首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multishot spiral imaging is a promising alternative to echo‐planar imaging for high‐resolution diffusion‐weighted imaging and diffusion tensor imaging. However, subject motion in the presence of diffusion‐weighting gradients causes phase inconsistencies among different shots, resulting in signal loss and aliasing artifacts in the reconstructed images. Such artifacts can be reduced using a variable‐density spiral trajectory or a navigator echo, however at the cost of a longer scan time. Here, a novel iterative phase correction method is proposed to inherently correct for the motion‐induced phase errors without requiring any additional scan time. In this initial study, numerical simulations and in vivo experiments are performed to demonstrate that the proposed method can effectively and efficiently correct for spatially linear phase errors caused by rigid‐body motion in multishot spiral diffusion‐weighted imaging of the human brain. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
3.
Partial k-space sampling is frequently used in single-shot diffusion-weighted echo-planar imaging (DW-EPI) to reduce the TE and thereby improve the SNR. However, it increases the sensitivity of the technique to bulk rotational motion, which introduces a phase gradient across the tissue that shifts the echo in k-space. If the echo is displaced into the high spatial frequencies, conventional homodyne reconstruction fails, causing intensity oscillations across the image. Zero-padding, on the other hand, compromises the image resolution and may cause truncation artifacts. We present an adaptive version of the homodyne algorithm that detects the location of the echo in k-space and adjusts the center and width of the homodyne filters accordingly. The adaptive algorithm produces artifact-free images when the echo is shifted into the high positive k-space range, and reduces to the standard homodyne algorithm in the absence of bulk motion.  相似文献   

4.
Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts.  相似文献   

5.
The importance of diffusion‐weighted MRI in the assessment of acute stroke is well‐recognized, and quantitative maps of the apparent diffusion coefficient (ADC) are now widely used. Echo‐planar imaging provides a robust method of acquiring diffusion‐weighted images free of motion artifact. However, initial experience with clinical MRI systems indicates that calculation of artifact‐free ADC maps from a series of echo‐planar diffusion‐weighted images is not necessarily straight‐forward. One of the problems is that frequency shifts resulting from eddy currents can cause misregistration of base diffusion‐weighted images. In this study, an on‐line correction method that overcomes this problem is described, and phantom and human images that demonstrate the validity of the technique are presented. The method uses a non‐phase‐encoded reference scan to correct the phase of each echo in the echo train, and can provide ADC maps that are free of misregistration artifacts, without the need for off‐line postprocessing. Magn Reson Med 41:95‐102, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Magnetic resonance diffusion imaging is potentially an important tool for the noninvasive characterization of normal and pathological tissue. The technique, however, is prone to a number of artifacts that can severely affect its ability to provide clinically useful information. In this study, the problem of eddy current-induced geometric distortions that occur in diffusion images acquired with echo planar sequences was addressed. These geometric distortions produce artifacts in computed maps of diffusion parameters and are caused by misalignments in the individual diffusion-weighted images that comprise the diffusion data set. A new approach is presented to characterize and calibrate the eddy current effects, enabling the eddy current distortions to be corrected in sets of Interleaved (or snapshot) echo planar diffusion images. Correction is achieved by acquiring one-dimensional field maps in the read and phase encode direction for each slice and each diffusion step. The method is then demonstrated through the correction of distortions in diffusion images of the human brain. It is shown that by using the eddy current correction scheme outlined, the eddy current-induced artifacts in the diffusion-weighted images are almost completely eliminated. In addition, there is a significant improvement in the quality of the resulting diffusion tensor maps.  相似文献   

7.
Diffusion tensor MRI (DTI) using conventional single-shot (SS) 2D diffusion-weighted (DW)-EPI is subject to severe susceptibility artifacts. Multishot DW imaging (DWI) techniques can reduce these distortions, but they generally suffer from artifacts caused by motion-induced phase errors. Parallel imaging can also reduce the distortions if the sensitivity profiles of the receiver coils allow a sufficiently high reduction factor for the desired field of view (FOV). A novel 3D DTI technique, termed 3D single-shot STimulated EPI (3D ss-STEPI), was developed to acquire high-resolution DW images of a localized region. The new technique completes k-space acquisition of a limited 3D volume after a single diffusion preparation. Because the DW magnetization is stored in the longitudinal direction until readout, it undergoes T(1) rather than T(2) decay. Inner volume imaging (IVI) is used to limit the imaging volume. This reduces the time required for EPI readout of each complete k(x)-k(y) plane, and hence reduces T(2)(*) decay during the readout and T(1) decay between the readout of each k(z). 3D ss-STEPI images appear to be free of severe susceptibility and motion artifacts. 3D ss-STEPI allows high-resolution DTI of limited volumes of interest, such as localized brain regions, cervical spinal cord, optic nerve, and other extracranial organs.  相似文献   

8.
Ghost artifacts are a serious issue in single and multi‐shot echo planar imaging. Because of these coherent artifacts, it is essential to consistently suppress the ghosts. In this article, we present a phase correction algorithm that achieves excellent ghost suppression for single and multi‐shot echo planar imaging. The phase correction is performed along both the x (read) direction and y (phase) direction. To this end, we apply a double field of view prescan and compute the phase required for ghost suppression. This phase is fitted to a 2D polynomial. The fitted phase is used to correct the echo planar imaging images. The correction algorithm can be used with any readout gradient polarities and any number of shots. A flow chart of the correction method is provided to better clarify the full process. Finally, phantom and volunteer images demonstrate the improvement of artifact suppression obtained with this algorithm over conventional phase correction methods. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
PURPOSE: To detect motion-corrupted measurements in multi-average turbo-spin-echo (TSE) acquisitions and reduce motion artifacts in reconstructed images. MATERIALS AND METHODS: An average-specific phase encoding (PE) ordering scheme was developed for multi-average TSE sequences in which each echo train is assigned a unique PE pattern for each pre-averaged image (PAI). A motion detection algorithm is developed based on this new PE ordering to identify which echo trains in which PAIs are motion-corrupted. The detected PE views are discarded and replaced by uncorrupted k-space data of the nearest PAI. Both phantom and human studies were performed to investigate the effectiveness of motion artifact reduction using the proposed method. RESULTS: Motion-corrupted echo trains were successfully detected in all phantom and human experiments. Significant motion artifact suppression has been achieved for most studies. The residual artifacts in the reconstructed images are mainly caused by residual inconsistencies that remain after the corrupted k-space data is corrected. CONCLUSION: The proposed method combines a novel data acquisition scheme, a robust motion detection algorithm, and a simple motion correction algorithm. It is effective in reducing motion artifacts for images corrupted by either bulk motion or local motion that occasionally happens during data acquisition.  相似文献   

10.
Single-shot echo-planar imaging has been used widely in diffusion magnetic resonance imaging due to the difficulties in correcting motion-induced phase corruption in multishot data. Readout-segmented EPI has addressed the multishot problem by introducing a two-dimensional nonlinear navigator correction with online reacquisition of uncorrectable data to enable acquisition of high-resolution diffusion data with reduced susceptibility artifact and T*(2) blurring. The primary shortcoming of readout-segmented EPI in its current form is its long acquisition time (longer than similar resolution single-shot echo-planar imaging protocols by approximately the number of readout segments), which limits the number of diffusion directions. By omitting readout segments at one side of k-space and using partial Fourier reconstruction, readout-segmented EPI imaging times could be reduced. In this study, the effects of homodyne and projection onto convex sets reconstructions on estimates of the fractional anisotropy, mean diffusivity, and diffusion orientation in fiber tracts and raw T(2)- and trace-weighted signal are compared, along with signal-to-noise ratio results. It is found that projections onto convex sets reconstruction with 3/5 segments in a 2 mm isotropic diffusion tensor image acquisition and 9/13 segments in a 0.9 × 0.9 × 4.0 mm(3) diffusion-weighted image acquisition provide good fidelity relative to the full k-space parameters. This allows application of readout-segmented EPI to tractography studies, and clinical stroke and oncology protocols.  相似文献   

11.
The inherent distortions in echo‐planar imaging that arise due to inhomogeneities in the static magnetic field can lead to difficulties when attempting to obtain structurally accurate diffusion‐tensor imaging data. Parallel acceleration techniques can reduce the magnitude of these distortions but do not remove them entirely. Images can be corrected using a measured field map, but this is prone to error. One approach to correcting for these distortions, referred to here as “blip‐reversed” echo‐planar imaging, involves collecting a second set of images with the phase encoding reversed. Here, a novel approach to collecting blip‐reversed echo‐planar imaging data for diffusion‐tensor imaging is presented: a dual‐echo sequence is used in which the phase‐encoding direction of the second echo is swapped compared to the first echo. This allows benefits of the blip‐reversed approach to be exploited, with only a modest increase in scan time and, due to the extra data acquired, no significant loss of signal‐to‐noise efficiency. A novel approach to recombining blip‐reversed data is also presented, which involves refining the measured field map, using an algorithm to minimize the difference between the corrected images. The field map refinement is also applicable to conventionally acquired blip‐reversed sequences. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
A new way to correct magnetic resonance image artifacts resulting from view-dependent phase variations and view-dependent variations in rigid body object translation is presented by exploiting basic properties of the trajectory of radial k-space acquisitions. Simulations, phantom studies, and in vivo experiments are used to demonstrate the feasibility and the utility of this method. While somewhat analogous to navigator echo correction, in which special gradients are interleaved into the imaging sequence so echoes at the center of k-space can be acquired prior to or after collection of the image data, the current method does not require additional new gradient structures within the pulse sequence or increases in scan time. The new method uses the phase information from all collected radial k-space data points rather than only the navigator echo, which permits correction of multiple sources of view-dependent phase variation in the image data. The resultant effect is improved image quality in radial MRI acquisitions. Magn Reson Med 45:277-288, 2001.  相似文献   

13.
MR diffusion tensor imaging (DTI) is a promising tool for characterizing the microstructure of ordered tissues. However, its practical applications are hampered by relatively low signal-to-noise-ratio and spatial and temporal resolution. Reduced-encoding imaging (REI) via k-space sharing with constrained reconstruction has previously been shown to be effective for accelerating DTI, although the implementation was based on rectilinear k-space sampling. Due to the intrinsic oversampling of central k-space and allowance for isotropic downsampling, projection-reconstruction (PR) imaging may be better suited for REI. In this study, regularization procedures, including radial filtering and baseline signal correction to adequately reconstruct reduced encoded PR imaging data, are investigated. The proposed filtered reduced-encoding projection-reconstruction (FREPR) technique is applied to DTI tissue fiber orientation and fractional anisotropy (FA) measurements. Results show that FREPR offers improved reconstructions of the reduced encoded images and on an equal total scan-time basis provides more accurate fiber orientation and FA measurements compared to rectilinear k-space sampling-based REI methods or a control experiment consisting of only fully encoded images. These findings suggest a potentially significant role of FREPR in accelerating repeated imaging and improving the data acquisition-time efficiency of DTI experiments.  相似文献   

14.
OBJECTIVES: Single-shot echo-planar based diffusion tensor imaging is prone to geometric and intensity distortions. Parallel imaging is a means of reducing these distortions while preserving spatial resolution. A quantitative comparison at 3 T of parallel imaging for diffusion tensor images (DTI) using k-space (generalized auto-calibrating partially parallel acquisitions; GRAPPA) and image domain (sensitivity encoding; SENSE) reconstructions at different acceleration factors, R, is reported here. MATERIALS AND METHODS: Images were evaluated using 8 human subjects with repeated scans for 2 subjects to estimate reproducibility. Mutual information (MI) was used to assess the global changes in geometric distortions. The effects of parallel imaging techniques on random noise and reconstruction artifacts were evaluated by placing 26 regions of interest and computing the standard deviation of apparent diffusion coefficient and fractional anisotropy along with the error of fitting the data to the diffusion model (residual error). RESULTS: The larger positive values in mutual information index with increasing R values confirmed the anticipated decrease in distortions. Further, the MI index of GRAPPA sequences for a given R factor was larger than the corresponding mSENSE images. The residual error was lowest in the images acquired without parallel imaging and among the parallel reconstruction methods, the R = 2 acquisitions had the least error. The standard deviation, accuracy, and reproducibility of the apparent diffusion coefficient and fractional anisotropy in homogenous tissue regions showed that GRAPPA acquired with R = 2 had the least amount of systematic and random noise and of these, significant differences with mSENSE, R = 2 were found only for the fractional anisotropy index. CONCLUSION: Evaluation of the current implementation of parallel reconstruction algorithms identified GRAPPA acquired with R = 2 as optimal for diffusion tensor imaging.  相似文献   

15.
Chemical-shift artifacts associated with non-Cartesian imaging are more complex to model and less clinically acceptable than the bulk fat shift that occurs with conventional spin-warp Cartesian imaging. A novel k-space based iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) approach is introduced that decomposes multiple species while simultaneously correcting distortion of off-resonant species. The new signal model accounts for the additional phase accumulated by off-resonant spins at each point in the k-space acquisition trajectory. This phase can then be corrected by adjusting the decomposition matrix for each k-space point during the final IDEAL processing step with little increase in reconstruction time. The technique is demonstrated with water-fat decomposition using projection reconstruction (PR)/radial, spiral, and Cartesian spin-warp imaging of phantoms and human subjects, in each case achieving substantial correction of chemical-shift artifacts. Simulations of the point-spread-function (PSF) for off-resonant spins are examined to show the nature of the chemical-shift distortion for each acquisition. Also introduced is an approach to improve the signal model for species which have multiple resonant peaks. Many chemical species, including fat, have multiple resonant peaks, although such species are often approximated as a single peak. The improved multipeak decomposition is demonstrated with water-fat imaging, showing a substantial improvement in water-fat separation.  相似文献   

16.
The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for oblique‐plane EPI or in the presence of cross‐term eddy currents. As compared with one‐dimensional correction, two‐dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid‐weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single‐shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
To achieve optimal image quality and highest spatial resolution for inner ear imaging with a 3D gradient echo sequence, it is necessary to minimize susceptibility dephasing effects by using very short TE. Fractional RF pulses and echoes can yield short TE for moderate spatial resolution; however, for voxel size of less than 1 mm, TE is limited by the phase encode gradients. We present a method to obtain very short effective TE by using short triangular shaped phase encode gradients to sample the central portions of k-space and progressively longer trapezoidal gradients for the outer portions of k-space. A 3D pulse sequence employing the modified phase encoding scheme for both in-plane and slice phase encoding directions was implemented and tested on phantoms and in vivo. The effective TE equals the minimal TE used for the central k-space portions. Submillimeter resolution (0.35 x 0.35 x 0.7 mm3) images of the inner ear were obtained with effective TE of 3.2 ms and were compared with standard 3D images with TE of 8 ms. With this pronounced TE reduction, the susceptibility artifacts at air/fluid interfaces are significantly reduced.  相似文献   

18.
A new image processing method for single-echo gradient echo imaging is presented which extracts local phase gradient information by k-space filtering instead of by phased reconstruction and spatial differentiation. It is shown that local phase gradient directions and semiquantitative local phase gradient magnitudes can be directly measured, even in regions where phased image reconstruction suffers from multiple phase foldovers due to strong phase modulations. The directional information thus obtained can be used as a reference to identify and correct phase modulation foldovers in phase maps which may be computed from the same raw data. The method is applied here to measure static magnetic field gradients and illustrates fundamental k-space signal properties of gradient echo imaging. Based on this concept, image artifacts caused by conventional strong k-space filtering in gradient echo imaging are discussed.  相似文献   

19.
Odd-even echo inconsistencies result in Nyquist ghost artifacts in the reconstructed EPI images. The ghost artifacts reduce the image signal-to-noise ratio and make it difficult to correctly interpret the EPI data. In this article a new 2D phase mapping protocol and a postprocessing algorithm are presented for an effective Nyquist ghost artifacts removal. After an appropriate k-space data regrouping, a 2D map accurately encoding low- and high-order phase errors is derived from two phase-encoded reference scans, which were originally proposed by Hu and Le (Magn Reson Med 36:166-171;1996) for their 1D nonlinear correction method. The measured phase map can be used in the postprocessing algorithm developed to remove ghost artifacts in subsequent EPI experiments. Experimental results from phantom, animal, and human studies suggest that the new technique is more effective than previously reported methods and has a better tolerance to signal intensity differences between reference and actual EPI scans. The proposed method may potentially be applied to repeated EPI measurements without subject movements, such as functional MRI and diffusion coefficient mapping.  相似文献   

20.
Single‐shot echo‐planar imaging (EPI) is well established as the method of choice for clinical, diffusion‐weighted imaging with MRI because of its low sensitivity to the motion‐induced phase errors that occur during diffusion sensitization of the MR signal. However, the method is prone to artifacts due to susceptibility changes at tissue interfaces and has a limited spatial resolution. The introduction of parallel imaging techniques, such as GRAPPA (GeneRalized Autocalibrating Partially Parallel Acquisitions), has reduced these problems, but there are still significant limitations, particularly at higher field strengths, such as 3 Tesla (T), which are increasingly being used for routine clinical imaging. This study describes how the combination of readout‐segmented EPI and parallel imaging can be used to address these issues by generating high‐resolution, diffusion‐weighted images at 1.5T and 3T with a significant reduction in susceptibility artifact compared with the single‐shot case. The technique uses data from a 2D navigator acquisition to perform a nonlinear phase correction and to control the real‐time reacquisition of unusable data that cannot be corrected. Measurements on healthy volunteers demonstrate that this approach provides a robust correction for motion‐induced phase artifact and allows scan times that are suitable for routine clinical application. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号