共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang X Klein AL Alberle NS Norby FL Ren BH Duan J Ren J 《Journal of molecular and cellular cardiology》2003,35(6):645-652
Oxidative stress is intimately involved in alcoholic cardiomyopathy. Catalase is responsible for detoxification of hydrogen peroxide (H(2)O(2)) and may interfere with ethanol-induced cardiac toxicity. To test this hypothesis, a transgenic mouse line was produced to overexpress catalase (~50-fold) in the heart, ranging from sarcoplasm, the nucleus and peroxisomes within myocytes. Mechanical and intracellular Ca(2+) properties were evaluated in ventricular myocytes from catalase transgenic (CAT) and wild-type FVB mice. Protein abundance of sarco (endo) plasmic reticulum Ca(2+)-ATPase (SERCA), phospholamban (PLB), Na(+)/Ca(2+) exchanger (NCX), dihydropyridine Ca(2+) receptor (DHPR), ryanodine receptor (RyR), Akt and phosphorylated Akt (pAkt) were measured by western blot. CAT itself did not alter body and organ weights, as well as myocyte contractile properties. Acute exposure of ethanol elicited a concentration-dependent depression in cell shortening and intracellular Ca(2+) in FVB mice with maximal inhibitions of 65.4% and 35.8%, respectively. The ethanol-induced cardiac depression was significantly attenuated in myocytes from CAT with maximal inhibitions of 42.4% and 27.3%. CAT also abrogated the ethanol-induced inhibition of maximal velocity of shortening/relengthening, prolongation of relengthening duration and intracellular Ca(2+) clearing time. Cell shortening at different extracellular Ca(2+) revealed stronger myocyte-shortening amplitude under lower (0.5 mM) Ca(2+) in CAT mice. Protein expression of NCX, RyR, Akt and pAkt were elevated in myocytes from CAT mice, while those of SERCA, PLB and DHPR were not affected. In conclusion, our data suggest that catalase overexpression may protect cardiac myocytes from ethanol-induced contractile defect, partially through improved intracellular Ca(2+) handling and Akt signaling. 相似文献
2.
Wold LE Dutta K Mason MM Ren J Cala SE Schwanke ML Davidoff AJ 《Journal of molecular and cellular cardiology》2005,39(2):297-307
Ventricular dysfunction in type 2 diabetic patients is becoming apparent early after diagnosis of diabetes, but the cellular mechanisms contributing to this dysfunction are not well established. Our group has recently identified cardiomyocyte dysfunction in diet-induced insulin resistant rats that have not developed type 2 diabetes. The present investigation was designed to determine cellular mechanisms contributing to slowed cardiomyocyte relaxation in sucrose (SU)-fed rats. SU-feeding was used to induce whole-body insulin resistance. After 9-12 weeks on diet, isolated ventricular myocyte shortening/relengthening were slower in SU-fed adult male Wistar rats (42-63%) compared to starch (ST)-fed controls. Cytosolic Ca2+ removal attributable to Na+/Ca2+ exchange (NCX) and to sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) was evaluated with fluo-3/AM. Caffeine-releasable Ca2+ and cytosolic Ca2+ clearing through NCX were normal, whereas Ca2+ uptake by SERCA was significantly slower in SU myocytes (330+/-29 ms) compared to ST cells (253+/-16 ms). Protein levels for SERCA, NCX and phospholamban were not affected by SU-feeding. Manipulating intracellular Ca2+ with various positive inotropic interventions (e.g. post-rest potentiation, isoproterenol) and changes in stimulus frequency demonstrated that mechanical properties can be improved in subsets of myocytes. Thus, we conclude that impaired SERCA activity (with normal protein content) contributes to cardiomyocyte dysfunction in insulin resistant animals, whereas NCX function and expression are normal. These results suggest that subtle changes in Ca2+ regulation which occur prior to overt ventricular dysfunction/failure, may be common to early stages of a number of disorders involving insulin resistance (e.g. diabetes, obesity, syndrome X and hypertension). 相似文献
3.
The phosphorylation status of myofibrillar proteins influences the Ca2+ responsiveness of the myofilaments,but the contribution of and the interaction between the individual components is poorly
characterized. Therefore, in Langendorff perfused rat hearts (n=30), the phosphorylation levels of cardiac myosin binding
protein-C (cMyBP-C), troponin I and T (cTnI, cTnT) and myosin light chain 1 and 2 (MLC-1, MLC-2) were determined by 1- and
2-dimensional gel electrophoresis. Isometric force development, its Ca2+-sensitivity, the rate of tension redevelopment (ktr) and passive force (Fpas) were studied at optimal sarcomere length (2.2 μm) in mechanically isolated,permeabilized cardiomyocytes at 15 °C. Protein
phosphorylation was varied by: 1) blocking spontaneous cardiac activity by lidocaine (0.35 mM; Quiescence); 2) electrical
stimulation of the hearts at 5 Hz (Contraction) and 3. treatment of contracting hearts with Isoprenaline (1 μM). MLC-2 phosphorylation
was increased in the Contraction group almost 2-fold, relative to the Quiescence group, whereas cMyBP-C and cTnI phosphorylation
remained the same. Isoprenaline resulted in 3.7-fold increases in both cMyBP-C and cTnI phosphorylation, but did not result
in a further increase in MLC-2 phosphorylation.No significant differences were found in maximum force and ktr between groups, both before and after protein kinase A (PKA) treatment. Ca2+-sensitivity in the Contraction and Isoprenaline groups was significantly reduced in comparison to the Quiescence group. These
differences were largely abolished by PKA and Fpas was reduced. These results highlight the impact of PKA-dependent phosphorylation on Ca2+-sensitivity and provide evidence for an interaction between the effects of TnI and MLC-2 phosphorylation. 相似文献
4.
Hari S. Sharma Prof. Dr. Pieter D. Verdouw Jos M. J. Lamers 《Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy》1994,8(3):461-468
Summary Acute as well as chronic forms of heart failure involve mechanical dysfunction during systole and/or diastole. The rapid Ca2+ release from and Ca2+ reuptake into the tubuli of the sarcoplasmic reticulum are processes that critically determine normal systolic and diastolic myocardial function, which explains why in the last fifteen years so much attention has been paid to understand the performance of the sarcoplasmic reticulum Ca2+ pump during myocardial contractile dysfunction. In this communication we have reviewed the literature data on sarcoplasmic reticulum Ca2+ pump function in the chronically pressure-overloaded hypertrophied and stunned (post-ischemic reversibly injured) myocardium in the light of some new data from our laboratory. Results on the pressure-overloaded hypertrophied myocardium provide evidence that impaired relaxation is most likely due to a low capacity of the sarcoplasmic reticulum to pump Ca2+, a consequence of a lower density of Ca2+-pumping sites within the sarcotubular membranes. Contractile dysfunction in stunned myocardium is accompanied by an upregulation of the sarcoplasmic reticulum Ca2+ ATPase gene resulting in a slight increase of the Ca2+ pumping activity. The latter increase is likely an adaptive response of the reversibly injured myocardium which may contribute to the slow recovery of contractile function. 相似文献
5.
Hintz KK Relling DP Saari JT Borgerding AJ Duan J Ren BH Kato K Epstein PN Ren J 《Alcoholism, clinical and experimental research》2003,27(7):1090-1098
BACKGROUND: Alcoholic cardiomyopathy is manifested as ventricular dysfunction, although its specific toxic mechanism remains obscure. This study was designed to examine the impact of enhanced acetaldehyde exposure on cardiac function via cardiac-specific overexpression of alcohol dehydrogenase (ADH) after alcohol intake. METHODS: ADH transgenic and wild-type FVB mice were placed on a 4% alcohol or control diet for 8 weeks. Mechanical and intracellular Ca2+ properties were evaluated in cardiac myocytes. Levels of acetaldehyde, lipid peroxidation, and protein carbonyl formation were determined. RESULTS: FVB and ADH mice consuming ethanol exhibited elevated blood ethanol/acetaldehyde, cardiac acetaldehyde, and cardiac hypertrophy compared with non-ethanol-consuming mice. However, the levels of cardiac acetaldehyde and hypertrophy were significantly greater in ADH ethanol-fed mice than FVB ethanol-fed mice. ADH transgene itself did not affect mechanical and intracellular Ca2+ properties with the exception of reduced resting intracellular Ca2+ and Ca2+ re-sequestration at low pace frequency. Myocytes from ethanol-fed mice showed significantly depressed peak shortening, velocity of shortening/relengthening, rise of intracellular Ca2+ transients, and sarco(endo)plasmic reticulum Ca2+ load associated with similar duration of shortening/relengthening compared with myocytes from control mice. Strikingly, the ethanol-induced mechanical and intracellular Ca2+ defects were exacerbated in ADH myocytes compared with the FVB group except velocity of shortening/relengthening. The lipid peroxidation end products malondialdehyde and protein carbonyl formation were significantly elevated in both livers and hearts after chronic ethanol consumption, with the cardiac lipid and protein damage being exaggerated by ADH transgene. CONCLUSION: These data suggest that increased cardiac acetaldehyde exposure due to ADH transgene may play an important role in cardiac contractile dysfunctions associated with lipid and protein damage after alcohol intake. 相似文献
6.
7.
Lipid peroxidation, initiated by hydroxyl radicals, results in production of 4-Hydroxy-trans-2-nonenal (HNE) and leads to cardiac injury. However, impact of HNE on ventricular function has not been clearly defined. This study was to examine the direct effect of HNE on cardiac contractile function at cardiac myocyte level. Adult male rat ventricular myocytes were isolated and electrically stimulated to contract at 0.5 Hz. Mechanical and intracellular Ca2+ properties were evaluated using an Ionoptix Myocam system. Contractile properties analyzed included peak shortening (PS), time-PS, time-to-90% relengthening, maximal velocities of shortening and relengthening (+/-dL/dt), change of electrically stimulated intracellular Ca2+ fura-2 fluorescent intensity, and intracellular Ca2+ decay. Our results indicated that short-term incubation of HNE (10(-6) to 10(-4) M) with myocytes depressed PS, +/-dL/dt, and fura-2 fluorescent intensity; shortened time-PS; and elevated resting intracellular Ca2+ levels without affecting time-to-90% relengthening and intracellular Ca2+ decay. Interestingly, the HNE-induced cardiac mechanical effects (with the exception of shortened time-PS) were abolished by either the aldehyde dehydrogenase inhibitor cyanamide or the p38 mitogen-activated protein kinase inhibitor SB203580. These findings reveal a possible role of HNE in the lipid peroxidation-associated cardiac contractile dysfunction that is likely mediated through HNE metabolism and mitogen-activated protein kinase activation. 相似文献
8.
Maura Greiser Hans-Ruprecht Neuberger Erik Harks Peter Boknik Fons Verheyen Ursula Ravens Maurits A. Allessie Ulrich Schotten 《Journal of molecular and cellular cardiology》2009,46(3):385-2760
Atrial dilatation is an independent risk factor for thromboembolism in patients with and without atrial fibrillation (AF). In many patients, atrial dilatation goes along with depressed contractile function of the dilated atria. While some mechanisms causing atrial contractile dysfunction in fibrillating atria have been addressed previously, the cellular and molecular mechanisms of atrial contractile remodeling in dilated atria are unknown. This study characterized in vivo atrial contractile function in a goat model of atrial dilatation and compared it to a goat model of AF. Differences in the underlying mechanisms were elucidated by studying contractile function, electrophysiology and sarcoplasmic reticulum (SR) Ca2+ load in atrial muscle bundles and by analyzing expression and phosphorylation levels of key Ca2+-handling proteins, myofilaments and the expression and activity of their upstream regulators. In 7 chronically instrumented, awake goats atrial contractile dysfunction was monitored during 3 weeks of progressive atrial dilatation after AV-node ablation (AV block goats (AVB)). In open chest experiments atrial work index (AWI) and refractoriness were measured (10 goats with AVB, 5 goats with ten days of AF induced by repetitive atrial burst pacing (AF), 10 controls). Isometric force of contraction (FC), transmembrane action potentials (APs) and rapid cooling contractures (RCC, a measure of SR Ca2+ load) were studied in right atrial muscle bundles. Total and phosphorylated Ca2+-handling and myofilament protein levels were quantified by Western blot. In AVB goats, atrial size increased by 18% (from 26.6 ± 4.4 to 31.6 ± 5.5 mm, n = 7 p < 0.01) while atrial fractional shortening (AFS) decreased (from 18.4 ± 1.7 to 12.8 ± 4.0% at 400 ms, n = 7, p < 0.01). In open chest experiments, AWI was reduced in AVB and in AF goats compared to controls (at 400 ms: 8.4 ±0.9, n = 7, and 3.2 ± 1.8, n = 5, vs 18.9 ± 5.3 mm×mmHg, n = 7, respectively, p < 0.05 vs control). FC of isolated right atrial muscle bundles was reduced in AVB (n = 8) and in AF (n = 5) goats compared to controls (n = 9) (at 2 Hz: 2.3 ± 0.5 and 0.7 ± 0.2 vs 5.5 ± 1.0 mN/mm2, respectively, p < 0.05). APs were shorter in AF, but unchanged in AVB goats. RCCs were reduced in AVB and AF versus control (AVB, 3.4 ± 0.5 and AF, 4.1 ± 1.4 vs 12.2 ± 3.2 mN/mm2, p < 0.05). Protein levels of protein kinase A (PKA) phosphorylated phospholamban (PLB) were reduced in AVB (n = 8) and AF (n = 8) vs control (n = 7) by 37.9 ± 12.4% and 29.7 ± 10.1%, respectively (p < 0.01), whereas calmodulin-dependent protein kinase II (CaMKII) phosphorylated ryanodine channels (RyR2) were increased by 166 ± 55% in AVB (n = 8) and by 146 ± 56% in AF (n = 8) goats (p < 0.01). PKA-phosphorylated myosin-binding protein-C and troponin-I were reduced exclusively in AVB goat atria (by 75 ± 10% and 55 ± 15%, respectively, n = 8, p < 0.05). Atrial dilatation developing during slow ventricular rhythm after complete AV block as well as AF-induced remodeling are associated with atrial contractile dysfunction. Both AVB and AF goat atria show decreased SR Ca2+ load, likely caused by PLB dephosphorylation and RYR2 hyperphosphorylation. While shorter APs further compromise contractility in AF goat atria, reduced myofilament phosphorylation may impair contractility in AVB goat atria. Thus, atrial hypocontractility appears to have distinct molecular contributors in different types of atrial remodeling. 相似文献
9.
Summary We investigated the influence of myosin P-light chain phosphorylation by Ca2+-calmodulin dependent myosin light chain kinase (MLCK) on the sensitivity of the tension-pCa relation and maximum unloaded shortening velocity (v
max) of chemically skinned heart fibres of the pig.Submaximum Ca2+ stimulation (pCa 5.5) induced 20±5% of the isometric tension achieved at maximum Ca2+ activation (pCa 4.3).MLCK-induced myosin P-light chain phosphorylation increased the isometric force development at pCa 5.5 by 40% whereas maximum tension at pCa 4.3 was not affected.Unloaded shortening velocity (v
max) was not altered by myosin P-light chain phosphorylation either at maximum or at submaximum Ca2+ concentration, being c. 1.2 muscle length/s at pCa 5.5 and 2.2 muscle length/s at pCa 4.3.The MLCK-induced increase of the myosin P-light chain phosphorylation level was evaluated by determination of32P-incorporation. Two phosphorylatable myosin P-light chains could be demonstrated. 相似文献
10.
Demuro A Penna A Safrina O Yeromin AV Amcheslavsky A Cahalan MD Parker I 《Proceedings of the National Academy of Sciences of the United States of America》2011,108(43):17832-17837
We applied single-molecule photobleaching to investigate the stoichiometry of human Orai1 and Orai3 channels tagged with eGFP and expressed in mammalian cells. Orai1 was detected predominantly as dimers under resting conditions and as tetramers when coexpressed with C-STIM1 to activate Ca(2+) influx. Orai1 was also found to be tetrameric when coexpressed with STIM1 and evaluated following fixation. We show that fixation rapidly causes release of Ca(2+), redistribution of STIM1 to the plasma membrane, and STIM1/Orai1 puncta formation, and may cause the channel to be in the activated state. Consistent with this possibility, Orai1 was found predominantly as a dimer when coexpressed with STIM1 in living cells under resting conditions. We further show that Orai3, like Orai1, is dimeric under resting conditions and is predominantly tetrameric when activated by C-STIM1. Interestingly, a dimeric Orai3 stoichiometry was found both before and during application of 2-aminoethyldiphenyl borate (2-APB) to activate a nonselective cation conductance in its STIM1-independent mode. We conclude that the human Orai1 and Orai3 channels undergo a dimer-to-tetramer transition to form a Ca(2+)-selective pore during store-operated activation and that Orai3 forms a dimeric nonselective cation pore upon activation by 2-APB. 相似文献
11.
Young-Hwan Song Shin-Young Ryu Jin-Young Yoon Chung-Il Noh Won-Kyung Ho 《Journal of molecular and cellular cardiology》2010,48(4):773-1716
The Ca2+-dependent facilitation (CDF) of L-type Ca2+ channels, a major mechanism for force-frequency relationship of cardiac contraction, is mediated by Ca2+/CaM-dependent kinase II (CaMKII). Recently, CaMKII was shown to be activated by methionine oxidation. We investigated whether oxidation-dependent CaMKII activation is involved in the regulation of L-type Ca2+ currents (ICa,L) by H2O2 and whether Ca2+ is required in this process. Using patch clamp, ICa,L was measured in rat ventricular myocytes. H2O2 induced an increase in ICa,L amplitude and slowed inactivation of ICa,L. This oxidation-dependent facilitation (ODF) of ICa,L was abolished by a CaMKII blocker KN-93, but not by its inactive analog KN-92, indicating that CaMKII is involved in ODF. ODF was not affected by replacement of external Ca2+ with Ba2+ or presence of EGTA in the internal solutions. However, ODF was abolished by adding BAPTA to the internal solution or by depleting sarcoplasmic reticulum (SR) Ca2+ stores using caffeine and thapsigargin. Alkaline phosphatase, β-iminoadenosine 5′-triphosphate (AMP-PNP), an autophosphorylation inhibitor autocamtide-2-related inhibitory peptide (AIP), or a catalytic domain blocker (CaM-KIINtide) did not affect ODF. In conclusion, oxidation-dependent facilitation of L-type Ca2+ channels is mediated by oxidation-dependent CaMKII activation, in which local Ca2+ increases induced by SR Ca2+ release is required. 相似文献
12.
Effects of Magnesium and its Mechanism on the Incidence of Reperfusion Arrhythmias Following Severe Ischemia in Isolated Rat Hearts 总被引:1,自引:0,他引:1
Miyoshi K Taniguchi M Seki S Mochizuki S 《Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy》2000,14(6):625-633
Magnesium sulfate (Mg) has been widely used for the treatment of ventricular arrhythmias (VF) in patients with coronary artery disease. However, the mechanisms of prevention on the incidence of VF have not been defined. The aim of study was to investigate the role of Mg in the prevention of VF and the mechanism of those effects. Series 1 studied antiarrhythmic effects on VF. Isolated rat hearts were perfused in the working heart mode with Krebs'-Henseleit bicarbonate buffer (KHB). Whole heart ischemia was induced by a one-way ball valve with 300 beats/min electrical pacing for 10 minutes followed by 20 minutes of aerobic reperfusion. After control perfusion, Mg was added from 5 minutes before ischemia and was continued to the end of ischemia (1.2 mM for the control group and 2.4, 3.6, 4.8, and 9.6 mM for the study animals) or during reperfusion (3.6 mM). Left ventricular pressure, aortic flow, and ECG were monitored. Series 2 studied the effect of Mg on [Ca2+]i. Hearts were perfused by the Langendorff mode and were loaded with 4 M of Fura 2/AM as a [Ca2+]i indicator. Ca2+ was monitored using the ratio of Fura-2 fluorescence intensity at excitation wavelengths of 340 and 380 nm. The hearts were subjected to a 20 minutes of low-flow ischemia followed by 20 minutes of aerobic reperfusion. Then 3.6 mM Mg was added to the KHB medium during ischemia. The duration of VF was significantly suppressed in the 2.4, 3.6, and 4.8 mM/L Mg-added groups (472 ± 173, 779 ± 159, and 525 ± 202 second, respectively) when compared with the control group (1200 seconds). Magnesium sulfate suppressed the fluorescence ratio of the diastolic Ca2+ level at the end of 20 minutes of ischemia from 40.5 ± 3.6% to 9.0 ± 1.0% (P 0.05 vs. control hearts). These results suggested that Mg had a beneficial effect on VF and that the optimal Mg concentration was between 2.4 and 4.8 mM. The mechanism of the prevention of VF by Mg could be through the inhibition of [Ca2+]i retention during ischemia. 相似文献
13.
Ranu HK Terracciano CM Davia K Bernobich E Chaudhri B Robinson SE Bin Kang Z Hajjar RJ MacLeod KT Harding SE 《Journal of molecular and cellular cardiology》2002,34(4):389-400
The Na(+)/Ca(2+)-exchanger (NCX) is the main mechanism by which Ca(2+) is transported out of the ventricular myocyte. NCX levels are raised in failing human heart, and the consequences of this for excitation-contraction coupling are still debated. We have increased NCX levels in adult rabbit myocytes by adenovirally-mediated gene transfer and examined the effects on excitation-contraction coupling after 24 and 48 h. Infected myocytes were identified through expression of green fluorescent protein (GFP), transfected under a separate promoter on the same viral construct. Control experiments were done with both non-infected myocytes and those infected with adenovirus expressing GFP only. Contraction amplitude was markedly reduced in NCX-overexpressing myocytes at either time point, and neither increasing frequency nor raising extracellular Ca(2+) could reverse this depression. Resting membrane potential and action potential duration were largely unaffected by NCX overexpression, as was peak Ca(2+) entry via the L-type Ca(2+) channel. Systolic and diastolic Ca(2+) levels were significantly reduced, with peak systolic Ca(2+) in NCX-overexpressing myocytes lower than diastolic levels in control cells at 2 m m extracellular Ca(2+). Both cell relengthening and the decay of the Ca(2+) transient were significantly slowed. Sarcoplasmic reticulum (SR) Ca(2+) stores were completely depleted in a majority of myocytes, and remained so despite increasingly vigorous loading protocols. Depressed contractility following NCX overexpression is therefore related to decreased SR Ca(2+) stores and low diastolic Ca(2+) levels rather than reduced Ca(2+) entry. 相似文献
14.
Moderate heart dysfunction in mice with inducible cardiomyocyte-specific excision of the Serca2 gene
Kristin Brevik Andersson Jon Arne Kro Birkeland Alexandra Vanessa Finsen William E. Louch Ivar Sjaastad Yibin Wang Jeffery D. Molkentin Ole M. Sejersted Geir Christensen 《Journal of molecular and cellular cardiology》2009,47(2):180-187
The sarco(endo)plasmic reticulum calcium ATPase 2 (SERCA2) transports Ca2+ from cytosol into the sarcoplasmic reticulum (SR) of cardiomyocytes, thereby maintaining the store of releasable Ca2+ necessary for contraction. Reduced SERCA function has been linked to heart failure, and loss of SERCA2 in the adult mammalian heart would be expected to cause immediate severe myocardial contractile dysfunction and death. We investigated heart function in adult mice with an inducible cardiomyocyte-specific excision of the Atp2a2 (Serca2) gene (SERCA2 KO). Seven weeks after induction of Serca2 gene excision, the mice displayed a substantial reduction in diastolic function with a 5-fold increase in the time constant of isovolumetric pressure decay (tau). However, already at 4 weeks following gene excision less than 5% SERCA2 protein was found in myocardial tissue. Surprisingly, heart function was only moderately impaired at this time point. Tissue Doppler imaging showed slightly reduced peak systolic tissue velocity and a less than 2-fold increase in tau was observed. The SR Ca2+ content was dramatically reduced in cardiomyocytes from 4-week SERCA2 KO mice, and Ca2+ transients were predominantly generated by enhanced Ca2+ flux through L-type Ca2+ channels and the Na+-Ca2+ exchanger. Moreover, equivalent increases in cytosolic [Ca2+] in control and SERCA2 KO myocytes induced greater cell shortening in SERCA2 KO, suggesting enhanced myofilament responsiveness. Our data demonstrate that SR-independent Ca2+ transport mechanisms temporarily can prevent major cardiac dysfunction despite a major reduction of SERCA2 in cardiomyocytes. 相似文献
15.
Krapivinsky G Krapivinsky L Stotz SC Manasian Y Clapham DE 《Proceedings of the National Academy of Sciences of the United States of America》2011,108(48):19234-19239
Specialized proteins in the plasma membrane, endoplasmic reticulum (ER), and mitochondria tightly regulate intracellular calcium. A unique mechanism called store-operated calcium entry is activated when ER calcium is depleted, serving to restore intra-ER calcium levels. An ER calcium sensor, stromal interaction molecule 1 (STIM1), translocates within the ER membrane upon store depletion to the juxtaplasma membrane domain, where it interacts with intracellular domains of a highly calcium-selective plasma membrane ion channel, Orai1. STIM1 gates Orai1, allowing calcium to enter the cytoplasm, where it repletes the ER store via calcium-ATPases pumps. Here, we performed affinity purification of Orai1 from Jurkat cells to identify partner of STIM1 (POST), a 10-transmembrane-spanning segment protein of unknown function. The protein is located in the plasma membrane and ER. POST-Orai1 binding is store depletion-independent. On store depletion, the protein binds STIM1 and moves within the ER to localize near the cell membrane. This protein, TMEM20 (POST), does not affect store-operated calcium entry but does reduce plasma membrane Ca(2+) pump activity. Store depletion promotes STIM1-POST complex binding to smooth ER and plasma membrane Ca(2+) ATPases (SERCAs and PMCAs, respectively), Na/K-ATPase, as well as to the nuclear transporters, importins-β and exportins. 相似文献
16.
Ang Guo Xiaoying Zhang Venkat Ramesh Iyer Biyi Chen Caimei Zhang William J. Kutschke Robert M. Weiss Clara Franzini-Armstrong Long-Sheng Song 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(33):12240-12245
Heart failure is accompanied by a loss of the orderly disposition of transverse (T)-tubules and a decrease of their associations with the junctional sarcoplasmic reticulum (jSR). Junctophilin-2 (JP2) is a structural protein responsible for jSR/T-tubule docking. Animal models of cardiac stresses demonstrate that down-regulation of JP2 contributes to T-tubule disorganization, loss of excitation-contraction coupling, and heart failure development. Our objective was to determine whether JP2 overexpression attenuates stress-induced T-tubule disorganization and protects against heart failure progression. We therefore generated transgenic mice with cardiac-specific JP2 overexpression (JP2-OE). Baseline cardiac function and Ca2+ handling properties were similar between JP2-OE and control mice. However, JP2-OE mice displayed a significant increase in the junctional coupling area between T-tubules and the SR and an elevated expression of the Na+/Ca2+ exchanger, although other excitation-contraction coupling protein levels were not significantly changed. Despite similar cardiac function at baseline, overexpression of JP2 provided significantly protective benefits after pressure overload. This was accompanied by a decreased percentage of surviving mice that developed heart failure, as well as preservation of T-tubule network integrity in both the left and right ventricles. Taken together, these data suggest that strategies to maintain JP2 levels can prevent the progression from hypertrophy to heart failure.In working ventricular myocytes, normal excitation-contraction (E-C) coupling requires precise communication between voltage-gated L-type Ca2+ channels (Cav1.2) located in clusters within transverse (T)-tubules and, less frequently, on the plasmalemma, and Ca2+ release channels/ryanodine receptor channels (RyRs) that are also clustered on the junctional sarcoplasmic reticulum (jSR) membrane (1–4). In normal hearts, flat jSR cisternae containing a continuous row of polymerized calsequestrin (CsQ2) either wrap around a T-tubule segment or abut against the plasmalemma (5, 6) and are coupled to the surface membranes via apposed clusters of RyR2 and Cav1.2 (7). These junctional sites are called dyads. However, although the jSR cisternae constitute a single continuous compartment, the clusters of RyR2 do not occupy the whole jSR surface but are in smaller groups (8, 9). Hence, each dyad is composed of several smaller RyR2/Cav1.2 complexes, also called couplons. Functional interaction between Cav1.2 and RyR2 at these sites ensure synchronous SR Ca2+ release and coordinated contraction (1, 10, 11). There is evidence that impaired cardiac E-C coupling/Ca2+ handling is a key mediator of heart failure (12, 13). One underlying mechanism for the defective Ca2+ release is the progressive loss of T-tubule network organization and of the relationship between RyR2 and Cav1.2 (14–16). Therefore, preventing loss of jSR/T-tubule junctions and of T-tubule organization may represent a new strategy for therapeutic intervention in heart failure.In normal cardiomyocytes, the formation of dyads requires junctophilin 2 (JP2), a structural protein that provides a physical connection between the T-tubule and SR membranes (17). JP2’s eight N-terminal “membrane occupation and recognition nexus” domains bind to the plasmalemma (T-tubules), and its C-terminal transmembrane domain tethers the opposite end to the SR membrane (17). Decreased JP2 levels have been observed in human heart failure patients and in failing hearts from animal models of cardiac disease (16, 18–22). Knockdown of JP2 results in acute heart failure that is associated with the loss of junctional membrane complex, disrupted T-tubule organization, and Ca2+ handling dysfunction (23). In addition, embryonic myocytes with JP2 deficiency have defective cardiac dyads, including more SR segments with no T-tubule couplings as well as reduced intracellular Ca2+ transients (17). These data collectively suggest that loss of JP2 contributes to the functional defects in heart failure. Therefore, interesting questions are: Is the JP2 deficiency effect linked to the resultant disruption of jSR/T-tubule junctions and of T-tubule network integrity, as suggested by previous findings (16–18, 23)? Conversely, could exogenous overexpression of JP2 in cardiomyocytes improve Ca2+ handling and protect against the development of heart failure?To answer this question, we generated transgenic mice with cardiac-specific overexpression of JP2. Moderate overexpression of JP2 led to a significant increase in the junctional coupling area between T-tubule and SR membrane, but surprisingly, it did not enhance cardiac function or increase SR Ca2+ release at baseline. However, interestingly, JP2-overexpressing mice were resistant to left ventricular pressure overload-induced heart failure, demonstrating that JP2 overexpression is protective. These data suggest that preventing the loss of JP2 could be a potential therapeutic strategy for heart failure treatment. 相似文献
17.
Atsushi Yao Zhi Su Wolfgang H. Dillmann William H. Barry 《Journal of molecular and cellular cardiology》1998,30(12):2711-2718
To examine the effects of the overexpression of sarcoplasmic reticulum (SR) CaATPase on function of the SR and Ca2+homeostasis, we measured [Ca2+]itransients (fluo-3), and L-type Ca2+currents (ICa,L), Na/Ca exchanger currents (INa/Ca), and SR Ca2+content with voltage clamp in ventricular myocytes isolated from wild type (WT) mice and transgenic (SRTG) mice. The amplitude of [Ca2+]itransients was insignificantly increased in SRTG myocytes, while the diastolic [Ca2+]itended to be lower. The initial and terminal declines of [Ca2+]itransients were significantly accelerated in SRTG myocytes, implying a functional upregulation of the SR CaATPase. We examined the functional contribution of only the SR CaATPase to the initial and the terminal phase of the decline of [Ca2+]i, by abruptly inhibiting Na/Ca exchange with a rapid switcher device. The rate of [Ca2+] decline mediated by the SR CaATPase was increased by 40% in SRTG compared with WT myocytes. The function of the L-type Ca2+channel was unchanged in SRTG myocytes, while INa/Ca density was slightly (10%) decreased. Measured SR Ca2+content was significantly increased by 29% in SRTG myocytes. Thus, overexpression of SR CaATPase markedly accelerates the decline of [Ca2+]itransients, and induces an increase in SR Ca2+content, with some downregulation of the Na/Ca exchanger. 相似文献
18.
19.
A. Lochner A. Pentz K. Williams E. Tromp I. S. Harper 《Basic research in cardiology》1996,91(1):64-78
Objectives Based on the hypothesis that provision of glucose is good and fatty acids are bad for the ischaemic myocardium, the aims of this study were to determine i) the effects of different substrates on sarcolemmal permeability during normoxia, low-flow hypoxia (HLF) and reperfusion, ii) whether increased membrane permeability is associated with ultrastructural damage and increased influx of Ca2+ into cells and iii) whether changes in membrane permeability correlate with myocardial function and high energy phosphate metabolism.Methods The isolated rat heart subjected to HLF was used as model of global ischaemia, and sarcolemmal permeability assessed by release of LDH from and influx of lanthanum and Ca2+ into myocardial tissue. Myocyte structural injury was also evaluated quantitatively, and mechanical activity was monitored throughout the experimental protocol. Results: Regardless of the substrate used, HLF caused a 80–90% and 20–40 % reduction in myocardial oxygen uptake and coronary flow rate, respectively. Palmitate (0.5 mM conjugated to 0.1 mM albumin) or substrate-free perfusion caused ultrastructural damage and loss of normal sarcolemmal integrity during both normoxia and HLF. Although reperfusion reversed injury in some cells, in general, myocytes exhibited myofibrillar contracture, while membrane, integrity recovered to some extent, as indicated by reduced lanthanum influx. Intracellular Ca2+ increased significantly upon reperfusion. Mechanical function as well as tissue high energy phosphates were significantly depressed during both HLF and reperfusion. Glucose, on the other hand, protected against ischaemia-induced structural damage and loss of sarcolemmal integrity. Reperfusion in these experiments resulted in almost complete recovery of normal morphology, ultrastructure and sarcolemmal integrity, while intracellular Ca2+ remained unchanged. Mechanical function and tissue high energy phosphates were significantly higher in glucose-perfused hearts than in palmitate-perfused or substrate-free hearts. Glucose was also able to attenuate the harmful effects of palmitate on myocardial ultrastructure, membrane integrity, mechanical function, energy metabolism and prevented Ca2+ overloading during reperfusion.Conclusion The results provide new evidence for the protective role of glucose during myocardial ischaemia and reperfusion. Although the exact mechanism of the beneficial actions of glucose remains to be established, the results suggest that glycolytic flux and thus glycolytically derived ATP protect against ischaemic damage via preservation of membrane integrity. 相似文献