首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to evaluate the transdermal delivery of 6-beta-naltrexol (NTXOL), the active metabolite of naltrexone (NTX), across human skin and guinea pig skin in vitro and in hairless guinea pigs in vivo. NTXOL may be responsible for much of NTX's pharmacologic activity. In vitro diffusion studies on NTXOL were compared with similar studies on NTX using a formulation of propylene glycol and buffer in a flow-through diffusion cell system. In vivo guinea pig studies were carried out involving topical application of both drugs in patches containing identical formulations. The in vitro flux of NTX was about 2.3- and 5.6-fold higher than for NTXOL across guinea pig skin and human skin, respectively. NTXOL lag times were longer than NTX in both skin types. In vivo studies in guinea pigs showed that the steady-state plasma level of NTX was twofold greater than NTXOL, which correlated well with in vitro data. The results of the present study indicated that substantial levels of NTX and NTXOL could be delivered via the transdermal route, although the plasma levels of NTXOL were significantly less than NTX. Further transdermal formulation development will be investigated for permeation enhancement.  相似文献   

2.
《Toxicology in vitro》2010,24(7):1971-1978
Microneedle (MN) arrays have attracted considerable attention in recent years due to their ability to facilitate effective transdermal drug delivery. Despite appreciable research, there is still debate about how different MN dimensions or application modes influence permeabilization. This study aimed to investigate this issue by taking transepidermal water-loss measurements of dermatomed human skin samples following the insertion of solid polymeric MNs. Insertions caused an initial sharp drop in barrier function followed by a slower incomplete recovery – a paradigm consistent with MN-generation of microchannels that subsequently contract due to skin elasticity. While 600 μm-long MNs were more skin-perturbing than 400 μm MNs, insertion of 1000 μm-long MNs caused a smaller initial drop in integrity followed by a degree of long term permeabilization. This is explainable by the longest needles compacting the tissue, which then decompresses over subsequent hours. Multiple insertions had a similar effect as increasing MN length. There was some evidence that increasing MN density suppressed the partial barrier recovery caused by tissue contraction. Leaving MNs embedded in skin seemed to reduce the initial post-insertion drop in barrier function. Our results suggest that this in vitro TEWL approach can be used to rapidly screen MN-effects on skin.  相似文献   

3.
The effect of lipophilicity of drug on the microneedle (MN)-mediated iontophoretic delivery across dermatomed human skin was studied. Beta blockers with similar pKa but varied log P values were selected as model drugs in this study. Iontophoresis (ITP) or MNs, when used independently, increased the transdermal flux of beta blockers as compared with passive delivery (PD). ITP across the MN-treated skin (MN + ITP) increased the permeation rate of all beta blockers as compared with PD (p < 0.001). The enhancement ratios (ER) for hydrophilic molecules (atenolol and sotalol) were 71- and 78-fold higher for ITP + MN as compared with PD. However, for lipophilic molecule such as propranolol, there was 10-fold increase in the ER as compared with PD. These observations were further substantiated by the skin retention data; an inverse relationship between the skin retention and the hydrophilicity of the drug was observed. The results in the present study point out that the lipophilicity of the molecule plays a significant role on the electrically assisted transdermal delivery of drugs across the microporated skin. Using the combination of ITP + MN, hydrophilic drugs (atenolol and sotalol) were delivered at a much higher rate as compared with lipophilic molecules (propranolol and acebutolol).  相似文献   

4.
PURPOSE: The purpose of this investigation was to evaluate the in vitro microneedle (MN) enhanced percutaneous absorption of naltrexone hydrochloride salt (NTX x HCl) compared to naltrexone base (NTX) in hairless guinea pig skin (GP) and human abdominal skin. In a second set of experiments, permeability of the major active metabolite 6-beta-naltrexol base (NTXOL) in the primarily unionized (unprotonated) form at pH 8.5 was compared to the ionized form (pH 4.5). METHODS: In vitro fluxes of NTX, NTX.HCl and ionized and unionized NTXOL were measured through microneedle treated or intact full thickness human and GP skin using a flow through diffusion apparatus. Solubility and diffusion samples were analyzed by HPLC. RESULTS: Both GP and human skin show significant increases in flux when treated with 100 MN insertions as compared to intact full thickness skin when treated with NTX.HCl or ionized NTXOL (pH 4.5; p < 0.05). MN increased GP skin permeability for the hydrophilic HCL salt of NTX by tenfold and decreased lag time by tenfold too. Similar results were found using human skin, such that skin permeability to NTX.HCl was elevated to 7.0 x 10(-5) cm/h. Permeability of the primarily unionized (unprotonated) form of NTXOL at pH 8.5 was increased by MN only threefold and lag time was only modestly reduced. However, MN treatment with the primarily ionized (protonated) form of NTXOL at pH 4.5 increased skin permeability fivefold and decreased lag time fourfold. CONCLUSION: Enhancement was observed in vitro in both GP and human skin treated with MN compared to intact skin with the salt form of NTX and the ionized form of NTXOL. We conclude that transdermal flux can be optimized by using MN in combination with charged (protonated) drugs that have increased solubility in an aqueous patch reservoir and increased permeability through aqueous pathways created by MN in the skin.  相似文献   

5.
A novel microemulsion was developed and characterized for topical delivery of Dencichine (Den). Two imidazaolium ionic liquid, 1-hydroxyethyl-3-methylimidazolium chloride ([HOEIM]Cl) and 1-butyl-3-methylimidazolium dodecanesulfate ([BMIM]C12SO3) were incorporated into the aqueous and surfactant phases respectively for the remarkable enhancement on skin permeation. The nano-carrier was developed and optimized based on a pseudo-ternary phase diagram. The optimized formulation was composed of 50% water/[HOEIM]Cl mix (1:1) as water phase, 20% Tween 80/[BMIM]C12SO3 mix (1:1) as surfactant, 10% propylene glycol as co-surfactant and 20% IPM as oil phase. The o/w microemulsion was then characterized for droplets sizes (47.7 ± 1.5 nm), zeta potential (?14.83 ± 3.64 mV), viscosity (31 ± 4 mPa) and pH (6.71 ± 0.04). In-vitro skin permeation assay suggested the strong enhancement of ILs formulation on the topical delivery of Den, which was approximately 10-fold that of the drug aqueous solution. It was found that the nano-carrier can reduce the skin barrier properties by disrupting the regular and compact arrangements of corneocytes, and moderating the surface properties of the stratum corneum, as evidenced by Transdermal Water Loss Evaluation (TEWL), Differential Scanning Calorimetery (DSC) and attenuated total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR). Furthermore, the in-vivo pharmacodynamic evaluation indicated the significant hemostatic activity of Den by the topical application of the vehicle. Additionally, the formulation showed minor cell toxicity and skin irritation. Therefore, our work suggested that the ionic liquid microemulsion can be a promising nano-scale vehicle for the topical application of Den to produce desirable pharmacological effects.  相似文献   

6.
Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (rpore) within non-LTRs are frequency-independent, ranging from 18.2 to 18.5 Å, but significantly larger than rpore of native skin samples (13.6 Å). Conversely, rpore within LTRs increase significantly with decreasing frequency from 161 to 276 Å and to ∞ (> 300 Å) for LFS/SLS-treated skin at 60, 40, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, whereas the increased rpore values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming.  相似文献   

7.
Microneedles (MNs), a physical skin permeation enhancement technique, facilitate drug delivery across the skin, thus enhancing the number of drugs that can be delivered transdermally in therapeutically relevant concentrations. The micropores created in the skin by MNs reseal because of normal healing processes of the skin, thus limiting the duration of the drug delivery window. Pore lifetime enhancement strategies can increase the effectiveness of MNs as a drug delivery mechanism by prolonging the delivery window. Fluvastatin (FLU), a HMGCoA reductase inhibitor, was used in this study to enhance the pore lifetime by inhibiting the synthesis of cholesterol, a major component of the stratum corneum lipids. The study showed that using FLU as a pretreatment it is possible to enhance the pore lifetime of MN-treated skin and thus allow for sustained drug delivery. The skin recovered within a 30–45-min time period following the removal of occlusion, and there was no significant irritation observed due to the treatment compared to the control sites. Thus, it can be concluded that localized skin treatment with FLU can be used to extend micropore lifetime and deliver drugs for up to 7 days across MN-treated skin.  相似文献   

8.
The passive delivery rate of naltrexone (NTX) through intact skin is too slow to achieve therapeutic plasma levels in humans from a reasonably sized transdermal patch. A physical enhancement method--microneedles (MNs)--has been shown to afford a substantial increase in the percutaneous flux of NTX hydrochloride in vitro. However, for better therapeutic effect and decrease in the transdermal patch area, further enhancement is desired. The purpose of this study was to identify a NTX salt that would (1) provide elevated in vitro percutaneous drug transport across MN-treated skin as compared with that of the NTX hydrochloride and (2) prove nonirritating to the skin in vivo. The pH-solubility profiles of NTX salts were investigated with three drug salts showing improved solubility at physiologically relevant skin surface pH of 5.0. The skin-irritation potential of NTX glycolate and lactate gels was not greater than that of placebo gel in the guinea pig model. Additionally, in vitro diffusion studies indicated that NTX glycolate provides around 50% enhancement in the flux through MN-treated skin at the cost of doubling the drug concentration in the donor solution. Overall, a new NTX glycolate salt appears to be a promising candidate for MN-assisted transdermal drug delivery system.  相似文献   

9.
Both human and animal skin in vitro models are used to predict percutaneous penetration in humans. The objective of this review is a quantitative comparison of permeability and lag time measurements between human and animal skin, including an evaluation of the intra and inter species variability. We limit our focus to domestic pig and rodent guinea pig skin as surrogates for human skin, and consider only studies in which both animal and human penetration of a given chemical were measured jointly in the same lab. When the in vitro permeability of pig and human skin were compared, the Pearson product moment correlation coefficient (r) was 0.88 (P < 0.0001), with an intra species average coefficient of variation of skin permeability of 21% for pig and 35% for human, and an inter species average coefficient of variation of 37% for the set of studied compounds (n = 41). The lag times of pig skin and human skin did not correlate (r = 0.35, P = 0.26). When the in vitro permeability of guinea pig and human skin were compared, r = 0.96 (P < 0.0001), with an average intra species coefficient of variation of 19% for guinea pig and 24% for human, and an inter species coefficient of variation of permeability of 41% for the set of studied compounds (n = 15). Lag times of guinea pig and human skin correlated (r = 0.90, P < 0.0001, n = 12). When permeability data was not reported a factor of difference (FOD) of animal to human skin was calculated for pig skin (n = 50) and guinea pig skin (n = 25). For pig skin, 80% of measurements fell within the range 0.3 < FOD < 3. For guinea pig skin, 65% fell within that range. Both pig and guinea pig are good models for human skin permeability and have less variability than the human skin model. The skin model of choice will depend on the final purpose of the study and the compound under investigation.  相似文献   

10.
Drug delivery across skin has been limited due to barrier properties of the skin, especially those of the stratum corneum (SC). Use of the laser radiation has been suggested for the controlled removal of the SC. The purpose of this study was to study in vitro the influence of infrared radiation from the erbium:yttrium–aluminum–garnet (Er:YAG) laser (λ = 2940 nm), and visible from the 2nd harmonic of a neodymium:yttrium–aluminum–garnet (Nd:YAG) laser (λ = 532 nm) on transdermal delivery of 5-aminolevulinic acid (ALA). Pinna skin of the inner side of rabbit ear was used for skin permeation. The light sources were an Er:YAG laser (Key III Plus KaVo) and a Q-switched Nd:YAG laser (Lotis TII SL-2132). Permeation study, morphological and structural skin examination by histology and differential scanning calorimetry (DSC) were carried out. Permeation profiles and histological observations obtained after irradiation with infrared and visible laser radiation differed due to different biophysical effects on irradiated skin. Wavelength of 2940 nm required lower energy contribution to produce the same level of permeation than visible radiation at 532 nm. Structural analysis by DSC shows a selective impact on the lipidic structure. Laser pretreatment enhanced the delivery of ALA trough the skin by SC ablation.  相似文献   

11.
Microneedles (MNs) provide a minimally invasive means to enhance skin permeability by creating micron-scale channels (micropores) that provide a drug delivery pathway. Adequate formation of the micropores is critical to the success of this unique drug delivery technique. The objective of the current work was to develop sensitive and reproducible impedance spectroscopy techniques to monitor micropore formation in animal models and human subjects. Hairless guinea pigs, a Yucatan miniature pig, and human volunteers were treated with 100 MN insertions per site following an overnight prehydration period. Repeated measurements were made pre- and post-MN treatment using dry and gel Ag/AgCl electrodes applied with light verses direct pressure to hold the electrode to the skin surface. Impedance measurements dropped significantly post-MN application at all sites (p < 0.05, irrespective of electrode type or gel application), confirming micropore formation. In the Yucatan pig and human subjects, gel electrodes with direct pressure yielded the lowest variability (demonstrated by lower %relative standard deviation), whereas dry electrodes with direct pressure were superior in the guinea pigs. These studies confirm that impedance measurements are suitable for use in both clinical and animal research environments to monitor the formation of new micropores that will allow for drug delivery through the impermeable skin layers.  相似文献   

12.
Biphasic vesicles, a novel nanostructured lipid-based delivery system show potential for topical application of interferon alpha (IFN α) for the treatment of human papillomavirus (HPV) infections (anogenital warts). Dermal delivery of IFN α encapsulated in biphasic vesicles (BPV-IFN α), applied topically to the skin, was characterized in a guinea pig model.BPV-IFN α (1 g, 2 MIU/g) was topically applied either as a single or multiple treatments on the skin of guinea pigs. As a comparison with currently used regimens, IFN α solution was administered intravenously or intradermally. Skin and serum samples were collected over 96 h, IFN α levels were determined by an antiviral assay, and half-life (t1/2) and elimination (k) rates were calculated.Topical BPV-IFN α treatment resulted in maximum skin levels (about 100,000 U/100 cm2) of IFN α within 6 h and maintained for 72–96 h. Clearance from the skin after intradermal injections was initially fast (t1/2 0.62 h, k 1.1179 h−1), followed by a slower steady decrease after 6 h. After intravenous and intradermal administration, IFN α was rapidly cleared from the serum, t1/2 0.75 h, k 0.9271 h−1 and t1/2 1.28 h, k 0.5421 h−1, respectively, whereas after topical application, IFN α levels remained below 100 U/mL. Topical application of BPV- IFN α resulted in sustained delivery of biologically active IFN α locally into skin with minimal systemic exposure.  相似文献   

13.
We describe, for the first time, quantification of in-skin swelling and fluid uptake by hydrogel-forming microneedle (MN) arrays and skin barrier recovery in human volunteers. Such MN arrays, prepared from aqueous blends of hydrolyzed poly(methylvinylether/maleic anhydride) (15%, w/w) and the cross-linker poly(ethyleneglycol) 10,000 Da (7.5%, w/w), were inserted into the skin of human volunteers (n = 15) to depths of approximately 300 μm by gentle hand pressure. The MN arrays swelled in skin, taking up skin interstitial fluid, such that their mass had increased by approximately 30% after 6 h in skin. Importantly, however, skin barrier function recovered within 24 h after MN removal, regardless of how long the MN had been in skin or how much their volume had increased with swelling. Further research on closure of MN-induced micropores is required because transepidermal water loss measurements suggested micropore closure, whereas optical coherence tomography indicated that MN-induced micropores had not closed over, even 24 h after MN had been removed. There were no complaints of skin reactions, adverse events, or strong views against MN use by any of the volunteers. Only some minor erythema was noted after patch removal, although this always resolved within 48 h, and no adverse events were present on follow-up. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.  相似文献   

14.
The present study deals with the development of transferosomal gel containing insulin by reverse phase evaporation method for painless insulin delivery for use in the treatment of insulin dependent diabetes mellitus. The effect of independent process variables like ratio of lipids (soya lecithin:cholesterol), ratio of lipids and surfactants, and ratio of surfactants (Tween 80:sodium deoxycholate) on the in vitro permeation flux (μg/cm2/h) of formulated transferosomal gels containing insulin through porcine ear skin was optimized using 23 factorial design. The optimal permeation flux was achieved as 13.50 ± 0.22 μg/cm2/h with drug entrapment efficiency of 56.55 ± 0.37% and average vesicle diameter range, 625–815 nm. The in vitro insulin permeation through porcine ear skin from these transferosomal gel followed zero-order kinetics (R2 = 0.9232–0.9989) over a period of 24 h with case-II transport mechanism. The in vitro skin permeation of insulin from optimized transferosomal gel by iontophoretic influence (with 0.5 mA/cm2 current supply) also provided further enhancement of permeation flux to 17.60 ± 0.03 μg/cm2/h. The in vivo study of optimized transferosomal gel in alloxan-induced diabetic rat has demonstrated prolonged hypoglycemic effect in diabetic rats over 24 h after transdermal administration.  相似文献   

15.
Insertion behaviour of microneedle (MN) arrays depends upon the mechanical properties of the skin and, MN geometry and distribution in an array. In addressing this issue, this paper studies MN array insertion mechanism into skin and provides a simple quantitative basis to relate the insertion force with distance between two MNs. The presented framework is based on drawing an analogy between a beam on an elastic foundation and mechanism of needle insertion, where insertion force is separated into different components.A theoretical analysis indicates that insertion force decreases as interspacing increases. For a specified skin type, insertion force decreased from 0.029 to 0.028 N/MN when interspacing at MN tip was increased from 50 μm (350 μm at MN base) to 150 μm (450 μm at MN base).However, dependence of insertion force seems to decrease as the interspacing is increased beyond 150 μm. To assess the validity of the proposed model, a series of experiments was carried out to determine the force required for skin insertion of MN. Experiments performed at insertion speed of 0.5 and 1.0 mm/s yielded insertion force values of 0.030 and 0.0216 N, respectively, for 30 μm interspacing at MN base (330 μm interspacing at tip) and 0.028 and 0.0214 N, respectively, for 600 μm interspacing at MN base (900 μm interspacing at tip). Results from theoretical analysis and finite element modelling agree well with experimental results, which show MN interspacing only begins to affect insertion force at low interspacing (< 150 μm interspacing at MN base). This model provides a framework for optimising MN devices, and should aid development of suitable application method and determination of force for reliable insertion into skin.  相似文献   

16.
Oral dosage forms and traditional transdermal patches are inadequate for complex clonidine therapy dosing schemes, because of the variable dose/flux requirement for the treatment of opioid withdrawal symptoms. The purpose of this study was to evaluate the in vitro transdermal flux changes of clonidine in response to alterations in carbon nanotube (CNT) delivery rates by applying various electrical bias. Additional skin diffusion studies were carried out to demonstrate the therapeutic feasibility of the system. This study demonstrated that application of a small electrical bias (-600 mV) to the CNT membrane on the skin resulted in a 4.7-fold increase in clonidine flux as compared with no bias (0 mV) application. The high and low clonidine flux values were very close to the desired variable flux of clonidine for the treatment of opioid withdrawal symptoms. Therapeutic feasibility studies demonstrated that CNT membrane served as the rate-limiting step to clonidine diffusion and lag and transition times were suitable for the clonidine therapy. Skin elimination studies revealed that clonidine depletion from the skin would not negatively affect clonidine therapy. Overall, this study showed that clonidine administration difficulties associated with the treatment of opiate withdrawal symptoms can be reduced with the programmable CNT membrane transdermal system. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1829-1838, 2014  相似文献   

17.
Liposoluble vitamin C derivatives, such as tetra-isopalmitoyl ascorbic acid (IPAA), are often used in dermocosmetic products due to their higher stability than vitamin C free form as well as its proposed effects in skin; however, there are no studies analyzing IPAA stability or its in vivo effects when present in dermocosmetic formulations. Thus, this study aimed to evaluate chemical stability and pre-clinical and clinical efficacy of dermocosmetic formulations containing IPAA in skin hydration and microrelief. Chemical stability of the formulations added with 1% IPAA was evaluated by heat stress during 35 days by HPLC. For pre-clinical evaluation, experimental formulations were topically applied on hairless skin mice during 5 days and animal skins were analyzed by non-invasive biophysic techniques (water content of stratum corneum, TEWL, viscoelasticity, and microrelief) and by histopathological studies. For clinical efficacy tests, the formulations were topically applied to the forearm and face of human volunteers, and 3 h and 15 days after applications, the skins were evaluated by the same non-invasive techniques mentioned before. Results showed that formulations containing IPAA had medium stability and had pronounced moisturizing effects on stratum corneum and on viable epidermis. These formulations also improved skin microrelief especially in relation to skin smoothness and roughness.  相似文献   

18.
Transdermal naloxone delivery could be a potential option for treating opioid-induced pruritus, but naloxone does not permeate skin well because of its hydrophilic nature. Microneedles (MNs) could overcome the skin barrier by painlessly creating microchannels in the skin to permit naloxone absorption to therapeutic levels. This study investigated how ionization correlates with naloxone permeation across MN-treated skin. Hydrogels containing 0.2, 0.5, or 1% naloxone were formulated with 1% cross-linked polyacrylic acid (polymer) and adjusted to pH 5, 6.5, or 7.4. Porcine skin was treated with MNs and naloxone gel, and in vitro permeation studies were performed using an in-line diffusion setup. Gel structural properties were evaluated using rheology. All gels had viscoelastic properties and good spreadability. Naloxone permeation through intact skin was highest from pH 7.4 gels when naloxone is unionized, in contrast with undetectable concentrations permeated from pH 5 gels with 100% ionization. Combining MN treatment with pH 5 gels significantly enhanced permeation and resulted in steady-state flux that would achieve therapeutic delivery. Absorption lag time was affected by MN length and naloxone gel concentration. Polymer concentration did not influence drug permeability. This study demonstrates that transdermal naloxone delivery with MNs is a viable treatment option for opioid-induced pruritus.  相似文献   

19.
We used semimicro autoradiographs (ARGs) to investigate how tritium-labeled betamethasone sodium phosphate (beta-Na-phos) permeates the skin and is delivered to deeper tissues when it was transdermally administered to the hind knee joints of rabbits with and without iontophoresis. In passive transdermal administration, ARGs revealed the presence of beta-Na-phos only in the epidermis immediately beneath the site of drug administration. In active administration using iontophoresis, on the other hand, the plasma concentrations of beta-Na-phos after 30- and 120-min iontophoretic administrations were 0.090 and 12 μg eq./mL, respectively. Furthermore, ARGs indicated that beta-Na-phos was non-uniformly distributed from the skin to tissues surrounding the joint capsule (pericapsular tissues). The procedure suggested that beta-Na-phos reached pericapsular tissues via the perimysium. These results indicated the marked effect of iontophoresis to enhance the skin permeation of beta-Na-phos and that at least 30-min iontophoretic administration allowed its delivery to pericapsular tissues.  相似文献   

20.
Bacterial cellulose (BC) is a highly pure form of cellulose, produced in the form of a swollen membrane by several bacteria that demonstrated to be able to modulate the skin release of model drugs. In the present study, the skin irritation potential of BC was evaluated in human subjects. BC membranes with and without glycerin (acting as plasticizer) were tested. No significant differences were observed for transepidermal water loss (TEWL) measurements in comparison with negative control, 2 and 24 h after patch removal, which is an indicator of an absence of barrier disruption. Similar results were found for erythema. Clinical scores were zero at both times for all volunteers, with the exception of five volunteers that exhibited weak reactions. BC with glycerin provided a skin moisturizing effect statistically higher than the negative control (p = 0.044), which was not observed for BC alone. The good skin tolerance found after a single application under occlusion reinforces the putative interest of BC membranes as supports for drug topical delivery. Besides modifying the mechanical properties, the inclusion of glycerin results in a skin moisturizing effect which could be clinically relevant for the treatment for skin diseases characterized by dryness, such as psoriasis and atopic dermatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号