首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Vibration-induced changes in EMG during human locomotion   总被引:6,自引:0,他引:6  
The present study was set up to examine the contribution of Ia afferent input in the generation of electromyographic (EMG) activity. Subjects walked blindfolded along a walkway while tendon vibration was applied continuously to a leg muscle. The effects of vibration were measured on mean EMG activity in stance and swing phase. The results show that vibration of the quadriceps femoris (Q) at the knee and of biceps femoris (BF) at the knee enhanced the EMG activity of these muscles and this occurred mainly in the stance phase of walking. These results suggest involvement of Ia afferent input of Q and BF in EMG activation during stance. In contrast, vibration of muscles at the ankle and hip had no significant effect on burst amplitude. Additionally, the onset time of tibialis anterior was measured to look at timing of phase transitions. Only vibration of quadriceps femoris resulted in an earlier onset of tibialis anterior within the gait cycle, suggesting involvement of these Ia afferents in the triggering of phase transitions. In conclusion, the results of the present study suggest involvement of Ia afferent input in the control of muscle activity during locomotion in humans. A limited role in timing of phase transitions is proposed as well.  相似文献   

2.
The focus of this paper is to examine the contributions of active and passive forces in the control of limb trajectory over obstacles during locomotion. Kintetic analyses of the swing phase of locomotion were carried out to determine the power profiles at various joints and to parcel the joint moments into moments due to muscle action, gravitational force and motion-dependent terms. The analyses revealed that toe elevation over the obstacles was achieved primarily by flexing at the hip, knee and ankle joint. Power analyses showed that translational energy applied at the hip joint and rotational energy applied at the knee joint were modulated as functions of obstacle height. This demonstrates that increased hip and ankle joint flexion are achieved not through active muscle action but rather through passive forces induced by translational action at the hip (representing contribution by the stance limb muscles) and rotational action at the knee joint. Parcelling the joint moment terms into various components clearly shows how the nervous system exploits intersegmental dynamics to simplify control of limb elevation over obstacles and minimize energy costs.  相似文献   

3.
Motor patterns in human walking and running   总被引:1,自引:0,他引:1  
Despite distinct differences between walking and running, the two types of human locomotion are likely to be controlled by shared pattern-generating networks. However, the differences between their kinematics and kinetics imply that corresponding muscle activations may also be quite different. We examined the differences between walking and running by recording kinematics and electromyographic (EMG) activity in 32 ipsilateral limb and trunk muscles during human locomotion, and compared the effects of speed (3-12 km/h) and gait. We found that the timing of muscle activation was accounted for by five basic temporal activation components during running as we previously found for walking. Each component was loaded on similar sets of leg muscles in both gaits but generally on different sets of upper trunk and shoulder muscles. The major difference between walking and running was that one temporal component, occurring during stance, was shifted to an earlier phase in the step cycle during running. These muscle activation differences between gaits did not simply depend on locomotion speed as shown by recordings during each gait over the same range of speeds (5-9 km/h). The results are consistent with an organization of locomotion motor programs having two parts, one that organizes muscle activation during swing and another during stance and the transition to swing. The timing shift between walking and running reflects therefore the difference in the relative duration of the stance phase in the two gaits.  相似文献   

4.
The study examined whether the generation of the forward propulsive force (PF) during gait initiation resulted mainly from the electromyogram activity of stance ankle plantar flexor muscles (APF) which 'push' on the ground as is generally claimed in the literature. Six unilateral above-knee amputees performed a specific gait initiation protocol, i.e. they were asked to walk as fast as possible from an upright posture. Data from a force platform were collected and processed to obtain gait parameters (centre of mass (CoM) acceleration, anteroposterior (A/P) progression velocity, step length, etc.). The results showed that the A/P CoM velocity at the time of foot-off differed depending on the state of the lower limb (sound or prosthetic limb) performing the step. However, the A/P velocity of the CoM reached at the time of foot contact was similar whatever the state of the lower limb initiating the gait. Thus, the absence of ankle and knee muscles did not affect the velocity of body progression, i.e. the generation of the PF in gait initiation. Furthermore, the comparable slopes of the A/P velocity between the stance sound limb and the stance prosthetic limb suggest that the organization of the motor synergy underlying the production of the PF remained the same and did not directly involve the APF. However, other mechanisms could explain PF generation. PF could be generated by the swing leg oscillation, by the trunk movement, or by other mechanisms such as the energy transfer and the exchange of gravity potential energy into kinetic energy.  相似文献   

5.
Influence of leg muscle vibration on human walking   总被引:9,自引:0,他引:9  
We studied the effect of vibratory stimulation of different leg muscles [bilateral quadriceps (Q), hamstring (HS) muscles, triceps surae (TS), and tibialis anterior (TA)] in seven normal subjects during 1) quiet standing, 2) stepping in place movements, and 3) walking on the treadmill. The experiments were performed in a dimly illuminated room, and the subjects were given the instruction not to resist the applied perturbation. In one condition the velocity of the treadmill was controlled by a feedback from the subject's current position. In normal standing, TA vibration elicited a prominent forward body tilt, whereas HS and TS vibration elicited backward trunk or whole body inclination, respectively. Q vibration had little effect. During stepping in place, continuous HS vibration produced an involuntary forward stepping at about 0.3 m s(-1) without modifying the stepping frequency. When the subjects (with eyes closed) kept a hand contact with an external still object, they did not move forward but perceived an illusory forward leg flexion relative to the trunk. Q, TS, and TA vibration did not cause any systematic body translation nor illusory changes in body configuration. In treadmill locomotion, HS vibration produced an involuntary steplike increase of walking speed (by 0.1-0.6 m.s(-1)). Continuous vibration elicited larger speed increments than phasic stimulation during swing or stance phase. For phasic stimulation, HS vibration tended to be more effective when applied during swing than during stance phase. Q, TA, and TS vibration had little if any effect. Vibration of thigh muscles altered the walking speed depending on the direction of progression. During backward locomotion, the walking speed tended to decrease after HS vibration, whereas it significantly increased after Q vibration. Thus the influence of leg muscle vibration on stepping in place and locomotion differed significantly from that on normal posture. We suggest that the proprioceptive input from thigh muscles may convey information about the velocity of the foot movement relative to the trunk.  相似文献   

6.
During adaptive locomotion, vision is used to guide the lead limb; however, the individual must rely on knowledge of obstacle height and position, termed obstacle memory, to guide the trail limb. Previous research has demonstrated that visual sampling of the obstacle during approach was adequate to provide obstacle height information, but online visual update of distance to the obstacle was required to plan and implement appropriate foot placement. Our purpose was to determine whether obstacle height memory, coupled with a visible obstacle position cue, could successfully guide the foot during obstacle crossing. Subjects first stepped over an obstacle for 25 trials; then, the obstacle was removed, but its position was marked with high-contrast tape; subjects were instructed to step over the obstacle as if it was still there (termed “virtual obstacle”) for 25 trials. No changes in foot placement were observed; therefore, the position cue provided salient online information to guide foot placement. Average failure rates (subject would have contacted the virtual obstacle if it was present) were 9 and 47 % (lead and trail limb, respectively). Therefore, action was impaired for both limbs when guided by obstacle height memory, but action was impaired to a greater extent for the trail limb. Therefore, viewing the obstacle during approach appears to facilitate the memory needed to guide obstacle crossing, particularly for the trail limb. This is likely because the lead limb is visible in the peripheral visual field during crossing, but the trail limb is not.  相似文献   

7.
During locomotion, contacting an obstacle generates a coordinated response involving flexion of the stimulated leg and activation of extensors contralaterally to ensure adequate support and forward progression. Activation of motoneurons innervating contralateral muscles (i.e., crossed extensor reflex) has always been described as an excitation, but the present paper shows that excitatory responses during locomotion are almost always preceded by a short period of inhibition. Data from seven cats chronically implanted with bipolar electrodes to record electromyography (EMG) of several hindlimb muscles bilaterally were used. A stimulating cuff electrode placed around the left tibial and left superficial peroneal nerves at the level of the ankle in five and two cats, respectively, evoked cutaneous reflexes during locomotion. During locomotion, short-latency ( approximately 13 ms) inhibitory responses were frequently observed in extensors of the right leg (i.e., contralateral to the stimulation), such as gluteus medius and triceps surae muscles, which were followed by excitatory responses ( approximately 25 ms). Burst durations of the left sartorius (Srt), a hip flexor, and ankle extensors of the right leg increased concomitantly in the mid- to late-flexion phases of locomotion with nerve stimulation. Moreover, the onset and offset of Srt and ankle extensor bursts bilaterally were altered in specific phases of the step cycle. Short-latency crossed inhibition in ankle extensors appears to be an integral component of cutaneous reflex pathways in intact cats during locomotion, which could be important in synchronizing EMG bursts in muscles of both legs.  相似文献   

8.
The adoption of bipedalism by hominids including man has complicated the tasks of balance control and the minimisation of body sway. We have investigated the role of the vestibular organs in controlling sway in the roll direction using galvanic vestibular stimulation (GVS). Two stance conditions were studied: during forward lean posterior compartment muscles are activated and during backward lean anterior compartment muscles are activated. GVS-evoked vestibular signals in stance control leg muscles as a group: all the active muscles in the leg on the GVS cathode side are excited together and those in the contralateral leg (anode side) relax. The subject sways towards the anode side. During treadmill walking, vestibular actions are subtly different: the actions are largely restricted to muscles acting at the ankle joint, occur at longer latencies, are not reciprocal in the opposite limb, are modulated throughout the step cycle (largest early in stance) and are reversed in sign in the peroneus longus muscle. The subject deviates towards the anode side. Hand contact with a firm object reduces GVS-evoked responses in leg muscles during treadmill walking. Responses to GVS are observed during over-ground walking but not significantly during bicycling on an ergometer. The observations suggest that these vestibular actions are part of a roll stabilisation mechanism. They may be mediated through different spinal premotor mechanisms during standing and walking and turned off during bicycling, when leg muscles have no balance control function.  相似文献   

9.
One of the goals of this study was to examine the nature and role of distant visual information sampled during locomotion in the feedforward control of leading and trailing limb while an individual is required to step over an obstacle in the travel path. In addition we were interested in whether or not on-line visual information available while the limb (lead or trail) is stepping over the obstacle influences limb trajectory control and whether the information provided during lead limb cross would be used to calibrate movement of the trail limb. Towards this end, we manipulated availability of vision following an initial dynamic sampling period during the approach phase in proximity to the obstacle and during the lead and trail limb stepping over the obstacle. Ten participants completed 40 trials of obstacle crossing in 8 testing conditions. Initial dynamic visual sampling was sufficient to ensure successful task performance in the absence of vision in the approach phase and during both lead and trail limb stepping over the obstacle. Despite successful task performance, foot placement of the lead and trail limb before obstacle crossing and limb elevation over the obstacle were increased after withdrawal of vision in the approach area. Furthermore, the correlation between toe clearance and foot placement was diminished. While both limbs require feedforward visual information to control the step over the obstacle, only lead limb elevation was influenced by availability of on-line visual information during obstacle crossing. Results were in agreement with the notion of primacy of information inherent in the optic array over those from static samples of the environment in guiding locomotion. It is suggested that the expected proprioceptive feedback information associated with the limb posture before the obstacle, reconstructed using visual memory from dynamic sampling of the environment, mismatched with those from the actual limb position. Accordingly, participants adopted a different strategy that enabled them to clear the obstacle with a higher safety margin.Financial assistance was provided by a grant from the Office of Naval Research, USA, NSERC/Canada, and CAPES/Brazil. We would like to thank Milad G. Ishac, Mike Greig, Zinat Shafaei-Shirazi, and Candida T. Goncalves for their assistance  相似文献   

10.
The movement strategies and the underlying organization of the muscular responses for recovery from a tripping perturbation applied in early and late swing during walking were studied in humans. The latencies of the reflex response (60–140 ms) suggested that polysynaptic pathways are involved. The most common movement outcome was an elevating strategy of the swing limb in response to the early swing perturbation and a lowering strategy in response to the late swing perturbation. The elevating strategy comprised a flexor component of the swing limb and an extensor component of the stance limb. There was a temporal sequencing of the swing limb biceps femoris prior to the swing limb rectus femoris response to remove the limb from the obstacle prior to accelerating the limb over the obstacle. The extensor response of the stance limb generated an early heel-off to increase the height of the body. Thus, the lower limb joints collaborated to increase the height of the centre of mass and provide extra time to extend the swing limb in preparation for the landing. Flexion of the swing limb would be dangerous in response to the late swing perturbation as the swing limb is approaching the ground and the body mass has passed forward of the stance foot. Instead, a lowering strategy was accomplished by inhibitory responses of the swing limb vastus lateralis and/or excitatory responses of the swing limb biceps femoris. Both these responses resulted in a rapid lowering of the limb to the ground with a flat foot or forefoot landing and a shortening of the step length. Thus, in response to the late swing perturbation, the same recovery strategy was achieved by different patterns of muscle activation. These results demonstrate that the recovery strategies provided a functionally appropriate response for overcoming the obstacle and maintaining the ongoing locomotion.  相似文献   

11.
Stepping over an obstacle is preceded by a center of pressure (CoP) shift, termed anticipatory postural adjustments (APAs). It provides an acceleration of the center of mass forward and laterally prior to step initiation. The APAs are characterized in the lateral direction by a force exerted by the moving leg onto the ground, followed by an unloading of the stepping leg and completed by an adjustment corresponding to a slow CoP shift toward the supporting foot. While the importance of sensory information in the setting of the APAs is undisputed, it is currently unknown whether sensory information can also be used online to modify the feedforward command of the APAs. The purpose of this study was to investigate how the CNS modulates the APAs when a modification of proprioceptive information (Ia) occurs before or during the initiation of the stepping movement. We used the vibration of ankle muscles acting in the lateral direction to induce modification of the afferent inflow. Subjects learned to step over an obstacle, eyes closed, in synchrony to a tone signal. When vibration was applied during the initiation of the APAs, no change in the early APAs was observed except in the case of a cutaneous stimulation (low frequency vibration); it is thus possible that the CNS relies less on proprioceptive information during this early phase. Only the final adjustment of the CoP seems to take into account the biased proprioceptive information. When vibration was applied well before the APAs onset, a postural reaction toward the side of the vibration was produced. When subjects voluntarily initiated a step after the postural reaction, the thrust amplitude was set according to the direction of the postural reaction. This suggests that the planned motor command of the APAs can be updated online before they are triggered.  相似文献   

12.
Research on unperturbed stance is largely based on a one-segment inverted pendulum model. Recently, an increasing number of studies report a contribution of other major joints to postural control. Therefore this study evaluates whether the conclusions originating from the research based on a one-segment model adequately capture postural sway during unperturbed stance. High-pass filtered kinematic data (cutoff frequency 1/30 Hz) obtained over 3 min of unperturbed stance were analyzed in different ways. Variance of joint angles was analyzed. Principal-component analysis (PCA) was performed on the variance of lower leg, upper leg, and head-arms-trunk (HAT) angles, as well as on lower leg and COM angle (the orientation of the line from ankle joint to center of mass). It was found that the variance in knee and hip joint angles did not differ from the variance found in the ankle angle. The first PCA component indicated that, generally, the upper leg and HAT segments move in the same direction as the lower leg with a somewhat larger amplitude. The first PCA component relating ankle angle variance and COM angle variance indicated that the ankle joint angle displacement gives a good estimate of the COM angle displacement. The second PCA component on the segment angles partly explains the apparent discrepancy between these findings because this component points to a countermovement of the HAT relative to the ankle joint angle. It is concluded that postural control during unperturbed stance should be analyzed in terms of a multiple inverted pendulum model.  相似文献   

13.
During everyday life, healthy adults occasionally trip over an obstacle that they knew was there. These ‘spontaneous’ trips can provide insight into the circumstances leading to trips and falls. The goal of this study was to describe the errors in foot placement and/or foot elevation that resulted in a spontaneous contact with a fixed, visible obstacle in young, healthy adults. Fifteen subjects stepped over an obstacle (height set to 25 % leg length) placed in the middle of an 8 m walkway, up to 300 times. Three subjects never contacted the obstacle and 12 subjects contacted the obstacle 1–4 times, totaling 24 contacts in 3,843 trials (0.6 %). Most of the contacts (92 %) were with the trail limb. Minimum foot clearance of the trail limb (trail MFC) decreased linearly (average slope of ?1 mm/trial) with repeated trials. The majority of subjects (70 %) continued the linear decrease of trail MFC until they contacted the obstacle. The remaining contacts resulted from an apparent misjudgment of foot placement and/or foot elevation. Following contact, trail MFC increased 75 % in the subsequent trials and remained elevated at least up to 30 trials post-contact, but the trajectory of the unperturbed lead limb did not change, further supporting the idea of independent control for the lead and trail limbs during obstacle crossing. Possible causes of the progressive decrease in trail MFC until obstacle contact are considered.  相似文献   

14.
The sciatic nerve was crushed in the right hindlimb in newborn (3-8 h old) rats. Two to four months later, electromyographic activity was recorded from both the control and reinnervated ankle extensor muscles soleus or lateral gastrocnemius and from the ankle flexor muscle tibialis anterior. Tonic postural activity was present in the extensor muscles on both sides during quiet stance. The control flexor muscles were usually silent in this situation, but the reinnervated flexors exhibited abnormal sustained activity. During locomotion, the control extensors were activated during the stance phase and their mean burst made up 61.5% of the step cycle. The control tibialis anterior muscle fired only during the swing phase, with the burst lasting 18.1% of the step cycle. In the reinnervated extensor muscles, the mean burst duration was decreased (46% of the cycle) but the basic locomotor pattern was not impaired. The reinnervated tibialis muscle, however, was activated abnormally, with one appropriate flexor burst during the swing phase and an "extensor-like" burst during the stance phase of the step. Reflex responses to stretch were weak or absent on the operated side. Histological examination showed that the reinnervated soleus and tibialis muscles were almost devoid of muscle spindles. The motor unit mean firing rates in the reinnervated soleus (22 imp/s) and lateral gastrocnemius (45 imp/s) matched those of the control muscles (25 and 42 imp/s, respectively). In contrast to the phasic, high-frequency firing (52-80 imp/s) in the control tibialis, the reinnervated tibialis motor units fired at significantly lower rates (22-56 imp/s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
There are three common ways by which to successfully terminate gait: decreased acceleration of whole-body center of mass (COM) through a flexor synergy in the trail leg, increased deceleration of whole-body COM through an extensor synergy in the front limb, and an energy/momentum transfer to dissipate any remaining momentum if the first two strategies are unsuccessful. Healthy individuals were asked to stop on a slippery surface while we examined their unexpected response to the slippery surface. Kinetic data from the forceplates revealed lower braking forces in the slip trials compared with normal gait-termination trials. Subjects were unable to control their center of pressure (COP) to manipulate the COM as revealed by increased deviations and maximum absolute ranges of COP movement. Subject COM deviated farther in both horizontal planes and lowered further during the slip compared with normal gait-termination trials. Arm movements were effective in dissipating forward COM movement. In addition, there likely was a transfer of forward to lateral momentum to stop forward progression. All recorded muscle activity in the lower limbs and back increased during the slip to provide support to the lower limbs and correct upright balance. The trailing limb shortened its final step to provide support to the lowering COM. The balance-correction response seen here resembles previous reactions to perturbations during locomotion suggesting there is a generalized strategy employed by the nervous system to correct for disturbances and maintain balance.  相似文献   

16.
The goal of this study was to investigate changes of H-reflex amplitudes during a motor learning task. Subjects with reduced vision were instructed to step over an obstacle on a treadmill as low as possible, while the soleus H-reflex was elicited. Acoustic warning and feedback signals about performance were provided. Performance improvement was associated with a decrease of muscle activity, needed to step over the obstacle (rectus femoris, biceps femoris, tibialis anterior and gastrocnemius medialis muscles), and of foot clearance, while joint angle trajectories from knee and ankle became more stable. The experiment consisted of five runs, three with normal treadmill walking and two with randomly stepping over the obstacle (100 times). H-reflexes were elicited at early and late stance phase before stepping over the obstacle. H/M ratio, latency and duration were determined. The values of these measures were calculated for the onset and end of a run and their course over time was evaluated using a correlation coefficient. The largest adaptations with a significant increase of reflex amplitude occurred during the first obstacle run. This increase lasted only briefly and the reflex amplitudes decreased to their previous values. During the later obstacle run, no H-reflex modulation occurred. It is concluded that a motor learning task causes adaptational effects not only on performance, but also on H-reflex responses. The results indicate that most of the modulation of H-reflexes is probably due to supraspinal influences on reflex transmission. The observations made are probably less specific for this motor task (stepping over the obstacle), but rather associated with the increased attention required by the motor learning task during the first obstacle run.  相似文献   

17.
In this study we validate the use of a virtual planar obstacle paradigm to study the avoidance of a real obstacle, such as a hole, during locomotion. Also we further validate the economy determinant implicated with the minimization of foot displacement from its normal landing position during alternate foot placement. Participants were asked to perform two blocks of trials: real (a real hole was embedded in the pathway and participants were requested to avoid stepping into it) and virtual (a virtual planar obstacle was displayed on the screen of a liquid crystal display monitor). Trunk and feet kinematics were monitored, as well as electromyography (EMG) activity of 14 muscles of both lower limbs and trunk. The results of this study showed that the dominant choice for each obstacle investigated was not different between the real and virtual conditions. In addition, dynamic stability, economy and forward progression determinants guiding alternate foot placement were similarly satisfied. Thus the use of virtual planar obstacle in adaptive locomotion study is appropriate. EMG data were used to compute an index relating the changes in muscle activity relative to the normal walking profile. This EMG index was significantly and positively correlated with the amount of foot displacement for the adaptive step. The fact that the dominant choice resulted in minimum foot displacement from its normal landing spot combined with minimal changes in muscle activity validates conclusively the economy determinant.  相似文献   

18.
The present study addressed the involvement of proprioceptive input of the muscle spindles in the spatiotemporal control of human locomotion. Blindfolded subjects walked along a walkway while tendon vibration, a powerful stimulus of Ia afferents, was applied to various muscles of the lower limb. The effects of tendon vibration were measured on joint kinematics and on intralimb and interlimb coordination. Tendon vibration of the tibialis anterior during locomotion led to a decreased plantar flexion at toe-off, whereas vibration of the triceps surae led to a decreased dorsiflexion during swing. Vibration of the quadriceps femoris at the knee led to a decreased knee flexion during swing. These local effects of vibration can be explained in the light of a lengthening illusion of the vibrated muscle in that phase of the gait cycle where the muscle is lengthened. Tendon vibration did not affect the qualitative features of intralimb coordination. With respect to interlimb coordination, only vibration of the biceps femoris showed a significant increase in phase lead of the vibrated limb. The present results suggest the involvement of Ia afferent input in the online control of joint rotations. Additionally it is hypothesized that the proprioceptive input of biceps femoris might be involved in the control of coordination between the limbs, whereas the coordination between the segments of one limb appears to be unaffected by disturbance of muscle spindle input of one muscle.  相似文献   

19.
The aim of this study was to evaluate whether a newly acquired locomotor skill can be transferred to the mirror condition. Subjects were trained to step over an obstacle on a treadmill, the appearance of which was signalled by an acoustic stimulus, while visual information was prevented. Feedback information about foot clearance was provided by acoustic signals. During two successive runs (each consisting of 100 steps over the obstacle) the same leg was leading (i.e. the leg crossing the obstacle first). In the following third run, the leading and trailing legs were changed. During each of the three successive runs the adaptational changes were analysed by recording leg muscle electromyographic (EMG) activity, joint angle trajectories and foot clearance over the obstacle. The training effect gained between the first and second runs and the transfer to the mirror condition (third run) were evaluated. Adaptational changes of all measures, except ankle joint trajectory, could to a significant extent be transferred to the mirror condition. No side-specific differences in the amount of transfer were found, neither from the right to the left side, nor vice versa. These observations are at variance with adaptational changes observed during split-belt walking or one-legged hopping on a treadmill, where no transfer to the mirror condition occurred. It is assumed that this might be due to the specific requirements of the tasks and the leg muscles involved. While in the split-belt and hopping experiments leg extensor muscles are mainly involved, leg flexors predominate in the performance of the present task. It is hypothesised that the learning effects observed in the present experiments are mediated at a higher level (e.g. brainstem) of locomotor control.  相似文献   

20.
Knowledge of how the nervous system deals with surfaces with different physical properties such as compliance that challenge balance during locomotion is of importance as we are constantly faced with these situations every day. The purpose of this study was to examine the control of center of mass (COM) and lower limb dynamics and recovery response modulation of muscle activity during locomotion across an unexpected compliant surface and in particular, scaling behavior across different levels of compliance. Eight young adults walked along a walkway and stepped on an unexpected compliant surface in the middle of the travel path. There were three different levels of surface compliance, and participants experienced either no compliant surface or one of the three compliant surfaces during each trial that were presented in a blocked or random fashion. Whole body kinematics were collected along with surface electromyography (EMG) of selected bilateral lower limb and trunk muscles. The recovery response to the first compliant-surface trial demonstrated muscle onset latencies between 97 and 175 ms, and activity was modulated while on the compliant surface. Vertical COM trajectory was not preserved after contact with the compliant surface: peak vertical COM, while on the compliant surface was lower than when on stable ground. Perturbed-limb knee flexion after toe-off increased with increased surface compliance, which enabled toe clearance with the ground to be similar to control trials. The results suggest that stepping off of a compliant surface is actively modulated by the CNS and is geared toward maintaining dynamic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号