首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, PTX/Pluronic F127 nanocrystals were prepared in our laboratory using the stabilization of nanocrystals (SNC) method. For PTX nanocrystals, dosages could be increased to yield improved antitumor activity over Taxol® without incidence of acute toxicity. The objectives of this current study are to further understand the structure and stability of PTX nanocrystals. More Pluronic F127 surfactant was added in the formulation to attempt to further stabilize the nanocrystals against thermal induced aggregation. However, this resulted in formation of micelles that worsened the stability of nanocrystals. The F127 desorption experiment suggested different surfactant adsorption affinity to nanocrystal surface below and above the CMC. Below the CMC monomers bound to nanocrystal surface with high affinity, but above the CMC low affinity surfactant aggregates readily left the surface upon dilution. At higher temperature the tendency of F127 micellization is enhanced due to drastically lower CMC. Consequently, at 37 °C there was F127 desorption even for nanocrystals prepared with low amounts of F127 (1:5 (w/w) PTX/F127). To improve the stability of nanocrystals, re-nanonization by incubation–sonication procedure was used to disrupt the preferred crystal growth pattern of PTX. Furthermore, we have demonstrated that a higher heating temperature (45 °C vs. 37 °C) used in the incubation–sonication procedure was able to provide even better nanocrystal stability for long periods of incubation time.  相似文献   

2.
The aim of this study was to develop and characterize nanocrystal formulation containing nimesulide. Physical mixture of drug and excipient (nimesulide:pluronic F127, 1:0.5) was also prepared to compare the efficiency of formulations. The physicochemical characteristics of the formulations were determined by means of Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffractometry. Particle size, saturation solubilities as a function of pH, and permeability across Caco-2 monolayers were determined for nimesulide in powder, physical mixture, and nanocrystal formulations. In FT-IR analysis, the characteristic peaks that belong to nimesulide were seen in all formulations. X-ray diffractograms displayed that crystalline structure of nimesulide was conserved in the nanocrystal formulation. The interaction between nimesulide and pluronic F127 was demonstrated by DSC analysis. In all conditions, the average particle size of the nanocrystal formulations decreased significantly (p?<?0.05) as compared with nimesulide and physical mixture. The solubility of nimesulide in nanocrystal formulation was higher than those of nimesulide in powder and physical mixture. Permeability studies revealed that nimesulide is a highly permeable compound whether in powder form or in physical mixture and nanocrystal formulation. All these results clearly demonstrate that aqueous solubility of poorly water-soluble compounds can be improved by preparing nanocrystal formulations.  相似文献   

3.
A carrier-free method for delivery of a hydrophobic drug in its pure form, using nanocrystals (nanosized crystals), is proposed. To demonstrate this technique, nanocrystals of a hydrophobic photosensitizing anticancer drug, 2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide (HPPH), have been synthesized using the reprecipitation method. The resulting drug nanocrystals were monodispersed and stable in aqueous dispersion, without the necessity of an additional stabilizer (surfactant). As shown by confocal microscopy, these pure drug nanocrystals were taken up by the cancer cells with high avidity. Though the fluorescence and photodynamic activity of the drug were substantially quenched in the form of nanocrystals in aqueous suspension, both these characteristics were recovered under in vitro and in vivo conditions. This recovery of drug activity and fluorescence is possibly due to the interaction of nanocrystals with serum albumin, resulting in conversion of the drug nanocrystals into the molecular form. This was confirmed by demonstrating similar recovery in presence of fetal bovine serum (FBS) or bovine serum albumin (BSA). Under similar treatment conditions, the HPPH in nanocrystal form or in 1% Tween-80/water formulation showed comparable in vitro and in vivo efficacy.  相似文献   

4.
Treatment of metastatic cancer continues to be a huge challenge worldwide. Notably, drug nanocrystals (Ns) in nanosuspensions clearly belong to a type of nanoparticle. Therefore, a question arose as to whether these drug particles can also be applied as carriers for drug delivery. Here, we design a novel paclitaxel (PTX) nanocrystal stabilized with complexes of matrix metalloproteinase (MMP)-sensitive β-casein/marimastat (MATT) for co-delivering MATT and PTX and combined therapy of metastatic breast cancer. The prepared Ns (200?nm) with a drug-loading of >50% were potent in treatment of metastatic cancer, which markedly inhibited MMP expression and activity and greatly blocked the lung metastasis and angiogenesis. In conclusion, employing protein–drug complexes as stabilizers, Ns with dual payloads are developed and are a promising strategy for co-delivery. Furthermore, the developed Ns can target the tumor microenvironment and cancer cells and, as a result, enable efficient treatment for breast metastatic cancer.  相似文献   

5.
The recent advance of particle size engineering in nanometer ranges has widened the formulation opportunities of relatively water-insoluble drugs. However, the ‘nanoformulation’ suffers from a lack of systematic understanding about the requirements of polymeric stabilizers. Furthermore, the polymers that can be used for the preparation of nanocrystals are so limited that finding a proper stabilizer for a given formulation is often difficult. In this study, amino acid copolymers whose properties can systematically be tailored are developed, and their morphological and compositional effects are investigated. Copolymers containing lysine (K) as their hydrophilic segments, and phenylalanine (F) or leucine (L) as their hydrophobic segments successfully produce stable nanocrystals (200–300 nm) in water, while copolymers of K and alanine (A) could not generate nanosized particles. Not the morphology but the hydrophobicity of copolymers seems to be a critical parameter in the preparation of drug nanocrystals by wet comminution. The effective stabilization performance of copolymers requires the hydrophobic moiety content to be higher than 15 mol%. Comminution for only 5 min is long enough for nanocrystal preparation, and the crystallinity of drug is found intact after the processing.  相似文献   

6.
Camptothecin (CPT) is a potent, broad spectrum antitumor agent that inhibits the activity of DNA topoisomerase I. Due to its poor solubility and stability and consequent delivery challenges, its clinical use is nevertheless limited. We aim to use nanocrystal formulation as a way to circumvent the difficult solubilization practice. Specifically, camptothecin nanocrystals were prepared with a sonication-precipitation method without additional stabilizing surfactants. Particle characteristics, cellular cytotoxicity, and animal antitumor effect were examined. CPT nanocrystals were tested to be more potent to MCF-7 cells than CPT solution in vitro. When tested in MCF-7 xenografted BALB/c mice, the CPT nanocrystals exhibited significant suppression of tumor growth. The drug concentration in the tumor was five times more at 24h by using the nanocrystal treatment than by using the drug salt solution. Storage stability study indicated that the nanocrystals were stable for at least six months. Overall, CPT nanocrystals were considered to be potentially feasible to overcome formulation challenges for drug delivery and to be used in clinic.  相似文献   

7.

Purpose

To develop a nanocrystalline paclitaxel formulation with a high paclitaxel-to-stabilizer ratio which can be used for hyperthermic intraperitoneal chemotherapy (HIPEC).

Methods

Paclitaxel (PTX) nanocrystals were prepared via wet milling using Pluronic F127? as stabilizer. The suitability of paclitaxel nanosuspensions for HIPEC treatment was evaluated by analyzing the cytotoxicity of both stabilizer and formulation, and by determining the maximum tolerated dose (MTD) and bioavailability. The effect on tumor growth was evaluated by magnetic resonance imaging (MRI) at day 7 and 14 after HIPEC treatment in rats with peritoneal carcinomatosis of ovarian origin.

Results

Monodisperse nanosuspensions (±400?nm) were developed using Pluronic F127? as single additive. The cytotoxicity and MTD of this nanocrystalline formulation was similar compared to Taxol?, while its bioavailability was higher. MRI data after HIPEC treatment with a PTX nanocrystalline suspension showed a significant reduction of tumor volume compared to the non-treated group. Although no significant differences on tumor volume were observed between Taxol? and the nanosuspension, the rats treated with the nanosuspension recovered faster following the HIPEC procedure.

Conclusion

Nanosuspensions with a high paclitaxel-to-stabilizer ratio are of interest for the treatment of peritoneal carcinomatosis of ovarian origin via HIPEC.  相似文献   

8.
Micelles are attractive delivery systems for hydrophobic drugs due to their small size and the ease of application. However, the limited drug loading capacity and the intrinsic poor stability of drug-loaded formulations represent two major issues for some micellar systems. In this study, we designed and synthesized a micelle-forming PEG-lipopeptide conjugate with two Fmoc groups located at the interfacial region, and two oleoyl chains as the hydrophobic core. The significance of Fmoc groups as a broadly applicable drug-interactive motif that enhances the carrier–drug interaction was examined using eight model drugs of diverse structures. Compared with an analogue without carrying a Fmoc motif, PEG5000-(Fmoc-OA)2 demonstrated a lower value of critical micelle concentration and three-fold increases of loading capacity for paclitaxel (PTX). These micelles showed tubular structures and small particle sizes (~70 nm), which can be lyophilized and readily reconstituted with water without significant changes in particle sizes. Fluorescence quenching study illustrated the Fmoc/PTX π–π stacking contributes to the carrier/PTX interaction, and drug-release study demonstrated a much slower kinetics than Taxol, a clinically used PTX formulation. PTX/PEG5000-(Fmoc-OA)2 mixed micelles exhibited higher levels of cytotoxicity than Taxol in several cancer cell lines and more potent inhibitory effects on tumor growth than Taxol in a syngeneic murine breast cancer model (4T1.2). We have further shown that seven other drugs can be effectively formulated in PEG5000-(Fmoc-OA)2 micelles. Our study suggests that micelle-forming PEG-lipopeptide surfactants with interfacial Fmoc motifs may represent a promising formulation platform for a broad range of drugs with diverse structures.  相似文献   

9.
Yanxiu Ge  Yanli Zhao 《Drug delivery》2016,23(7):2555-2565
In present study, two types of micelles based on sodium cholate (NaC) were prepared through non-covalent bonding interaction and the potential of micelles as oral drug delivery systems for paclitaxel (PTX) was evaluated. Pluronic–chitosan (F127–CS) and Pluronic–poly (acrylic acid) (F127–PAA) copolymers were synthesized. Electrostatic interaction and hydrogen bond were used to prepare F127–CS/NaC micelles and F127–PAA/NaC micelles, respectively. The physicochemical characteristics of micelles were determined. An average diameter of 67.5?nm and unimodal pattern of size distribution were observed for F127–CS/NaC micelles. While for F127–PAA/NaC micelles, an average diameter of 85.89?nm and non-unimodal pattern of size distribution were observed. The results revealed that F127–CS/NaC micelles were more integrated than F127–PAA/NaC micelles. Further experiments showed that the F127–CS/NaC micelles had a higher drug-loading content of 12.8% and a lower critical micelle concentration (CMC) of 2.5?×?10?3?mol/L compared with F127–PAA/NaC micelles. In vitro cytotoxicity analysis demonstrated that the PTX-loaded F127–CS/NaC micelles were of great efficiency in inhibiting the growth of drug-resistant breast cancer MCF-7 cells (MCF-7/Adr). The intragastric administration of the PTX-loaded F127–CS/NaC micelles in rats provided a 4.33-fold higher absolute bioavailability compared to commercial Taxol®, indicating an efficient oral absorption of PTX delivered by micelles. These findings signify that F127–CS/NaC micelle may be a promising carrier for the delivery of PTX.  相似文献   

10.
Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles composed of poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by noninvasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability were attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components.  相似文献   

11.
Injectable hydrogel with hydrophobic microdomains for incorporating both hydrophilic and hydrophobic drugs, herein doxorubicin hydrochloride (DOX) and paclitaxel (PTX), was synthesized through dynamic bonding of glycol chitosan and benzaldehyde capped poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) via Schiff's reaction triggered by environmental pH. Rheology tests show that the inclusion of hydrophilic drug decreases the gelation time and gains more robust gel, while the addition of hydrophobic drug has opposite influences. Dual-drug release from the DOX+PTX loaded gels was observed and the release rate can be accelerated by decreasing the environmental pH from physiological (7.4) to weak acidic pH (6.8). In vivo investigation proved that the gels were able to diminish the amount of DOX in blood circulation and limit the DOX-induced cardiotoxicity. By intratumoral administration, the hydrogel-drug formulations resulted in efficient growth inhibition of subcutaneous tumor (B16F10) on C57LB/6 mouse model. The advantage of the current system for DOX+PTX combination therapy was demonstrated by a prolongation of survival time in comparison with the single drug therapy.  相似文献   

12.

Purpose

To develop novel hybrid paclitaxel (PTX) nanocrystals, in which bioactivatable (MMPSense® 750 FAST) and near infrared (Flamma Fluor® FPR-648) fluorophores are physically incorporated, and to evaluate their anticancer efficacy and diagnostic properties in breast cancer xenograft murine model.

Methods

The pure and hybrid paclitaxel nanocrystals were prepared by an anti-solvent method, and their physical properties were characterized. The tumor volume change and body weight change were evaluated to assess the treatment efficacy and toxicity. Bioimaging of treated mice was obtained non-invasively in vivo.

Results

The released MMPSense molecules from the hybrid nanocrystals were activated by matrix metalloproteinases (MMPs) in vivo, similarly to the free MMPSense, demonstrating its ability to monitor cancer progression. Concurrently, the entrapped FPR-648 was imaged at a different wavelength. Furthermore, when administered at 20 mg/kg, the nanocrystal formulations exerted comparable efficacy as Taxol®, but with decreased toxicity.

Conclusions

Hybrid nanocrystals that physically integrated two fluorophores were successfully prepared from solution. Hybrid nanocrystals were shown not only exerting antitumor activity, but also demonstrating the potential of multi-modular bioimaging for diagnostics.  相似文献   

13.

Purpose

The purpose of this work was the development of a multicompartimental nanocarrier for the simultaneous encapsulation of paclitaxel (PTX) and genistein (GEN), associating antiangiogenic and cytotoxic properties in order to potentiate antitumoral activity.

Method

Polymeric nanocapsules containing PTX were obtained by interfacial deposition of preformed polymer and coated with a phospholipid bilayer entrapping GEN. Physical-chemical and morphological characteristics were characterized, including size and size distribution, drug entrapment efficiency and drug release profile. In vivo studies were performed in EAT bearing Swiss mice.

Results

Entrapment efficiency for both drugs in the nanoparticles was approximately 98%. Average particle diameter was 150 nm with a monomodal distribution. In vitro assays showed distinct temporal drug release profiles for each drug. The dose of 0.2 mg/kg/day of PTX resulted in 11% tumor inhibition, however the association of 12 mg/kg/day of GEN promoted 44% tumor inhibition and a 58% decrease in VEGF levels.

Conclusions

Nanoparticles containing GEN and PTX with a temporal pattern of drug release indicated that the combined effect of cytotoxic and antiangiogenic drugs present in the formulation contributed to the overall enhanced antitumor activity of the nanomedicine.  相似文献   

14.
After molecule targeted drug, monoclonal antibody and antibody–drug conjugates (ADCs), peptide–drug conjugates (PDCs) have become the next generation targeted anti-tumor drugs due to its properties of low molecule weight, efficient cell penetration, low immunogenicity, good pharmacokinetic and large-scale synthesis by solid phase synthesis. Herein, we present a lytic peptide PTP7-drug paclitaxel conjugate assembling nanoparticles (named PPP) that can sequentially respond to dual stimuli in the tumor microenvironment, which was designed for passive tumor-targeted delivery and on-demand release of a tumor lytic peptide (PTP-7) as well as a chemotherapeutic agent of paclitaxel (PTX). To achieve this, tumor lytic peptide PTP-7 was connected with polyethylene glycol by a peptide substrate of legumain to serve as hydrophobic segments of nanoparticles to protect the peptide from enzymatic degradation. After that, PTX was connected to the amino group of the polypeptide side chain through an acid-responsive chemical bond (2-propionic-3-methylmaleic anhydride, CDM). Therefore, the nanoparticle (PPP) collapsed when it encountered the weakly acidic tumor microenvironment where PTX molecules fell off, and further triggered the cleavage of the peptide substrate by legumain that is highly expressed in tumor stroma and tumor cell surface. Moreover, PPP presents improved stability, improved drug solubility, prolonged blood circulation and significant inhibition ability on tumor growth, which gives a reasonable strategy to accurately deliver small molecule drugs and active peptides simultaneously to tumor sites.  相似文献   

15.
The encapsulation of lipophilic drugs in polymeric nanoparticles can form simultaneously both polymeric nanoparticles and drug nanocrystals. The objective was to detect the presence of nanocrystals in the nanoparticle suspensions using a simple methodology, and to determine if the nanocrystals are formed during preparation or by drug leakage from the particles during storage. Indomethacin was chosen as drug model. Unloaded and drug-loaded (1mg/mL) nanocapsules showed diameters close to 280nm and polydispersity lower than 0.20, remaining constant after 120 days. Comparing indomethacin loaded (3mg/mL) and unloaded formulations, variations in the scattered light depolarization degree indicated the simultaneous presence of nanocrystals and nanocapsules in the suspensions. A relation between the scattered light intensities and the drug precipitation was established. As a function of time, when the decrease in the Rayleigh ratios occurred, the drug contents decreased due to precipitation. On the other hand, when the Rayleigh ratios slightly increase, the drug contents are constant. The nanocrystals formed in the oversaturated formulations, agglomerate and precipitate during storage. When the drug is adsorbed on the nanocapsules, but the system is not oversaturated, no nanocrystal was formed and the formulation is physico-chemically stable at least for 150 days of storage.  相似文献   

16.
Surface modification and solid dispersion formulations using hydrophilic excipients can significantly alter the dissolution behaviour of hydrophobic drug materials. The effect of these techniques used individually and in combination on the dissolution properties of the hydrophobic drug, phenylbutazone (PB), are compared. PB was treated with a poloxamer, Synperonic((R)) F127 by an adsorption method. Solid dispersions (10 and 20% w/w) were prepared with untreated PB or PB previously modified with Synperonic((R)) F127 (PBT) in molten F127. Dissolution tests of capsule formulations of PB, PBT and solid dispersion formulations, in pH 6.4 buffer at 37+/-0.5 degrees C demonstrated that after 140 min, release of PB was 16.7%, but 71.4% from the solid dispersion, whereas from the PBT formulation 85.6% was released. The Synperonic((R)) F127 content of PBT was only 0.05% of that in the solid dispersion formulation which suggests that it is the nature of the drug polymer contact rather than the amount of polymer which is more critical in influencing dissolution behaviour. Comparison of PBT and the 10% w/w solid dispersion of PBT in F127 showed similar amounts of drug in solution after 140 min. However there was a significantly higher release rate for PBT. Both formulation techniques offer significant improvements in drug release over untreated PB, and a combination of techniques changes the rate but not the extent of release in comparison with the surface modification technique alone.  相似文献   

17.
A novel polyethylene glycol 400 (PEG400) mediated lipid nanoemulsion as drug-delivery carrier for paclitaxel (PTX) was successfully developed. The formulation comprised a PEG400 solution of the drug (25 mg/mL) that would be mixed with commercially 20% lipid emulsion to form PTX-loaded nanoemulsion (1 mg/mL) prior to use. This two-vial formulation of PTX-loaded lipid nanoemulsion (TPLE) could significantly reduce extraction of reticuloendothelial system (RES) organs and increase tumor uptake, and exhibited more potent antitumor efficacy on bearing A2780 or Bcap-37 tumor nude mice compared to conventional PTX-loaded lipid nanoemulsion (CPLE). TPLE did not cause haematolysis and intravenous irritation response yet, and showed the same cytotoxicity against HeLa cells as Taxol®, and its LD50 was 2.7-fold higher than that of Taxol®, suggesting its good safety and druggability. In addition, TPLE displayed distinctly faster release of PTX, a greater proportion of PTX in phospholipids layer and a smaller share in oil phase than CPLE. From the Clinical Editor: This study demonstrates the feasibility and potential advantage of a novel PEG400-mediated two-vial formulation of lipid nanoemulsion as drug carrier for PTX in clinical application for the cancer therapy.From the Clinical EditorThis team of investigators convincingly demonstrates the feasibility and potential advantage of a PEG400-mediated two-vial formulation of lipid nanoemulsion as drug carrier for PTX in cancer therapy, documenting superior safety and faster release of PTX compared to commercially available formulations.  相似文献   

18.
This patent application claims an interesting and novel combination of passive accumulation of drug nanocrystals within diseased tissue, in combination with active uptake of the nanocrystals by diseased cells. The patent application further claims the hybrid nanocrystals combining imaging or stabilizing molecules as inclusions in the crystal matrix. There is a focus on cancer chemotherapy and imaging, but the initial claims are not disease specific. In this patent evaluation, the novelty and utility of this application is examined, while the state of the art in nanocrystal formulations and formulation is discussed.  相似文献   

19.
The use of nanocrystal technology to manufacture drug delivery systems intended to enhance therapeutic efficacy has attracted the attention of the pharmaceutical industry.However, the clinical application of nanocrystal drugs for injection is restricted by Ostwald ripening and the large-scale use of stabilizers such as polysorbate and lecithin, which have potential toxicity risks including hemolysis and allergies. Here, we designed an amorphous nanocrystal drug complex(IHNC), which is stabilizer...  相似文献   

20.
The use of nanocrystal technology to manufacture drug delivery systems intended to enhance therapeutic efficacy has attracted the attention of the pharmaceutical industry. However, the clinical application of nanocrystal drugs for injection is restricted by Ostwald ripening and the large-scale use of stabilizers such as polysorbate and lecithin, which have potential toxicity risks including hemolysis and allergies. Here, we designed an amorphous nanocrystal drug complex (IHNC), which is stabilizer-free and composed of indocyanine green (ICG) framework loading with a chemotherapeutic agent of 10-hydroxycamptothecin (HCPT). Considering the possibility of industrial manufacturing, IHNC was simply prepared with the assistance of ferric ion (III) via supramolecular assembly strategy. The theoretical result of Materials Studio simulation indicated that the prepared ICG-Fe(III) framework showed a stable spherical structure with the appropriate cavity for encapsulating the two drugs of HCPT and ICG with equal mass ratio. The IHNC was stable at physiological pH, with excellent PTT/PDT efficacy, and in vivo probing characteristics. The nanoscale size and reductive stimuli-responsiveness can be conducive to drug accumulation into the tumor site and rapid unloading of cargo. Moreover, such combination therapy showed synergistic photo/chemotherapy effect against 4T1 breast cancer and its tumor inhibition rate even up to 79.4%. These findings demonstrated that the nanocrystal drug delivery strategy could avoid the use of stabilizers and provide a new strategy for drug delivery for combination therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号