首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
Renal‐coloboma syndrome includes abnormalities in the urogenital and ocular systems as its primary manifestations, although it can be associated with abnormalities in other systems as well. This syndrome is caused by mutations in the PAX2 gene and is transmitted as an autosomal dominant trait. We report a family in which at least 7 members have manifestations of renal‐coloboma syndrome, including two in whom renal disease was diagnosed prenatally by ultrasound examination. A pathogenic frame‐shift mutation (619insG) was found in the PAX2 gene in affected family members, who show remarkable variability in both the ocular and renal manifestations of the syndrome. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
Renal coloboma syndrome (RCS), also called papillorenal syndrome, is an autosomal dominant condition characterized by optic nerve dysplasia and renal hypodysplasia. The eye anomalies consist of a wide and sometimes excavated dysplastic optic disc with the emergence of the retinal vessels from the periphery of the disc, frequently called optic nerve coloboma or morning glory anomaly. Associated findings may include a small corneal diameter, retinal coloboma, scleral staphyloma, optic nerve cyst and pigmentary macular dysplasia. The kidney abnormalities consist of small and abnormally formed kidneys known as renal hypodysplasia. Histologically, kidneys exhibit fewer than the normal number of glomeruli and these glomeruli are enlarged, a finding called oligomeganephronia. Consequences of the ocular malformations include decreased visual acuity and retinal detachment. Consequences of the renal hypodysplasia include hypertension, proteinuria and renal insufficiency that frequently progresses to end-stage kidney disease. High frequency hearing loss has been reported. Autosomal dominant mutations in PAX2 can be identified in nearly half of all patients with clinical findings suggestive of RCS, however, the majority of published cases have mutations in PAX2, thus biasing the known information about the phenotype.  相似文献   

3.
The CHARGE syndrome comprises ocular coloboma, heart malformation, choanal atresia, retarded growth and development, central nervous system malformations, genital hypoplasia, ear abnormalities, or deafness. The cause of the CHARGE syndrome remains unknown. In the present study, we analyzed the distribution pattern of the PAX2 gene in human embryos and found that PAX2 gene expression occurs in the primordia affected in the CHARGE syndrome. These data prompted us to consider the PAX2 gene a candidate gene in the CHARGE "association." We analyzed the PAX2 gene in 34 patients fulfilling the diagnostic criteria of the CHARGE syndrome for deletion and nucleotidic variations of the coding sequence and identified only polymorphisms. Our data suggest that mutation of the PAX2 gene is not a cause of the CHARGE association. However, the pattern of expression of PAX2 suggests that genes encoding downstream targets effectors could be candidate genes for the CHARGE syndrome.  相似文献   

4.
Renal coloboma syndrome (RCS) is considered to be a rare autosomal dominant inherited disorder characterized by renal malformations and optic disc coloboma. Ocular anomalies range from asymptomatic abnormalities in retinal blood vessel patterning to large excavations of the optic nerve associated with reduced visual acuity. Commonly observed manifestations of the kidney are renal hypoplasia and vesicoureteric reflux leading to end-stage renal disease. Mutations in the PAX2 gene on chromosome 10 have been identified in patients with RCS. Up to date, nucleotide substitutions, insertions, small deletions, one de novo translocation, and one 240 kb deletion of the coding region of the PAX2 gene have been described to be responsible for RCS.We report here a new case of a patient with RCS due to a deletion of 3.8 Mb on chromosome 10q. Deletions on the long arm of chromosome 10 harboring the PAX2 gene seem to be a rare cause for RCS. Nevertheless, array-CGH testing should represent an important and valuable addition to PAX2 gene sequencing in diagnostic of RCS.  相似文献   

5.
Ocular (uveoretinal) colobomas occur in one in 10,000 individuals and present a substantive cause of congenital poor vision. The genetic bases of most forms of uveoretinal coloboma are elusive; mutations in PAX2 are found in only a few cases of coloboma of the retina and optic nerve that occur with renal anomalies as part of the renal-coloboma syndrome (MIM#120330; #167409). From experimental data that upstream expression of sonic hedgehog (SHH) controls Pax2 expression in mice and zebrafish, and from clinical experience that colobomas are observed frequently in patients with holoprosencephaly, we hypothesized that SHH could be a candidate for non-syndromic ocular colobomas (NSOC). We identified a three-generation family in which both a proband and his mother presented with iris and uveoretinal colobomas without optic nerve involvement. A novel 24 bp deletion in the gene SHH was identified in these affected family members, and cosegregated with the phenotype. This is the first report of the association of SHH mutations and uveoretinal coloboma.  相似文献   

6.
Optic nerve coloboma combined with renal disease, also called renal-coloboma syndrome ( # 120330 in McKusick's Mendelian Inheritance in Man Online, OMIM), a relatively recently characterized syndrome, results from autosomal dominant mutations in the PAX2 gene. Although renal-coloboma syndrome involves both ocular and renal anomalies, some patients are affected with vesico-ureteral reflux (VUR), high frequency hearing loss, central nervous system (CNS) anomalies, and/or genital anomalies, consistent with the expression of PAX2 in these tissues during development. We review here the clinical features of patients with renal-coloboma syndrome and PAX2 mutation. We also review the PAX2 mutations that have been reported to date, and discuss the possible effect of PAX2 mutations on normal development.  相似文献   

7.
8.
9.
《Genetics in medicine》2011,13(5):437-442
PurposeThe goal of our study was to determine whether genomic copy number abnormalities (deletions and duplications) affecting genes involved in eye development contributed to the etiology of anophthalmia, microphthalmia, and coloboma.MethodsThe affected individuals were evaluated for the presence of deletions and duplications in genomic DNA by a very high-resolution array comparative genomic hybridization.ResultsArray analysis of 32 patients detected one case with a deletion encompassing the renal-coloboma syndrome associated gene PAX2. Nonpolymorphic copy number changes were also observed at several candidate chromosomal regions, including 6p12.3, 8q23.1q23.2, 13q31.3, 15q11.2q13.1, 16p13.13, and 20q13.13.ConclusionThis study identified the first patient with the typical phenotype of the renal-coloboma syndrome caused by a submicroscopic deletion of the coding region of the PAX2 gene. The finding suggests that PAX2 deletion testing should be performed in addition to gene sequencing as a part of molecular evaluation for the renal-coloboma syndrome. Array comparative genomic hybridization testing of 32 affected individuals showed that genomic deletions and duplications are not a common cause of nonsyndromic anophthalmia, microphthalmia, or coloboma but undoubtedly contribute to the etiology of these eye anomalies. Therefore, array comparative genomic hybridization testing represents an important and valuable addition to candidate gene sequencing in research and diagnostics of ocular birth defects.  相似文献   

10.
A triad of acral, renal, and ocular abnormalities was reported previously in four families. We report on a fifth family, in which a mother, one of her four sons and one of her two daughters are affected. Major findings in the acro-renal-ocular syndrome are upper limb abnormalities, mainly thumb hypoplasia, eye abnormalities such as coloboma and Duane anomaly and renal migration defects. A close embryological-temporal relationship between the traits of this entity suggest a common monogenic cause. The pattern of inheritance is probably autosomal dominant. Because of a wide variability of clinical manifestations, recognition of the syndrome in individual cases may be difficult. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Heterozygous humans for PAX2 mutations show autosomal dominant papillorenal syndrome (PRS), consisting of ocular colobomas, renal hypo/dysplasia and progressive renal failure in childhood. PAX2 mutations have also been identified in patients with isolated renal hypo/dysplasia. Twenty unrelated children and young adults with kidney and urinary tract malformations and no ocular abnormalities were retrospectively recruited for PAX2 mutational analysis. All patients had undergone renal transplantation after end-stage renal disease. We identified two new sequence variations: (i) a deletion causing a frameshift (c.69delC) and (ii) a nucleotide substitution determining a splice site mutation (c.410+5 G/A) by predictive analysis. Therefore, we suggest PAX2 molecular analysis to be extended to all patients with congenital malformations of kidney and urinary tract (CAKUT).  相似文献   

12.
Otofaciocervical syndrome (OTFCS) is described as a single gene disorder of both autosomal dominant and autosomal recessive inheritance. The major clinical features of OTFCS include ear malformations (external/middle/inner ear), facial dysmorphism, shoulder girdle abnormalities, vertebral anomalies, and mild intellectual disability. The autosomal recessive form of OTFCS syndrome (OTFCS2) has been recently reported to be caused due to homozygous mutations in PAX1 gene. Here we report a third family of OTFCS2 phenotype wherein whole exome sequencing identified a novel homozygous small insertion in PAX1 as the underlying genetic cause.  相似文献   

13.
Branchio‐oculo‐facial syndrome (BOFS; OMIM#113620) is a rare autosomal dominant craniofacial disorder with variable expression. Major features include cutaneous and ocular abnormalities, characteristic facies, renal, ectodermal, and temporal bone anomalies. Having determined that mutations involving TFAP2A result in BOFS, we studied a total of 30 families (41 affected individuals); 26/30 (87%) fulfilled our cardinal diagnostic criteria. The original family with the 3.2 Mb deletion including the TFAP2A gene remains the only BOFS family without the typical CL/P and the only family with a deletion. We have identified a hotspot region in the highly conserved exons 4 and 5 of TFAP2A that harbors missense mutations in 27/30 (90%) families. Several of these mutations are recurrent. Mosaicism was detected in one family. To date, genetic heterogeneity has not been observed. Although the cardinal criteria for BOFS have been based on the presence of each of the core defects, an affected family member or thymic remnant, we documented TFAP2A mutations in three (10%) probands in our series without a classic cervical cutaneous defect or ectopic thymus. Temporal bone anomalies were identified in 3/5 patients investigated. The occurrence of CL/P, premature graying, coloboma, heterochromia irides, and ectopic thymus, are evidence for BOFS as a neurocristopathy. Intrafamilial clinical variability can be marked. Although there does not appear to be mutation‐specific genotype–phenotype correlations at this time, more patients need to be studied. Clinical testing for TFAP2A mutations is now available and will assist geneticists in confirming the typical cases or excluding the diagnosis in atypical cases. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Type I Waardenburg syndrome (WS-I) is an auditory-pigmentary syndrome caused by heterozygous loss of function mutations in the PAX3 gene. Klein-Waardenburg syndrome (WS-III) is a very rare condition and represents an extreme presentation of WS-I, additionally associated with musculoskeletal abnormalities. We present an 18-months old Turkish child with typical Klein-Waardenburg syndrome (WS) including dystopia canthorum, partial albinism, and upper-limb defects. The child was born to a consanguineous couple and both parents had WS-I. We screened the entire coding region of the PAX3 gene for mutations and identified a novel missense mutation, Y90H, within the paired box domain of PAX3. Both parents were heterozygous for the mutation and the proposita was homozygous. This is the third report of a homozygous PAX3 mutation causing the WS-III phenotype. Molecular analysis of four additional Turkish families with variable clinical expression of WS-I identified two missense mutations, one splice-site mutation, and one small insertion in the PAX3 gene.  相似文献   

15.
16.
Waardenburg syndrome (WS) is caused by autosomal dominant mutations, and is characterised by pigmentary anomalies and various defects of neural crest derived tissues. It accounts for over 2% of congenital deafness. WS shows high variability in expressivity within families and differences in penetrance of clinical traits between families. While mutations in the gene PAX3 seem to be responsible for most, if not all, WS type 1, it is still not clear what accounts for the reduced penetrance of deafness. Stochastic events during development may be the factors that determine whether a person with a PAX3 mutation will be congenitally deaf or not. Alternatively, genetic background or non-random environmental factors or both may be significant. We compared the likelihoods for deafness in affected subjects from 24 families with reported PAX3 mutations, and in seven of the families originally described by Waardenburg. We found evidence that stochastic variation alone does not explain the differences in penetrances of deafness among WS families. Our analyses suggest that genetic background in combination with certain PAX3 alleles may be important factors in the aetiology of deafness in WS.  相似文献   

17.
Renal-coloboma syndrome includes abnormalities in the urogenital and ocular systems as its primary manifestations, although it can be associated with abnormalities in other systems as well. This syndrome is caused by mutations in the PAX2 gene and is transmitted as an autosomal dominant trait. We report a family in which at least 7 members have manifestations of renal-coloboma syndrome, including two in whom renal disease was diagnosed prenatally by ultrasound examination. A pathogenic frame-shift mutation (619insG) was found in the PAX2 gene in affected family members, who show remarkable variability in both the ocular and renal manifestations of the syndrome.  相似文献   

18.
CHARGE syndrome (OMIM #214800) is a multiple malformation syndrome with distinctive diagnostic criteria, usually because of CHD7 (chromodomain helicase DNA binding 7) haploinsufficiency. Familial occurrence of CHARGE syndrome is rare. We report six patients from two Caucasian families (both with one parent and two children) affected by mild to severe CHARGE syndrome. Direct sequencing of the CHD7 gene was performed in these two unrelated families. A mutation in exon 8 (c.2501C>T - p.S834F) in first chromodomain was found in family A and a nonsense mutation in exon 2 (c.469C>T - p.R157X) in family B. Both mutations are de novo in the parents. In family A, the elder son had bilateral cleft lip and palate, esophageal atresia with fistula, complex heart defect and vertebral abnormalities, while the younger had a posterior coloboma. Their mother had asymptomatic vestibular dysfunction and retinal coloboma, identified after the molecular diagnosis of her children. In family B, both affected children had severe expression of CHARGE syndrome. The father carrying the mutation only had asymmetric anomaly of the pinnae. These familial reports describe the intrafamilial variability of CHARGE syndrome, and underline the presence of CHD7 mutations in patients who do not fit the 'classical clinical criteria' for CHARGE syndrome.  相似文献   

19.
Congenital contractural arachnodactyly (CCA) is an extremely rare disease, due to mutations in the FBN2 gene encoding fibrillin-2. Another member of the fibrillin family, the FBN1 gene, is involved in a broad phenotypic continuum of connective-tissue disorders including Marfan syndrome. Identifying not only what is in common but also what differentiates these two proteins should enable us to better comprehend their respective functions and better understand the multitude of diseases in which these two genes are involved. In 1995 we created a locus-specific database (LSDB) for FBN1 mutations with the Universal Mutation Database (UMD) tool. To facilitate comparison of identified mutations in these two genes and search for specific functional areas, we created an LSDB for the FBN2 gene: the UMD-FBN2 database. This database lists 26 published and six newly identified mutations that mainly comprise missense and splice-site mutations. Although the number of described FBN2 mutations was low, the frequency of joint dislocation was significantly higher with missense mutations when compared to splice site mutations.  相似文献   

20.
Congenital aniridia is a severe autosomal dominant congenital panocular disorder, mainly associated with pathogenic variants in the PAX6 gene. The objective of the study was to investigate the mutational and clinical spectra of congenital aniridia in a cohort of 117 patients from Russia. Each patient underwent detailed ophthalmological examination. From 91 unrelated families, 110 patients were diagnosed with congenital aniridia and 7 with WAGR syndrome (Wilms tumor, Aniridia, Genitourinary anomalies, and mental Retardation syndrome). The clinical presentation in aniridia patients varied from the complete bilateral absence of the iris (75.5%) to partial aniridia or iris hypoplasia (24.5%). Additional ocular abnormalities were consistent with previous reports. In our cohort, we saw a previously not described high percentage of patients (45%) who showed non‐ocular phenotypes. Prevalence of deletions coherent with WAGR syndrome appeared to be 19.4% out of sporadic patients. Among the other aniridia cases, PAX6 deletions were identified in 18 probands, and small intragenic changes were detected in 58 probands with 27 of these mutations being novel and 21 previously reported. In 3 families mosaic mutation was transmitted from a subtly affected parent. Therefore, PAX6 mutations explained 96.7% of aniridia phenotypes in this study with only 3 of 91 probands lacking pathogenic variants in the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号