首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human dermal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) occurs through contact with soil and paper products. In a previous study, relative percutaneous absorption of TCDD increased as the dose decreased (Brewster et al., 1989). To determine the rate of absorption of a low dose of TCDD, absorption, distribution, and elimination were examined at 1, 4, 8, 12, 24, 48, 72, and 120 hr after dermal application of 200 pmol (111 pmol/cm2) [3H]TCDD to 10-week-old male Fischer 344 rats. The compound was applied over a 1.8 cm2 area of the interscapular region of the back in 60 microliters acetone and covered with a perforated cap; animals were held in individual metabolism cages. Within 120 hr after dosing, 82 pmol (26 ng) of TCDD was absorbed. Absorption kinetics appeared to be first-order; the absorption rate constant was 0.005 hr-1. At each time point, greater than 70% of the radioactivity detected in the application site could be removed by swabbing with acetone. The time-related increase in the amount of TCDD in liver and fat closely paralleled the amount absorbed, while the percentage of the administered dose detected in the blood was never greater than 0.3%. Thus, absorption of a low dose of TCDD through the skin is extremely slow and appears to be a first-order process.  相似文献   

2.
Bioavailability of Soil-Bound TCDD: Dermal Bioavailability inthe Rat. SHU, H., TEITELBAUM, T., WEBB, A. S., MARPLE, L., BRUNCK,B. DEI ROSSI, D., MURRAY, J., AND PAUSTENBACH, D. (1988). Fundam.Appl. Toxicol. 10, 335-343. 2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD), an unwanted by-product formed during the manufactureof hexachlorophene and phenoxyherbicides, has been found asan environmental contaminant in many U.S. and Western Europeansites. This study examines in the rat the degree of dermal absorptionof TCDD bound to soil. Such information would assist regulatoryagencies in evaluating the degree of exposure of humans whocome in contact with TCDD-contaminated soil. Several parameterswhich may influence dermal absorption were studied, includingTCDD dose, duration of contact, presence of crankcase oil asa co-contaminant, and environmentally contaminated vs laboratory-preparedsoil. The dermal penetration of TCDD following 4 hr of contactwith skin was approximately 60% of that following 24 hr of contact(P 0.05). Following 24 hr of contact with the skin, the degreeof dermal uptake of TCDD contaminated soil was approximately1% of the administered dose. Under the conditions of the presentstudy, the degree of uptake does not appear to be influencedto any significant extent by the concentration of TCDD on soil,the presence of crankcase oil as co-contaminants, or by environmentallyvs laboratory-contaminated soil. Although a number of parametersexamined in this study did not significantly influence the degreeof dermal absorption of TCDD in the rat following 24 hr of contactwith the contaminated soil, the unqualified use of the 1% valueto estimate human exposure would overestimate human exposure,since there is general agreement among researchers that ratskin tends to be more permeable than human skin to highly lipid-solublecompounds such as TCDD.  相似文献   

3.
2-Butoxyethanol (2-BE) is widely used as an industrial solvent, which may result in human dermal exposure within the workplace. This study compares in vivo and in vitro skin absorption of 2-BE using similar application regimes and determines the potential of skin to metabolise this chemical prior to entering the systemic blood circulation. Following topical application of undiluted [1-14C] 2-BE to occluded rat skin in vivo, 28% of the dose was absorbed after 24 h. The major routes of excretion included the urine (19%), expiration as carbon dioxide (6%) and faeces (0.4%) whilst little of the dose remained in the carcass (1.3%). Free 2-BE (0.5%), butoxyacetic acid (8%), glucuronide conjugate (3%), sulphate conjugates (0.7%) and ethylene glycol (0.6%) were detected in urine. Permeation rates of 2-BE through unoccluded rat dermatomed skin (16%) were greater than rat whole skin (8%) whilst absorption through human dermatomed skin (4%) was lower than the rat. Absorption of undiluted 2-BE through occluded rat dermatomed skin in vitro (18%) most accurately predicted absorption through rat skin in vivo. However, 2-BE absorption (23%) was enhanced by application in methanol. Distribution analysis and microautoradiography demonstrated the lack of 2-BE accumulation within the skin in vitro or in vivo. This was reflected in the absence of first pass metabolism of 2-BE during percutaneous penetration through viable human or rat skin in vitro or rat skin in vivo, despite rat skin cytosol having the potential to metabolise 2-BE. In conclusion, the in vitro system provided a reasonable estimate of dermal absorption in vivo for the rat. Therefore, by extrapolation of the comparative in vitro data for human and rat skin in vitro, dermal absorption of 2-BE in man was about one-fifth of that in the rat. However, the rapid penetration through skin in vitro prevented local metabolism and systemic exposure after skin contact with 2-BE in vivo was likely to be to the parent compound. Thus, in vitro skin systems can be used to model dermal absorption of volatile glycol ethers, to predict how much compound enters the circulation and allows the toxicologist to evaluate the body burden of a chemical and potential systemic toxicity.  相似文献   

4.
The objective of this study was to develop an estimate of the percent dermal absorption of permethrin in humans to provide more accurate estimates of potential systemically absorbed dose associated with dermal exposure scenarios. Piperonyl butoxide (PBO) was used as a reference compound. The human percutaneous absorption estimate was based on the assumption that the ratio of in vivo dermal absorption (expressed as a percentage during a given time period) of permethrin through rat skin to in vitro dermal absorption through rat skin was the same as the ratio of in vivo dermal absorption in humans to in vitro dermal absorption with human skin, known as the parallelogram method. The ratio of dermal absorption by in vitro rat skin to absorption by in vitro human skin ranged from 6.7 to 15.4 (for a 24-h exposure period) with an average of 11. Data suggest in vivo human dermal absorption values for permethrin ranging from 1.4 to 3.3% when estimated based on 24-h in vivo rat values, and 2.5 to 5.7% based on 5-d in vivo rat values. The parallelogram method used to estimate dermal absorption of permethrin and PBO is supported by results from several other compounds for which in vivo and in vitro rat and human dermal absorption data exist. Collectively, these data indicate that estimating human dermal absorption from in vitro human and rat plus in vivo rat data are typically accurate within ±3-fold of the values measured in human subjects.  相似文献   

5.
The percutaneous absorption in vitro of the fragrance agent benzyl acetate has been evaluated in flow-through diffusion cells using shaved full-thickness skin from male Fischer 344 rats. After the application of neat [methylene-14C]benzyl acetate to the epidermal surface of the skin and occlusion with parafilm 1.3 cm above the skin surface, the absorption of the chemical across the skin and into the receptor fluid was rapid and extensive, commencing within 1 hr of application, and reaching 49.8 +/- 3.2% (mean +/- SD, n = 4) of the applied dose after 48 hr. The coefficient of variation for absorption at 48 hr between four identical experiments was 6.4%. The extent of absorption at 48 hr of benzyl acetate applied in 50% (v/v) ethanol was not significantly different from that after application neat, although absorption at earlier times was enhanced, with a maximum increase of 8.5% of the applied dose at 12 hr. Over the dose range studied there was a linear relationship (r = 0.996) between the amount of benzyl acetate applied to the skin (1.66-33.13 mg benzyl acetate/cm2) and the amount absorbed into the receptor fluid at 24 hr (0.66 +/- 0.04-10.27 +/- 0.51 mg/cm2). The extent of absorption of benzyl acetate through rat skin in vitro was compared with the extent of absorption in vivo at 24 hr and a correlation coefficient of 0.993 was obtained. These data support the use of this in vitro system as a model to predict in vivo absorption and indicate the suitability of the system to study factors influencing the disposition of topically applied benzyl acetate.  相似文献   

6.
In vitro skin penetration rates in rat and man were compared to those obtained in vivo in rats. Saturation of absorption was frequently observed at higher exposure levels in in vitro and in vivo. Lipophilic compounds showed the highest penetration rates through rat skin in vitro. In all cases in vitro dermal penetration through rat skin was higher than in vivo. Thus, the in vitro study may serve as a first tier test. The in vivo data suggest an inverse relationship between molecular weight and the rate of dermal absorption for lipophilic as well as hydrophilic compounds. Rat skin was more permeable to all tested substances than human skin (mean difference 10.9-fold). Thus, the systemic exposure of humans may be significantly overestimated if risk assessment is based only on the results of an in vivo rat study, because human skin is less permeable than rat skin. It would appear, therefore, that an estimate of actual dermal penetration through human skin should be based on the combined use of in vivo and in vitro data, using the following equation: % Human dermal penetration = (% rat in vivo dermal penetration) x (in vitro rate dermal penetration human / in vitro rate dermal penetration rat).  相似文献   

7.
Neat N-methyl-2-pyrrolidone (NMP) rapidly penetrated into the skin of male Sprague-Dawley rats after in vivo and in vitro topical application. At the two topical doses tested in vivo, no steady state was observed. The maximal absorption fluxes were 10 and 20 mg/cm(2)/h for 20 microl/cm(2) and 40 microl/cm(2), respectively. Similar results were observed after in vitro topical application of neat [(14)C]NMP (25-400 microl/cm(2)) in fresh full-thickness skin. Whatever the dose tested, the percutaneous absorption fluxes increased with exposure time to reach a maximum value (F(max)) and then decreased. F(max) and the time to reach it (T(max)) increased as the dose increased. At the highest dose, which may be considered as an "infinite dose," the maximal flux (7.7 +/- 1.1 mg/cm(2)/h, n = 12) occurred 6 h after the topical application of NMP. The decrease on percutaneous absorption flux was correlated with the dilution of neat NMP with water from the receptor fluid. A semi-quantitative mathematical model was developed to describe the absorption flux of NMP taking into account the transfer of water through the skin. The K(p) values determined from the different aqueous solutions of NMP (1:1 to 1:32, v/v) were not significantly different. The mean value was 6.4 (10(-3) cm/h) (range, 4.7 to 7.6). Occlusion did not affect the percutaneous absorption flux of neat NMP. Desquamation increased the percutaneous absorption of NMP slightly. The skin did not metabolize NMP. The flux was dependent on the thickness of the skin and was proportional to the concentration of NMP. These findings suggest a passive diffusion of NMP through the skin.  相似文献   

8.
2,3,7,8-Tetrachlorodibenzo-p-dixoin 2,3,4,7,8-pentachlorodibenzofuran (PCDF), and 1,2,3,4,7,8-hexachlorodibenzofuran (HCDF) are highly toxic members of a class of environmental contaminants, the polychlorinated aromatic hydrocarbons (PCAH), which exhibit a similar and highly characteristic spectrum of toxic effects. For purposes of risk assessment, it is important to be able to make accurate estimates of the relative potency of these and related compounds. Previous investigations have indicated that, in acute exposure or in vitro studies, PCDF is approximately 0.1 times as toxic and HCDF is approximately 0.01 times as toxic as TCDD. In this study, we compared the relative toxicity and tumor-promoting abilities of TCDD, PCDF, and HCDF in hairless mouse skin. Female hairless mice (HRS/J hr/hr) were treated dermally with the initiator MNNG, then dosed twice weekly for 20 weeks with acetone, TCDD (2.5-10 ng/mouse/dose), PCDF (25-100 ng/mouse/dose), or HCDF (250-1000 ng/mouse/dose) as promoter. TCDD, PCDF, and HCDF were all potent promoters for the induction of squamous cell papillomas. There was, however, no difference in the incidence or multiplicity of papilloma formation between groups. The same doses of the three PCAH, in the absence of initiator, induced no skin papillomas. TCDD produced a significant increase in liver:body weight ratio (p less than 0.001) at all doses and a decrease in thymus:body weight ratio at a dose of 10 ng (p less than 0.001). Mice treated with PCDF and HCDF had marked thymic and splenic involution, liver hypertrophy, mucous cell hyperplasia in the fundic portion of the glandular stomach, and loss of body weight. PCDF and HCDF produced a greater incidence and severity of dermatotoxic effects than TCDD. Based on data for dermal toxicity and changes in body weight and organ weights, PCDF is estimated to be 0.2 to 0.4 times, and HCDF 0.08 to 0.16 times, as toxic as TCDD following repeated dermal exposure. Therefore, toxic equivalence factors generated using data from acute and/or in vitro studies may underestimate the risk from repeated low-dose exposures to these compounds.  相似文献   

9.
The objectives of this study were to (1) determine the percutaneous absorption of radiolabeled permethrin and piperonyl butoxide (PBO) in vivo in rats and in vitro to permit a calculation of the ratio of in vitro to in vivo values, and (2) test a method of estimating in vivo human absorption. Carbon-14 labeled permethrin in ethanol solution was applied to the clipped skin of rats in vivo at doses of 2.25, 20, or 200 μg/cm2. As a reference compound, 14C-labeled PBO in isopropanol solution was applied to rat skin in vivo at a dose of 100 μg/cm2. All applications were washed at 24 h postapplication, and rats were sacrificed either at 24 h for permethrin or 5 d for both compounds. The radiolabel recovered from carcass, urine including cage wash, and feces was summed to determine percent absorption. For the 24-h time point, at doses of 2.25, 20, and 200 μg/cm2 of permethrin, values of 22, 22, and 28%, respectively, were obtained for in vivo rat percutaneous absorption (n=6 per dose). For the 5-d time point, at doses of 2.25, 20, and 200 μg/cm2 of permethrin, values of 38, 38, and 30%, respectively, were obtained for in vivo rat percutaneous absorption (n=6 per dose). The 5-d percutaneous absorption of 14C-PBO at 100 μg/cm2 was determined to be 42% (n=6). Dose and test duration did not exert a statistically significant effect on percutaneous absorption of permethrin in the rat in vivo. For in vitro absorption determination, 14C-permethrin in ethanol solution was applied to freshly excised human skin in an in vitro test system predictive of skin absorption in humans. Twenty-four hours after application, the radiolabel recovered from dermis and receptor fluid was summed to determine percent absorption. At doses of approximately 2.25, 20, and 200 μg/cm2 permethrin, values of 1, 3, and 2%, respectively, were obtained for percutaneous absorption (n=9 per dose). Excised human skin absorption of 14C-PBO at 100 μg/cm2 was determined to be 7% (n=9). Excised rat skin absorptions of permethrin at 2.25, 20, and 200 μg/cm2 were found to be 20, 18, and 24%, respectively (n=6 per dose), approximately 10-fold higher than human skin absorption. Excised rat skin absorption of PBO was also higher (35%) than the value obtained for human skin by a factor of about 5.  相似文献   

10.
Tg.AC mice develop epidermal papillomas in response to treatment with dermally applied nongenotoxic and complete carcinogens. The persistent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a multi-site rodent carcinogen and tumor promoter that induces the formation of papillomas in Tg.AC mice. To examine the dose-response relationship and compare dermal and oral routes of exposure for TCDD-induced skin papillomas, female Tg.AC mice were exposed dermally to average daily doses of 0, 2.1, 7.3, 15, 33, 52, 71, 152, and 326 ng TCDD/kg/day or 0, 75, 321, and 893 ng TCDD/kg body weight by gavage for 26 weeks. The incidence of cutaneous papillomas was increased in a dose-dependent manner, and tumors developed earlier with higher exposure to TCDD regardless of route of administration. Increased incidences of cutaneous squamous cell carcinomas were observed in mice exposed to dermal (> or =52 ng/kg) and oral (893 ng/kg) TCDD. Higher gavage doses than dermal exposure doses were required to induce papillomas and squamous cell carcinomas. Despite a linear correlation between administered dose and terminal skin concentrations, the incidence of tumor formation was lower in the gavage study than in the dermal study with respect to mean terminal skin TCDD concentrations. These studies demonstrate that, although Tg.AC mice are less responsive to TCDD by gavage than by dermal exposure, the induction of skin neoplasms is a response to systemic exposure and not solely a local response at the site of dermal application. Differences in response between the routes of exposure may reflect pharmacokinetic differences in the delivery of TCDD to the skin over the duration of the study.  相似文献   

11.
triclosan is widely used in many products that contact the skin of consumers. This study compares in vivo and in vitro skin absorption of triclosan and determines the potential of skin to metobolize it prior to entering the blood stream. After in vivo topical application of a 64.5mM alcoholic solution of [(3)H]triclosan to rat skin, 12% radioactivity was recovered in the faeces, 8% in the carcass 1% in the urine, 30% in the stratum corneum and 26% was rinsed from the skin surface at 24 hours after application. Free triclosan and the glucuronide and sulfate conjugates of triclosan were found in urine and faeces. triclosan penetrated rat skin more rapidly and extensively than human skin in vitro. 23% of the dose had penetrated completely through rat skin into the receptor fluid by 24 hours, whereas penetration through human skin was only 6.3% of the dose. Chromatographic analysis of the receptor solutions showed that triclosan was metabolized to the glucuronide, and to a lesser extent to the sulfate, during passage through the skin. triclosan glucuronide appeared rapidly in the receptor fluid whereas triclosan sulfate remained in the skin. Although the major site of metabolism was the liver, conjugation of triclosan in skin was also demonstrated in vitro and in vivo, particularly to the glucuronide conjugate which was more readily removed from the skin. The in vitro system provides a reasonable estimate of dermal absorption in vivo for the rat. Therefore by extrapolation of the comparative in vitro data for human and rat skin it is reasonable to deduce that dermal absorption in human of triclosan applied at the same dose is about one-third of that in the rat in vivo.  相似文献   

12.
The dermal disposition of pimecrolimus, a non-steroid, anti-inflammatory calcineurin inhibitor used for the treatment of atopic dermatitis, was evaluated in minipigs in vivo and in human skin in vitro using tritium-radiolabeled compound, and in dermal toxicokinetic investigations in minipigs using unlabeled compound. Following topical application of pimecrolimus 1% market form (MF) cream to minipig skin, approximately 2% of the dose penetrated into the stratum corneum and part of it into deeper skin layers. The remainder of the dose was recovered non-absorbed on the skin surface. The total systemic absorption was or=94% of dose remained non-absorbed, 3.1% was found in the epidermis (including stratum corneum) and 2.9% in the dermis. There was no indication of metabolism of pimecrolimus in human skin in vitro or minipig skin in vivo. No drug accumulation was observed in minipig skin after up to 13 weeks of once daily topical application of 0.1% or 0.3% pimecrolimus cream.  相似文献   

13.
1-Bromopropane (1-BP; CAS number 106-94-5), also known as n-propyl bromide, is a halogenated short-chain alkane used as an organic solvent with numerous commercial and industrial applications, including garment dry cleaning and vapor degreasing of metals. The purpose of this study was to determine the dermal absorption characteristics and corrosivity of 1-BP. Heat-separated human epidermal membranes were mounted on static diffusion cells. Different exposure scenarios were studied (infinite dose, finite dose, and transient exposure) using neat 1-BP and saturated aqueous solution as donor. Steady-state fluxes for infinite-dose neat 1-BP exposure averaged 625 to 960 μg cm(-2) h(-1). The finite-dose (10 μl/cm(2) = 13.5 mg/cm(2)) unoccluded donor resulted in penetration of <0.2% of the applied dose (22 μg/cm(2)). A 10-min transient exposure to infinite dose resulted in total penetration of 179 μg/cm(2). Steady-state 1-BP fluxes from neat application of a commercial dry cleaning solvent were similar (441 to 722 μg cm(-2) h(-1)). The permeability coefficient of 1-BP in water vehicle was 0.257 ± 0.141 cm/h. The absorption potential of 1-BP following dermal exposure is dependent upon the type and duration of exposure. Donor losses due to evaporation were approximately 500-fold greater than dermal absorption flux; evaporation flux was 420 mg cm(-2) h(-1). 1-BP is cytotoxic but not corrosive, based on results from a cultured reconstructed human epidermal model (EpiDerm Skin Corrosivity Test).  相似文献   

14.
This study evaluated the toxicokinetics of [(14)C]di-n-butylphthalate ([(14)C]DBP) after an intravenous administration (1 and 10 mg/kg, in Cremophor) or a topical application (10 microl/cm(2); 10 cm(2), neat) in haired male Sprague-Dawley rats. Additional in vivo and in vitro percutaneous penetration studies of [(14)C]DBP were conducted on male and female haired rats and male hairless rats. After intravenous administration, unchanged DBP disappeared rapidly from the plasma, following a two-exponential function (T1/2beta = 5-7 min). The peak levels of monobutylphthalate (MBP) and its glucuronide conjugate (MBP-Gluc) occurred 1 to 2 and 20 to 30 min after administration, respectively. These metabolites were intensively and rapidly excreted in urine (57% of the dose). However, about 35% of the dose recovered in urine was primarily excreted in bile (mainly as MBP-Gluc) and underwent hepatobiliary recycling. Unchanged DBP was barely detectable in excreta. DBP rapidly penetrated the skin, which constituted a reservoir. The absorption flux determined for 0.5 to 8 and 8 to 48 h of exposure were 43 and 156 microg/cm(2)/h, respectively. The higher flux may be due to radial diffusion of DBP in the stratum and/or epidermis. The in vivo and in vitro experiments revealed that DBP was intensively metabolized into the skin. In vivo percutaneous absorption flux was very similar in male and female haired rats. In contrast, the percutaneous absorption determined in vivo and in vitro was higher in hairless than in haired male rats. Absorption flux was accurately estimated from urinary excretion rate of MBP or MBP-Gluc.  相似文献   

15.
The present paper reviews the comparative rates of skin penetration between rat and man for a total of 14 chemicals in in vitro absorption studies. The results showed that in vitro absorption assays are capable of demonstrating large differences in the rate of skin penetration. Saturation of absorption was also frequently observed at higher exposure levels. The highest absorption rates through rat and human epidermis were observed with compounds with a molecular weight of approximately 300, an aqueous solubility of approximately 1-6 mg/l, and a log10 (P(OCTANOL/WATER)) of approximately 3-4. When the absorption data for 3 compounds with a log10 (P(OCTANOL/WATER)) of 2.9-3.0 were compared, there appeared to be an inverse relationship between molecular weight/aqueous solubility and the rate of dermal absorption. Lipophilic compounds with low aqueous solubility (<4 mg/l) showed the highest penetration rates through rat skin, but this was not always the case for human skin. The human skin was invariably less permeable to all tested substances than rat skin, though no constant factor of difference could be identified. The factor of difference would not appear to be determined by molecular weight, lipophilicity, or aqueous solubility. The actual systemic exposure of humans may be significantly overestimated if risk assessment is based only on the results of an in vivo rat study. It would appear that dermal penetration through human skin should be based on the combined use of in vivo and in vitro data, using the following equation: %Human dermal penetration= [[% dermal penetration rat (in vivo)] x [rate dermal penetration human (in vitro)]] / [rate dermal penetration rat (in vitro)]  相似文献   

16.
Absorption across full thickness human skin was evaluated in vitro for five selected glycol ethers. Skin membranes were settled on static diffusion cells and both neat and 50% water diluted glycol ethers were applied on the donor chamber for 8 h. The amount of glycol ethers permeated into the receptor fluid was measured by gas chromatograph equipped with flame ionization detector (GC-FID). For neat solvents, permeation coefficient Kp ranged from 0.06 to 0.83 cm h(-1) 10(-3) respectively for DEGBEA and EGMEA while for 50% v/v diluted glycol ethers it varied from 0.08 to 1.81 cm h(-1) 10(-3) respectively for DPGME and EGMEA. These experiments show a statistically significant (Student's t-test, P <0.05) increase in permeation coefficients from neat to 50% water diluted glycol ethers and the same trend can be observed in fluxes and lag times. Only DPGME show an opposite behaviour. These results confirm the good ability of these solvents of permeating the skin and show that they could represent a risk for their potential dermal absorption both for workers and for occasional exposures, since the average lag time is 1.57 h.  相似文献   

17.
The skin is the largest organ in the human body and has the potential to come into contact with a variety of xenobiotics both intentionally (e.g., drugs and cosmetics) or accidentally (e.g., agrochemicals and industrial chemicals). These chemicals may then cross the skin barrier (the stratum corneum) and enter into the systemic circulation where they may produce a desired or an undesired effect, or even no systemic effect at all. Tetrabromodiphenyl ether (TeBDE) is one congener in a mixture of polybrominated diphenyl ethers that makes up a flame-retardant commercial product called pentabromodiphenyl ether (PeBDE). TeBDE was used as a surrogate to assess the potential dermal absorption of this product. The physicochemical properties, including lipophilicity, of TeBDE and PeBDE are similar. Operator exposure of PeBDE product to human skin is possible during production and use. However, during these activities, operators wear protective clothing to protect from or minimize exposure. This study was designed to assess the rate and extent of absorption of [14C]-tetrabromodiphenyl ether ([14C]-TeBDE) through human and rat skin in vitro. [14C]-TeBDE was applied to human and rat split thickness skin membranes in vitro in a single test preparation: [14C]-TeBDE in acetone (ca. 20%, w/v). Dermal delivery and absorbed dose of TeBDE applied to human skin was 3.13% (313 microg equiv/cm(2)) and 1.94% (194 microg equiv/cm(2)) of the applied dose, respectively. Dermal delivery and absorbed dose of TeBDE applied to rat skin was 17.94% (1804 microg equiv/cm(2)) and 14.81% (1489 microg equiv/cm(2)) of the applied dose, respectively. These results confirm that the risk of systemic exposure due to external dermal exposure of the PeBDE product is low in the human. Consequently, based on the toxicological profile of these materials, the potential for undesirable effects is also quite low. The results also confirm that the rat is a conservative model overpredicting human absorption about eight fold.  相似文献   

18.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in mice, inducing cleft palate and hydronephrosis. After exposure in vivo, TCDD specifically alters differentiation of embryonic palatal medial epithelial cells. In this study, the palatal epithelial cell response to TCDD is determined in vitro. C57BL/6N palatal shelves were placed in organ culture on gestation day (GD) 12 in Richter's improved modified Eagle's medium:Ham's F12 medium (1:1) with 1% fetal bovine serum for 3 or 4 days. Medium contained 0.1% dimethylsulfoxide and TCDD at 0, 10(-13), 10(-12), 10(-11), 10(-10), and 10(-9) M, with some doses at 5 x 10(-11), 7.5 x 10(-11), and 5 x 10(-12) M. Epithelial cell responses to TCDD occurred over a narrow range of concentrations, with maximal response at 5 x 10(-11) M. Cytotoxicity was detected at 1 x 10(-10) M. At a stage when control medial cells ceased proliferation and EGF receptors were not detected immunohistochemically. TCDD-exposed medial cells incorporated [3H]thymidine and high levels of epidermal growth factor receptors were detected. TCDD prevented programmed cell death of medial peridermal cells, and induced a shift in the differentiation of medial cells toward an oral-like phenotype. The responses to TCDD observed after exposure in vitro were indistinguishable from previously reported effects observed after exposure in vivo. In the present study, the distribution of TCDD in the fetus after exposure in vivo was examined. The levels of exposure to TCDD are similar for in vitro and in vivo exposure routes. The levels of TCDD in 1 x 10(-11) to 1 x 10(-10) M solutions (3 to 32 pg/ml) were comparable to levels observed in fetal tissues after in vivo exposure on GD 11 to 30 microns/kg [3H]TCDD, where the palatal shelf contained 1.4 to 3.5. pg TCDD, representing 0.0003% of the total dose. In vivo, TCDD was detected in the GD 11 embryo 3 hr postexposure and the TCDD was equally distributed between the embryonic head and body. At 72 hr postexposure, 0.035% of the total dose was in fetal tissues, and 1% of the TCDD in the fetus was found in the palatal shelf. The present study shows that the palatal epithelium responds to TCDD in vitro in a manner comparable to that observed after in vivo exposure, and that the response occurs at a concentration comparable to in vivo levels in the fetus. The availability of an in vitro system will facilitate studies of TCDD toxicity that are difficult or impossible to perform in vivo, such as comparisons of TCDD effects between species, including human tissues.  相似文献   

19.
A highly precautionary cost-effective method for estimating dermal absorption using data from 24-h skin soap washes from in vitro dermal absorption tests in Bronaugh flow-through diffusion cells with human skin is reported. Skin was dosed with 16 U.S. Environmental Protection (EPA) priority polycyclic aromatic hydrocarbons (PAH) applied in mixture each at 2 μg/ml (ppm) in acetone without soil. Concurrent tests were conducted with an unspiked aqueous suspension of PAH-contaminated soil obtained from a Canadian federal contaminated site. Percentage dermal absorption was estimated "by difference" from the applied dose and that detected by high-performance liquid chromatography (HPLC) in 24-h skin soap washes. The dermal absorption for 11 PAH ranged from 71 to 88.3% without and with soil, respectively. Lower absorption was found for 5 PAH in soil, in the range of 26.4 to 60.8%. Data could not be corrected for evaporative loss due to inconsistent data from Tenax adsorbent. Corroboratory gas chromatography/mass spectroscopy (GC/MS) tests are needed. Previously published in vitro data from the authors' laboratory supported use of the "by difference" method.  相似文献   

20.
Polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs) are toxic environmental contaminants which have the potential to accumulate in human tissues. In order to examine the potential for systemic exposure following dermal exposure, the absorption, distribution, and elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 1,2,3,7,8-pentachlorodibenzofuran (1PeCDF), and 2,3,4,7,8-pentachlorodibenzofuran (4PeCDF) were evaluated in male F344 rats. TCDD (0.00015, 0.001, 0.01, 0.1, 0.5, and 1.0 mumol/kg) and the three PCDFs (0.1, 0.5, and 1.0 mumol/kg) were applied to a preclipped region on the back of the rat and covered with a perforated cap. The rats were held in individual metabolism cages for 3 days. In animals administered 0.1 mumol/kg, the absorption of TCDF was greater than that of 4PeCDF, 1PeCDF, and TCDD. Relative absorption (percentage of administered dose) declined with increasing dose while the absolute absorption (microgram/kg) increased nonlinearly with dose. Absorption of TCDF at 0.1 mumol/kg was 48% of the administered dose which was significantly greater than that of the other compounds. At this dose, absorption of 4PeCDF was greater than that of TCDD. Absorption at the higher doses was similar for all four compounds. Maximum relative absorption of TCDD (approximately 40% of the administered dose) was obtained at 0.001 and 0.00015 mumol/kg. Major tissue depots for these four chemicals included liver, adipose, skin, and muscle tissue; however, the liver:fat ratio for 4PeCDF was approximately fourfold higher than that for the other three compounds. When normalized to 100% of dose absorbed, the distribution of 4PeCDF-derived radioactivity in liver and adipose tissue was similar to that previously observed after oral and iv administration. In animals administered 0.1 mumol TCDF or 1PeCDF/kg, 56 and 32% of the respective absorbed dose was excreted as polar metabolites within 3 days. Very little of the absorbed dose of either TCDD (approximately 10%) or 4PeCDF (approximately 2%) was eliminated. Results indicate that the dermal absorption of these compounds is incomplete and that systemic toxicity following acute dermal exposure to levels found in the environment is unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号