIQUAC) model was used to correlate solubility data.  相似文献   

10.
Paclitaxel has been found to be very effective against several human cancers; one of the major problems with its use is its poor solubility, which makes necessary its solubilization with excipients that can determine allergic reactions often severe. The aim of this study is to develop highly water-soluble prodrugs of paclitaxel. For this purpose we prepared a series of new paclitaxel–poly(ethylene glycol) (PEG) conjugates that were characterized and evaluated for their in vitro stability and cytotoxicity. In particular, in order to modulate the release of paclitaxel from prodrugs, we prepared different compounds introducing PEG in the drug C2′ and/or C7 positions via ester or carbamate linkage. The conjugates were obtained in high purity and good yield. The carbamate prodrugs were highly stable in different media, while the compounds obtained linking PEG at C2′ position through an ester bond showed lower stability. Finally, the cytotoxic activity of the conjugates was evaluated on two cancer cell lines and the results showed that all the derivatives had a reduced cytotoxicity compared to that of paclitaxel.  相似文献   

11.
Peptide and protein PEGylation is usually undertaken to improve the biopharmaceutical properties of these drugs and, to date, several examples of conjugates with long permanence in the body as well as with localization ability in disease sites have been reported. Although a number of studies on the in vivo behavior and fate of conjugates have been performed, forecasting their pharmacokinetics is a difficult task since the pharmacokinetic profile is determined by a number of parameters which include physiological and anatomical aspects of the recipient and physico-chemical properties of the derivative. The most relevant perturbations of the protein molecule following PEG conjugation are: size enlargement, protein surface and glycosylation function masking, charge modification, and epitope shielding. In particular, size enlargement slows down kidney ultrafiltration and promotes the accumulation into permeable tissues by the passive enhanced permeation and retention mechanism. Charge and glycosylation function masking is revealed predominantly in reduced phagocytosis by the RES and liver cells. Protein shielding reduces proteolysis and immune system recognition, which are important routes of elimination. The specific effect of PEGylation on protein physico-chemical and biological properties is strictly determined by protein and polymer properties as well as by the adopted PEGylation strategy. Relevant parameters to be considered in protein-polymer conjugates are: protein structure, molecular weight and composition, polymer molecular weight and shape, number of linked polymer chains and conjugation chemistry. The examples reported in this review show that general considerations could be useful in developing a target product, although significant deviations from the expected results can not be excluded.  相似文献   

12.
Biodegradable hydrogel nanoparticles were prepared from glycidyl methacrylate dextran (GMD) and dimethacrylate poly(ethylene glycol) (DMP). GMD was synthesized by coupling of glycidyl methacrylate to dextran in the presence of 4-(N,N-dimethylamino)pyridine (DMAP) using dimethylsulfoxide (DMSO) as an aprotic solvent. DMP was synthesized from poly(ethylene glycol) (PEG) and methacryloyl chloride. GMD/DMP (abbreviated as DP) hydrogel was prepared by radical polymerization of GMD and DMP using ammonium peroxydisulfate (APS) as an initiator and UV curing. DP hydrogel nanoparticles were obtained by diafiltration method using DMSO solution. The GMD and DMP were characterized by fourier transform infrared spectroscopy. Fluorescence probe technique was used to investigate the self-assembly of DP in water using pyrene as a hydrophobic probe. The critical association concentration (CAC) was determined to be 5.6 x 10(-2) g/l. The shape of DP hydrogel nanoparticles was spherical when observed by transmission electron microscope (TEM). The size range of DP hydrogel nanoparticles was about 20 approximately 50 nm. The hydrodynamic size of DP hydrogel nanoparticles was measured by photon correlation spectroscopy (PCS) and gradually increased with time in PBS (0.1 M, pH 7.4). Drug release study was performed using clonazepam (CNZ) as a hydrophobic model drug. In vitro release rate of CNZ from the DP hydrogel nanoparticles was dependent on the existence of dextranase and the pH of the release medium.  相似文献   

13.
One of the most used and useful polymers, poly(ethylene glycol) (PEG) was used as a carrier for warfarin. The drug–polymer conjugate was freely water soluble at room temperature. The hydrolytic stability of the PEG–warfarin was investigated at physiological pH and confirmed the stability of the conjugate. In vivo release studies demonstrated a good release of parent drug, without the initial high plasma level of warfarin.  相似文献   

14.
Modification of the enzyme alginate lyase (AL) with poly(ethylene glycol) (PEG) was attempted for the degradation and removal of alginate biofilms in infectious diseases. The modification of AL with PEG was attempted with three kinds of N-succinimidyl succinate PEG (SS-PEG), which differed in molecular weight (i.e., 2000, 5000 and 12,000 Da). The conjugation of PEG to free amino groups on AL was confirmed by gel permeation chromatography. Quantification of residual free amino groups revealed that PEG modification progressed further with a higher pH and a larger molar ratio of SS-PEG to AL. The reproducibility of the reaction was fairly good. The enzyme activity decreased with increasing PEG modification but the immunoreactivity toward anti-AL antibodies, as evaluated by an ELISA method, was much more remarkably reduced. The immunoreactivity was more reduced by the conjugated PEG with the larger molecular weight. In the reaction with PEG of molecular weight 12,000 Da, we obtained PEG-modified AL retaining approximately 40% enzyme activity but only 0.5% of the immunoreactivity of native AL.  相似文献   

15.
Das GS  Rao GH  Wilson RF  Chandy T 《Drug delivery》2000,7(3):129-138
Smooth muscle cell proliferation plays a major role in the genesis of restenosis after angioplasty or vascular injury. Local delivery of agents capable of modulating vascular responses have the potential to prevent restenosis. However, the development of injectable microspheres for maintaining high tissue levels of drugs at the site of vascular injury is a major challenge. We demonstrated the possibility of entrapping an antiproliferative agent, colchicine, in polyethylene glycol (PEG)-coated biodegradable microspheres composed of poly(lactic acid)/poly(epsilon-caprolactone) blends, with a mean diameter of 3-6 microm. A solution of colchicine and blends of polylactic acid (PLA)/polycaprolactone (PCL) dissolved in acetone-dichloromethane mixture was poured into an aqueous solution of PEG (or polyvinyl alcohol) with stirring by a high-speed homogenizer to form microspheres. Colchicine recovery in microspheres ranged from 30-50% depending on the emulsification system and the ratio of polymer blends used for the preparations. Scanning electron microscopy revealed that the PLA/PCL microspheres were spherical in shape and had a smooth surface texture. Results of in vitro release studies showed that it is possible to control the colchicine release by choosing the appropriate particle size, loading, and PLA/PCL composition. Water permeability through the PLA membrane was greater, when compared with PCL blends. The amount of drug release also was much higher (58.3%) in PLA compared with PCL (39.3%) microspheres, for 30 days. Therefore, we concluded that the drug release from the microspheres followed a diffusion mechanism where bulk erosion and surface deposition were negligible. These PEG-coated PLA/PCL microspheres may have potential for targeting antiproliferative agents for prolonged periods to treat restenosis.  相似文献   

16.
《药学学报》2009,44(5):519-524
以磷酰胺键将聚乙二醇高分子MePEG2000-NH2与磷脂POPA连接在一起, 合成聚乙二醇磷脂衍生物, 以聚乙二醇磷脂衍生物为主要膜材构建酸敏脂质体。采用荧光分析法系统研究了聚乙二醇磷脂衍生物脂质体在酸性条件下对荧光染料的释药特性。以聚乙二醇磷脂衍生物构建的酸敏脂质体,在pH 6.5~7.5时稳定,其稳定性与制备脂质体的磷脂种类及胆固醇含量密切相关,在pH 5.0时发生显著的荧光泄漏,泄漏率与环境酸性的强度及处于酸性的时间呈正相关。聚乙二醇磷脂衍生物构建的脂质体具有开发成酸敏释药脂质体的前景。
  相似文献   

17.
The purpose of this study is to investigate the microspheres (MS) based on (AB)(n) type amphiphilic multiblock copolymers for sustained and complete release of a model protein, bovine serum albumin (BSA). The MS were prepared by a modified water-in-oil-in-water (W/O/W) double emulsion method using amphiphilic multiblock copolymers consisting of poly(ethylene glycol) (PEG) and a poly(alpha-ester), poly(epsilon-caprolactone) (PCL) or poly(l-lactic acid) (PLLA). The size of MS and encapsulation efficiency of BSA within MS were not noticeably influenced by the copolymer composition used in this experiment. While BSA was completely released from PEG/PLLA MS through matrix erosion and the diffusion of BSA, it was released only to an extent of 60% from PEG/PCL MS solely through the diffusion process. However, the release of BSA from PEG/PCL MS dramatically increased and then reached 100% release in 10 days after thermal treatment of the MS at 50 degrees C for 30 min in the middle of release test (on day 15).  相似文献   

18.
Nanotubes were prepared by self-assembly of the copolymer using co-solvent evaporation method. The biocompatibility of the nanotubes was assessed in comparison with spherical micelles and filomicelles prepared from poly(ethylene glycol)-poly(L-lactide-co-glycolide) (PEG-PLGA) and poly(ethylene glycol)-poly(L-lactide) (PEG-PLA), respectively. Several aspects of biocompatibility of the aggregates were considered, including agar diffusion and MTT assay, release of cytokines, hemolysis, protein adsorption, dynamic clotting in vitro, and Zebrafish embryonic compatibility in vivo. The nanotubes present good cell compatibility and blood compatibility in vitro, and almost no toxicity towards Zebrafish embryos development in vivo. Furthermore, dual-loading of hydrophilic cisplatin and hydrophobic paclitaxel was achieved in the nanotubes with high loading content and loading efficiency. The release of both drugs was slower from dual-loaded nanotubes than from single-loaded ones, but the total amount of released drugs in higher for dual-loaded nanotubes than from single-loaded ones. Cellular uptake and inhibition tests showed that the nanotubes were successfully taken up by tumor cells and effectively inhibited cell growth. It is thus concluded that PEG-PLA-PEG nanotubes with outstanding biocompatibility could be promising for co-delivery of hydrophilic and hydrophobic agents in combination cancer therapy.  相似文献   

19.
The present studies noninvasively investigate the passive tumor distribution potential of a series of poly(ethylene glycol) (PEG) nanocarriers using a SkinSkan spectrofluorometer and an In Vivo Imaging System (IVIS) 100. Fluorescein conjugated PEG nanocarriers of varying molecular weights (10, 20, 30, 40, and 60 kDa) were prepared and characterized. The nanocarriers were administered intravenously to female balb/c mice bearing subcutaneous 4T1 tumors. Passive distribution was measured in vivo (λ(exc), 480 nm; λ(em), 515-520 nm) from the tumor and a contralateral skin site (i.e., control site). The signal intensity from the tumor was always significantly higher than that from the contralateral site. Trends in results between the two methods were consistent with tumor distribution increasing in a molecular weight-dependent manner (10 < 20 < 30 ? 40 ? 60 kDa). The 10 kDa nanocarrier was not detected in tumors at 24 h, whereas 40-60 kDa nanocarriers were detected in tumors for up to 96 h. The 30, 40, and 60 kDa nanocarriers showed 2.1, 5.3, and 4.1 times higher passive distribution in tumors at 24 h, respectively, as compared to the 20 kDa nanocarrier. The 60 kDa nanocarrier exhibited 1.5 times higher tumor distribution than 40 kDa nanocarrier at 96 h. Thus, PEG nanocarriers (40 and 60 kDa) with molecular weights close to or above the renal exclusion limit, which for globular proteins is ≥45 kDa, showed significantly higher tumor distribution than those below it. The hydrodynamic radii of PEG polymers, measured using dynamic light scattering (DLS), showed that nanocarriers obtained from polymers with hydrodynamic radii ≥8 nm exhibited higher tumor distribution. Ex vivo mass balance studies revealed that nanocarrier tissue distribution followed the rank order tumor > lung > spleen > liver > kidney > muscle > heart, thus validating the in vivo studies. The results of the current studies suggest that noninvasive dermal imaging of tumors provides a reliable and rapid method for the initial screening of nanocarrier tumor distribution pharmacokinetics.  相似文献   

20.
张璇  潘仕荣 《中南药学》2009,7(4):259-262
目的考察非病毒基因载体PEI不同的分子量及接枝PEG的量对缓冲容量的影响。方法采用电位滴定的方法,根据公式β=dc(HCl)/dpH计算获得缓冲容量。结果分子量不同的PEI缓冲容量的最大值均〉8,且pH值随着分子量的增加而降低;同一分子量的PEI接枝不同量的PEG后,缓冲容量有明显的下降,接枝PEG量越多,缓冲容量下降越大。在生理pH4~7,缓冲容量差异减小。结论PEI分子量及接枝PEG的量对缓冲容量会产生一定影响.而缓冲容量又会影响PEI介导基因传递的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号