首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 30 autosomal-dominant genetic and neurodegenerative disorders. SCAs are generally characterized by progressive ataxia and cerebellar atrophy. Although all SCA patients present with the phenotypic overlap of cerebellar atrophy and ataxia, 17 different gene loci have so far been implicated as culprits in these SCAs. It is not currently understood how mutations in these 17 proteins lead to the cerebellar atrophy and ataxia. Several pathogenic mechanisms have been studied in SCAs but there is yet to be a promising target for successful treatment of SCAs. Emerging research suggests that a fundamental cellular signaling pathway is disrupted by a majority of these mutated genes, which could explain the characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. We propose that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells either as a result of an excitotoxic increase or a compensatory suppression of calcium signaling. We argue that disruptions in Purkinje cell calcium signaling lead to initial cerebellar dysfunction and ataxic sympoms and eventually proceed to Purkinje cell death. Here, we discuss a calcium hypothesis of Purkinje cell neurodegeneration in SCAs by primarily focusing on an example of spinocerebellar ataxia 2 (SCA2). We will also present evidence linking deranged calcium signaling to the pathogenesis of other SCAs (SCA1, 3, 5, 6, 14, 15/16) that lead to significant Purkinje cell dysfunction and loss in patients.  相似文献   

3.
To date, nearly 30 distinct genetic forms of dominantly inherited ataxia are known to exist. Of these, Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is perhaps the most common in many regions of the world including the United States. This article discusses MJD/SCA3 as a paradigm example of the dominant ataxias, which are collectively known as the spinocerebellar ataxias. Using MJD/SCA3 as a starting point, the article reviews common clinical and genetic features of the SCAs and highlights new insights into molecular mechanisms, especially of the SCAs caused by polyglutamine expansion. Also discussed are current and future therapeutic opportunities for MJD/SCA3 in particular, many of which have relevance to other SCAs.  相似文献   

4.
Autosomal dominant spinocerebellar ataxias (SCAs) are slowly progressive and have a variable clinical presentation. Overlapping clinical features among the SCAs make the clinical diagnosis of these ataxias difficult. Even when genetic testing identifies an SCA mutation, clinicians should be vigilant for other causes of neurological dysfunction in these patients. We report two patients who developed other causes of ataxia in the setting of SCA-3 and SCA-8 mutations, respectively.  相似文献   

5.
The spinocerebellar ataxias (SCAs) are a clinically, genetically, and neuropathologically heterogeneous group of neurological disorders defined by variable degrees of cerebellar ataxia often accompanied by additional cerebellar and non-cerebellar symptoms that, in many cases, defy differentiation based on clinical characterisation alone. The clinical symptoms are triggered by neurodegeneration of the cerebellum and its relay connexions. The current identification of at least 43 SCA subtypes and the causative molecular defects in 27 of them refine the clinical diagnosis, provide molecular testing of at risk, a/pre-symptomatic, prenatal or pre-implantation and facilitate genetic counselling. The recent discovery of new causative SCA genes along with the respective scientific advances is uncovering high complexity and altered molecular pathways involved in the mechanisms by which the mutant gene products cause pathogenesis. Fortunately, the intensive ongoing clinical and neurogenetic research together with the applied molecular approaches is sure to yield scientific advances that will be translated into developing effective treatments for the spinocerebellar ataxias and other similar neurological conditions.  相似文献   

6.
Six of the spinocerebellar ataxias (SCAs) are caused by expanded CAG trinucleotide repeats encoding polyglutamine tracts in different genes. Together with three other neurodegenerative diseases they represent the polyglutamine repeat disorders. These disorders share many pathological features beyond a common genetic mechanism. They are the subject of considerable research efforts to elucidate their basic pathophysiologies, with the hope of using this knowledge to develop disease modifying treatments. Here we examine the biology that underpins possible therapeutic strategies for the SCAs caused by CAG repeats and review supportive data from cell and animal models. Therapeutic strategies include silencing gene expression, increasing protein clearance, reducing the toxicity of the protein, influencing downstream pathways activated by the mutant protein and transplantation. We also consider strategies which have been tested in other polyglutamine diseases that may generalize to these SCAs. Finally, we review clinical trials and consider the problems of translating the increasing amount of promising laboratory data into human trials.  相似文献   

7.
8.
Among the hereditary ataxias, autosomal recessive spinocerebellar ataxias comprise a diverse group of neurodegenerative disorders. Clinical phenotypes vary from predominantly cerebellar syndromes to sensorimotor neuropathy, ophthalmological disturbances, involuntary movements, seizures, cognitive dysfunction, skeletal anomalies, and cutaneous disorders, among others. Molecular pathogenesis also ranges from disorders of mitochondrial or cellular metabolism to impairments of DNA repair or RNA processing functions. Diagnosis can be improved by a systematic approach to the categorisation of these disorders, which is used to direct further, more specific, biochemical and genetic investigations. In this Review, we discuss the clinical characteristics and molecular genetics of the more common autosomal recessive ataxias and provide a framework for assessment and differential diagnosis of patients with these disorders.  相似文献   

9.
10.
The autosomal dominant cerebellar ataxias (ADCAs) are a heterogeneous group of neurodegenerative disorders characterised by progressive cerebellar dysfunction in combination with various associated features. Since 1993, ADCAs have been increasingly characterised in terms of their genetic mutation and are currently referred to as spinocerebellar ataxias (SCAs). The discovery of genetic abnormalities offers the opportunity to study the possible interaction between the identified gene mutation and cognitive function. In this study, we focus on the neuropsychological abnormalities in a Dutch ADCA family, in which a new locus was recently identified (SCA-19). The family members showed frontal-executive dysfunction, with global cognitive impairment occurring in some of the more severely affected patients. Interestingly, the neuropsychological profile of this new family seems to overlap that of individuals with various other SCAs. Apparently, similar pattern of neuronal degeneration in various SCA subtypes accounts for the neuropsychological dysfunction, which is thus not genotype specific.  相似文献   

11.
The past 25 years have seen enormous progress in the deciphering of the genetic and molecular basis of ataxias, resulting in improved understanding of their pathogenesis. The most significant milestones during this period were the cloning of the genes associated with the common spinocerebellar ataxias, ataxia telangiectasia, and Friedreich ataxia. To date, the causative mutations of more than 30 spinocerebellar ataxias and 20 recessive ataxias have been identified. In addition, there are numerous acquired ataxias with defined molecular causes, so that the entire number of distinct ataxia disorders exceeds 50 and possibly approaches 100. Despite this enormous heterogeneity, a few recurrent pathophysiological themes stand out. These include protein aggregation, failure of protein homeostasis, perturbations in ion channel function, defects in DNA repair, and mitochondrial dysfunction. The clinical phenotypes of the most common ataxia disorders have been firmly established, and their natural history is being studied in ongoing large observational trials. Effective therapies for ataxias are still lacking. However, novel drug targets are under investigation, and it is expected that there will be an increasing number of therapeutic trials in ataxia. © 2011 Movement Disorder Society  相似文献   

12.
The spinocerebellar ataxias: Order emerges from chaos   总被引:5,自引:0,他引:5  
In the past decade, the genetic etiologies accounting for most cases of adult-onset dominant cerebellar ataxia have been discovered. This group of disorders, generally referred to as the spinocerebellar ataxias (SCAs), can now be classified by a simple genetic nosology, essentially a sequential list in which each new SCA is given a number. However, recent advances in the elucidation of SCA pathogenesis provide the opportunity to subclassify the disorders into three discrete groups based on pathogenesis: 1) the polyglutamine disorders, SCAs 1, 2, 3, 7, and 17, which result from proteins with toxic stretches of polyglutamine; 2) the channelopathies, SCA6 and episodic ataxia types 1 and 2 (EA1 and EA2), which result from disruption of calcium or potassium channel function; and 3) the gene expression disorders, SCAs 8, 10, and 12, which result from repeat expansions outside of coding regions that may quantitatively alter gene expression. SCAs 4, 5, 9, 11, 13-16, 19, 21, and 22 are of unknown etiology, and may or may not fit into one of these three groups. At present, most diagnostic and therapeutic strategies apply equally to all of the SCAs. Therapy specific for individual diseases or types of diseases is a realistic goal in the foreseeable future.  相似文献   

13.
Spinocerebellar ataxias: an update   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: Here we discuss recent advances regarding the molecular genetic basis of dominantly inherited ataxias. RECENT FINDINGS: Important recent observations include insights into the mechanisms by which expanded polyglutamine causes cerebellar degeneration; new findings regarding how noncoding expansions may cause disease; the discovery that conventional (i.e. nonrepeat) mutations underlie recently identified ataxias; and growing recognition that multiple biological pathways, when perturbed, can cause cerebellar degeneration. SUMMARY: The dominant ataxias, also known as spinocerebellar ataxias, continue to grow in number. Here we review the major categories of spinocerebellar ataxias: expanded polyglutamine ataxias; noncoding repeat ataxias; and ataxias caused by conventional mutations. After discussing features shared by these disorders, we present recent evidence supporting a toxic protein mechanism for the polyglutamine spinocerebellar ataxias and the recognition that both protein misfolding and perturbations in nuclear events represent key events in pathogenesis. Less is known about pathogenic mechanisms in spinocerebellar ataxias due to noncoding repeats, though a toxic RNA effect remains possible. Newly discovered, conventional mutations in spinocerebellar ataxias suggest a wide range of biological pathways can be disrupted to cause progressive ataxia. Finally, we discuss how new mechanistic insights can drive the push toward preventive treatment.  相似文献   

14.
Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine–adenine–guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society  相似文献   

15.
Autosomal dominant cerebellar ataxias, frequently referred to as spinocerebellar ataxias (SCAs) have been under intense scientific research limelight since expansions of coded CAG trinucleotide repeats were demonstrated to cause several dominantly inherited SCAs. The number of new SCA loci has expanded dramatically in recent years. At least ten genes have been identified for SCAs 1, 2, 3, 6, 7, 8, 10, 12, 17, dentatorubral-pallidoluysian atrophy (DRPLA), and six loci responsible for SCAs 4, 5, 11,13, 14, and 16 have been mapped. Genetic testing is essential for diagnosis due to the overlapping and varied phenotypic features of the different SCAs. While there is no effective treatment available, genetic counseling is important for addressing the many ethical, social, legal, and psychological issues facing SCA patients. Researchers have recently provided valuable information on the pathogenesis of the disease and hopefully a cure will be available in the near future.  相似文献   

16.
The Cerebellum - Urinary dysfunctions are not considered symptoms of spinocerebellar ataxias (SCAs). However, given that a patient with SCAs without a family history might be misdiagnosed as MSA-C...  相似文献   

17.
While the onset of a dominantly inherited ataxia is typically taken to be the onset of gait ataxia, a wide range of other symptoms related to central and/or peripheral nervous system impairment, or even to non-neurological involvement, can be the presenting feature. Knowledge of these is fairly robust for the commonest spinocerebellar ataxias (SCAs 1, 2, 3 and 6) and for those where a striking non-ataxic presentation is the norm (SCAs 7 and 12), but the literature is potentially misleading in the rarer dominant ataxias. This review summarises what is currently known of these non-ataxic presentations and outlines and explains the difficulties associated with determining non-ataxic presentations of dominant ataxias. The relevant literature was surveyed, including systematic reviews (where available) and case reports. Non-ataxic presentations of dominant ataxias are classified by symptom.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号