首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mini-matrices (multiple unit dosage form) with release-sustaining properties were developed by hot-melt extrusion (cylindrical die: 3 mm) using metoprolol tartrate as model drug and ethylcellulose as sustained-release agent. Dibutyl sebacate was selected as plasticizer and its concentration was optimized to 50% (w/w) of the ethylcellulose concentration. Xanthan gum, a hydrophilic polymer, was added to the formulation to increase drug release. Changing the xanthan gum concentration modified the in vitro drug release: increasing xanthan gum concentrations (1%, 2.5%, 5%, 10% and 20%, w/w) yielded a faster drug release. Zero-order drug release was obtained at 5% (w/w) xanthan gum. Using kneading paddles, smooth extrudates were obtained when processed at 60 °C. At least one mixing zone was required to obtain smooth and homogeneous extrudates. The mixing efficacy and drug release were not affected by the number of mixing zones or their position along the extruder barrel. Raman analysis revealed that metoprolol tartrate was homogeneously distributed in the mini-matrices, independent of screw design and processing conditions. Simultaneously changing the powder feed rate (6–25–50 g/min) and screw speed (30–100–200 rpm) did not alter extrudate quality or dissolution properties.  相似文献   

2.
Bioavailability of ibuprofen from hot-melt extruded mini-matrices   总被引:1,自引:0,他引:1  
The bioavailability of ibuprofen from hot-melt extruded mini-matrices based on ethyl cellulose and a hydrophilic excipient was tested. During the in vivo evaluation an oral dose of 300 mg ibuprofen was administered to healthy volunteers (n = 9) in a randomized cross-over study and compared with a commercially available sustained release product (Ibu-slow). The plasma samples were analysed by a validated HPLC-UV method. One mini-matrix formulation (F-1) consisted of 30% ibuprofen, 35% ethyl cellulose and 35% hydroxypropyl methylcellulose (Metolose 60 SH 50), while the second formulation (F-2) contained 60% ibuprofen, 20% ethyl cellulose and 20% xanthan gum. These mini-matrices were administered in hard gelatine capsules. Both formulations behaved in vivo as sustained release formulations with an HVD(t50% Cmax) value (time span during which the plasma concentration is at least 50% of the Cmax value) of 7.6 and 12.0 h for formulations F-1 and F-2, respectively, whereas a value of 5.2 h was obtained for Ibu-slow. Although a significantly higher Cmax and AUC(0-24 h) was seen for the reference product, the relative bioavailability of both experimental formulations was about 80%.  相似文献   

3.
Mini-matrices with release-sustaining properties were developed by hot-melt extrusion (diameter 3 mm, height 2 mm) using metoprolol tartrate as model drug (30%, w/w) and ethylcellulose as sustained-release agent. Polyethylene glycol or polyethylene oxide was added to the formulation to increase drug release. Changing the hydrophilic polymer concentration (0%, 1%, 2.5%, 5%, 10%, 20% and 70%, w/w) and molecular weight (6000, 100,000, 1,000,000 and 7,000,000) modified the in vitro drug release: increasing concentrations yielded faster drug release (irrespective of molecular weight), whereas the influence of molecular weight depended on concentration. Smooth extrudates were obtained when processed at 40 and 70 °C for polyethylene glycol and polyethylene oxide formulations, respectively. Raman analysis revealed that metoprolol tartrate was homogeneously distributed in the mini-matrices, independent of hydrophilic polymer concentration and molecular weight. Also drug and polymer crystallinity were independent of both parameters. An oral dose of 200 mg metoprolol tartrate was administered to dogs in a randomized order either as immediate-release preparation (Lopresor® 100), as sustained-release formulation (Slow-Lopresor® 200 Divitabs®), or as experimental mini-matrices (varying in hydrophilic polymer concentration). The sustained-release effect of the experimental formulations was limited, and relative bioavailabilities of 66.2% and 148.2% were obtained for 5% and 20% PEO 1,000,000 mini-matrices, respectively.  相似文献   

4.
Directly compressed matrices were produced containing either xanthan gum or karaya gum as a release-controlling agent. These swellable hydrophilic natural gums were used to control the release of varying proportions of two model drugs, caffeine and diclofenac sodium, which have different solubilities in aqueous medium. Gum erosion, hydration and drug release studies were carried out using a dissolution apparatus (basket method) at two agitation speeds. Xanthan gum displayed a high degree of swelling due to water uptake and a small degree of erosion due to polymer relaxation. Neither agitation speed nor drug solubility had any significant effect on water uptake, but matrices with the lower proportion of gum produced a lesser degree of hydration. In contrast, karaya gum displayed a much lower hydration capacity and a higher rate of erosion, both markedly affected by agitation speed. Drug release from xanthan and karaya gum matrices depended on agitation speed, solubility and proportion of drug. Both xanthan and karaya gums produced near zero order drug release with the erosion mechanism playing a dominant role, especially in karaya gum matrices.  相似文献   

5.
Recent developments in pharmaceutical technology have facilitated the design and production of modified release formulas for drugs whose physical, chemical or biological properties impede release and thus might compromise their efficacy or safety. One such drug is morphine, whose short half-life requires repeated doses at short intervals. The use of biocompatible polymers such as ethylcellulose has made it possible to develop microencapsulated formulations which facilitate liquid, sustained-release pharmaceutical formulas for oral administration. We developed a stable final formulation of morphine with an acceptable release profile by comparing the rheological properties and stability of formulations with different thickeners (xanthan gum, Carbopol, and carboxymethylcellulose with microcrystalline cellulose) at different concentrations from 0.25% to 1.0%. Release assays in a Franz-type cell were done to determine the most suitable release profile for the formulation.  相似文献   

6.
The present paper describes development of a polysaccharide based compression coated tablets of secnidazole for colon delivery. Core tablet containing secnidazole was compression coated with various proportions of guar gum, xanthan gum and chitosan, either alone or in combinations. Drug release studies were performed in simulated gastric fluid (SGF) for 2 h followed by simulated intestinal fluid (SIF, pH 7.4) up to 24 h. Secnidazole release from the prepared formulations was dependent on the type and concentration of polymer used in the formulation. Tablets coating containing either guar gum or xanthan gum showed ~30-40% drug release in 8 h. Further, in vitro dissolution studies of selected formulations performed in the dissolution media with rat caecal contents showed 54.48±0.24 - 60.42±0.16% of drug release. Formulations with single polymer in coating layer were unsuitable for targeting secnidazole release to colon region. Combination of chitosan with guar gum or xanthan gum exhibited control over secnidazole release.  相似文献   

7.
The study was aimed at developing extended release matrix tablets of poorly water-soluble diclofenac sodium and highly water-soluble metformin hydrochloride by direct compression using cashew gum, xanthan gum and hydroxypropylmethylcellulose (HPMC) as release retardants. The suitability of light grade cashew gum as a direct compression excipient was studied using the SeDeM Diagram Expert System. Thirteen tablet formulations of diclofenac sodium (∼100 mg) and metformin hydrochloride (∼200 mg) were prepared with varying amounts of cashew gum, xanthan gum and HPMC by direct compression. The flow properties of blended powders and the uniformity of weight, crushing strength, friability, swelling index and drug content of compressed tablets were determined. In vitro drug release studies of the matrix tablets were conducted in phosphate buffer (diclofenac: pH 7.4; metformin: pH 6.8) and the kinetics of drug release was determined by fitting the release data to five kinetic models. Cashew gum was found to be suitable for direct compression, having a good compressibility index (ICG) value of 5.173. The diclofenac and metformin matrix tablets produced generally possessed fairly good physical properties. Tablet swelling and drug release in aqueous medium were dependent on the type and amount of release retarding polymer and the solubility of drug used. Extended release of diclofenac (∼24 h) and metformin (∼8–12 h) from the matrix tablets in aqueous medium was achieved using various blends of the polymers. Drug release from diclofenac tablets fitted zero order, first order or Higuchi model while release from metformin tablets followed Higuchi or Hixson-Crowell model. The mechanism of release of the two drugs was mostly through Fickian diffusion and anomalous non-Fickian diffusion. The study has demonstrated the potential of blended hydrophilic polymers in the design and optimization of extended release matrix tablets for soluble and poorly soluble drugs by direct compression.  相似文献   

8.
The low bioavailability and short half-life of metformin hydrochloride (MH) make the development of sustained-release forms desirable. However, drug absorption is limited to the upper gastrointestinal (GI) tract, thus requiring suitable delivery systems providing complete release during stomach-to-jejunum transit. This study was undertaken to develop a MH sustained-release formulation in compliance with these requirements. The strategy proposed is based on direct-compressed matrix tablets consisting of a combination of MH with the hydrophobic triacetyl-beta-cyclodextrin (TAbetaCD), dispersed in a polymeric material. Different polymers were tested as excipients, i.e. hydroxypropylmethylcellulose, xanthan gum, chitosan, ethylcellulose, Eudragit L100-55, and Precirol. Compatibility among the formulation components was assessed by DSC analysis. All the tablets were examined for drug release pattern in simulated gastric and jejunal fluids used in sequence to mimic the GI transit. Release studies demonstrated that blends of a hydrophobic swelling polymer (hydroxypropylmethylcellulose or chitosan) with a pH-dependent one (Eudragit L100-55) were more useful than single polymers in controlling drug release. Moreover, the main role played by the MH-TAbetaCD system preparation method (i.e. grinding or spray-drying) in determining the behaviour of the final formulation was evidenced. In fact, for a given matrix-tablet composition, different sustained-release effects were obtained by varying the relative amounts of MH-TAbetaCD as ground or spray-dried product. In particular, the 1:1 (w/w) blend of such systems, dispersed in a Eudragit-chitosan polymeric matrix, fully achieved the prefixed goal, giving about 30% released drug after 2h at gastric pH, and overcoming 90% released drug within the subsequent 3h in jejunal fluid.  相似文献   

9.
The objective of this work was to develop and evaluate reconstitutable suspensions of ibuprofen-loaded microspheres prepared with an acrylic polymer (Eudragit RS-PM). The microspheres were prepared by the quasi-emulsion solvent diffusion technique. To prepare reconstitutable suspension formulation, the microspheres used had a mean particle size of 316.6 microm and 99.8% loading efficiency. Xanthan gum was chosen as the suspending agent for the suspension formulations. D-sorbitol was used to impart palatability of suspensions. The amount of D-sorbitol affected sedimentation volume and redispersibility properties of suspensions. The highest improving effect was shown with 20.0% and 25.0% of D-sorbitol concentrations. It was observed that dispersion media of suspensions showed non-Newtonian flow characteristics. To ensure minimum drug leakage from the microspheres into the suspension, the pH was buffered at 3.60 using citrate buffer. The ibuprofen content calculated from the suspended microspheres was consistent with that from microspheres alone. This result indicated that no leakage of drug occurred from the microspheres in the suspension on storage. Moreover, the same release rate of ibuprofen from the microspheres suspension and microspheres alone indicated that the suspension medium studied did not affect the property of drug release. This study suggested that stable suspensions of ibuprofen-loaded microspheres could be formulated with 0.6% w/v xanthan gum by the addition of 20% w/v D-sorbitol.  相似文献   

10.
Compaction and compression of xanthan gum pellets were evaluated and drug release from tablets made of pellets was characterised. Two types of pellets were prepared by extrusion-spheronisation. Formulations included xanthan gum, at 16% (w/w), diclofenac sodium or ibuprofen, at 10% (w/w), among other excipients. An amount of 500 mg of pellets fraction 1000-1400 microm were compacted in a single punch press at maximum punch pressure of 125 MPa using flat-faced punches (diameter of 1.00 cm). Physical properties of pellets and tablets were analysed. Laser profilometry analysis and scanning electron microscopy of the upper surface and the surface of fracture of tablets revealed that particles remained as coherent individual units after compression process. Pellets were flatted in the same direction of the applied stress evidencing a lost of the original curvature of the spherical unit. Pellets showed close compressibility degrees (49.9% for pellets comprising diclofenac sodium and 48.5% for pellets comprising ibuprofen). Xanthan gum pellets comprising diclofenac sodium experienced a reduction of 65.5% of their original sphericity while those comprising ibuprofen lost 49.6% of the original porosity. Permanent deformation and densification were the relevant mechanisms of compression. Fragmentation was regarded as non-existent. The release of the model drug from both type of tablets revealed different behaviours. Tablets made of pellets comprising ibuprofen released the model drug in a bimodal fashion and the release behaviour was characterised as Case II transport mechanism (release exponent of 0.93). On the other hand, the release behaviour of diclofenac sodium from tablets made of pellets was anomalous (release exponent of 0.70). For the latter case, drug diffusion and erosion were competing mechanisms of drug release.  相似文献   

11.
黄原胶与HPMC的凝胶特性及释药机制   总被引:3,自引:0,他引:3  
采用直接压片法,研究黄原胶与HPMC的凝胶特性。用称重法和体积测量法研究两种辅料分别在0.1mol/L盐酸和pH6.8磷酸盐缓冲液中的水合度及溶胀度,并以阿莫西林为模型药物进行体外释药研究。结果表明,在0.1mol/L盐酸中,HPMC的水合度及溶胀度均大于黄原胶,对药物释放阻滞作用较大;而在pH6.8磷酸盐缓冲液中则相反。药物在两种辅料中可通过骨架溶蚀和(或)凝胶层扩散呈零级或Higuchi型释药。  相似文献   

12.
几种亲水凝胶骨架材料相关性质的比较   总被引:1,自引:0,他引:1  
Nie SF  Liu H  Liu YL  Pan WS 《药学学报》2011,46(3):338-343
以茶碱为模型药物,采用直接压片法制备亲水凝胶骨架片,从骨架片吸水性、膨胀性、溶蚀性及凝胶强度4个方面,全面比较了几种亲水凝胶骨架材料羟丙甲纤维素(hydroxypropylmethylcellulose,HPMC)、聚氧化乙烯(polyethylene oxide,PEO)、海藻酸钠[sodium alginate、低黏度NaAlg(L)、高黏度NaAlg(H)]和黄原胶(xanthan gum,XG)辅料性质和释药机制的差异。结果表明,吸水速率常数XG>>NaAlg(H)>PEO>NaAlg(L)>>HPMC;膨胀指数为XG>>PEO>>HPMC>>NaAlg;溶蚀速率NaAlg(L)>NaAlg(H)>>PEO80>PEO200>PEO300>XG≈PEO400≈K4M>K15M>PEO600≈K100M;凝胶层强度PEO>HPMC>XG>>NaAlg。对于PEO和HPMC骨架片,随着聚合物分子量增加,药物逐渐从以溶蚀机制为主的释放转移为以扩散机制为主的释放;对于NaAlg骨架片,药物主要以溶蚀机制释放;对于XG骨架片,药物主要以非Fick扩散机制释放。通过比较不同高分子材料之间的性能差异有助于合理设计和...  相似文献   

13.
Various buccoadhesive nystatin tablets formulations containing xanthan, carbopols (934P, 971P, 974P), PVP K30 or PEG 6000 or their binary blends were prepared. The powders were compressed into tablets at a constant compression pressure. Drug release behaviour, swelling and erosion indices and strength of bioadhesion in vitro to a biological membrane were investigated. The interaction between nystatin and polymers was investigated by DSC and FT-IR. Tablets containing the different types of carbopol alone consistently showed an initial burst release of drug, whereas this was not observed for matrices containing xanthan or xanthan-carbopol. The presence of PEG in xanthan-containing formulations induced an increase in dissolution rate; however, in the absence of xanthan the amount of drug release from a PEG matrix was reduced to < 15% over 8?h dissolution. The presence of PVP increased the dissolution rate of nystatin due to the relative hydrophilicity of PVP. The presence of calcium ions induced a more rigid gel in the xanthan matrix as a result of interaction between the polymer and calcium ions. Xanthan can be used in potential mucoadhesive formulations containing nystatin to produce a controlled release of the drug and the outcomes of this work may provide a suitable strategy for matrix selection to provide more efficacious treatment alternatives for candidiasis and other disease processes for significant patient populations.  相似文献   

14.
The polysaccharide konjac glucomannan (KGM) is degraded in the colon but not the small intestine, which makes it potentially useful as an excipient for colonic drug delivery. With xanthan gum (XG) KGM forms thermoreversible gels with hitherto unexplored biodegradation properties. In this work, rheological measurements of KGM and KGM/XG systems incubated with and without Aspergillus niger beta-mannanase (used to mimic colonic enzymes) showed that KGM was degraded by the enzyme even when interacting with XG. Tablets with KGM/XG/sucrose matrices that varied in accordance with a simplex design and bore diltiazem as a typical highly soluble drug load were prepared by wet granulation, and in most cases were found to possess satisfactory mechanical strength and exhibit slow, nearly zero-order drug release. Drug release from these tablets remained zero-order, but was accelerated (presumably due to degradation of KGM), in the presence of A. niger beta-mannanase at concentrations equivalent to human colonic conditions. However, marked differences between Japanese and American varieties of KGM as regards degree of acetylation and particle size led to significant differences in swelling rate and drug release between formulations prepared with one and the other KGM: whereas a formulation with Japanese KGM released its entire drug load within 24h in the presence of beta-mannanase, only 60% release was achieved under the same conditions by the corresponding formulation with American KGM, suggesting that with this KGM it will be necessary to optimize technological variables such as compression pressure in order to achieve suitable porosity, swelling rate, and drug release. To sum up, the results of this study suggest that sustained release of water-soluble drugs in the colon from orally administered tablets may be achieved using simple, inexpensive formulations based on combinations of KGM and XG that take the variability of KGM characteristics into account.  相似文献   

15.
In the present systematic study, a sustained release of terbutaline sulfate tablet (TBS) was developed and optimized by employing the hydrophilic polymers; chitosan and xanthan gum mixed with sodium bicarbonate as a release modifying agent. This formulation was developed using direct compression technology. In vitro release studies indicated rapid swelling and drug release in the initial period of the acid stage from a matrix composed of chitosan and xanthan gum solely. Addition of sodium bicarbonate to the matrix resulted in sustained drug release. Various formulation factors such as polymer to polymer ratio, polymer viscosity and particle size were altered and their effect on dissolution pattern was illustrated. Manufacturing variables such as compression force and lubricant percentage were investigated and found not to influence the drug release profile of the resulted tablets. The release mechanism follows Korsmeyer-Peppas equation with n value indicating non-Fickian diffusion. The release profiles were analyzed using statistical method (one-way ANOVA) and f2 metric values and found to be similar to the commercial product Bricanyl®. Reproducible data were obtained when scale-up of the formulation was performed.  相似文献   

16.
Metoprolol tartrate sustained-release tablets (100 mg) were prepared using xanthan/guar gums and also hydroxypropyl methyl cellulose (HPMC) carboxymethyl-Cellulose (CMC) polymers by direct compression method. Physical characteristics of the tablets and water uptake in addition to their dissolution profiles were compared with standard (Lopressor® SR) tablets. Dissolution test was performed in the phosphate buffer solution (pH 6.8) and the samples were analyzed spectrophotometerically in 275.7 nm. Dissolution studies showed that formulations containing 100 and 80% of HPMC, 100% of guar, and 20% of xanthan followed the Higuchi model, while those containing 60 and 40% HPMC and 100 and 80% xanthan followed a zero-order model. The tablets with 40% xanthen followed a Hixon-Crowell model. In cellulose derivatives the highest MDT and dissolution efficiency until 8 hr (DE8%) belonged to tablets with 40% HPMC, increasing the amount of CMC decreased the drug release rate, and formulations containing 60 and 40% of HPMC had the USP dissolution standards. While, in the gum formulations, the highest mean dissolution time and the lowest DE8% belonged to tablets with 100% xanthan, increasing the xanthan decreased the release rate of metoprolol, and formulations containing 80 and 100% xanthan had the USP dissolution standards. Results showed that natural gums are suitable for production of sustained-release tablets of metoprolol.  相似文献   

17.
Compaction and compression of xanthan gum (XG) pellets were evaluated and drug release from tablets made of pellets was characterised. Three formulations were prepared by extrusion-spheronisation and included, among other excipients, diclofenac sodium (Dic Na), at 10% (w/w); xanthan gum, at 16% (w/w); and one of three different fillers (lactose monohydrated (LAC), tribasic calcium phosphate (TCP) and beta-cyclodextrin (beta-CD)), at 16% (w/w). Five hundred milligrams of pellets (fraction 1000-1400microm) were compacted in a single punch press at maximum punch pressure of 125MPa using flat-faced punches (diameter of 1.00cm). Physical properties of pellets and tablets were analysed. Dissolution was performed according to the USP paddle method. Pellets showed close compressibility degrees (49.27% LAC; 51.32% TCP; and 50.48% beta-CD) but densified differently (3.57% LAC; 14.84% TCP; 3.26% beta-CD). Permanent deformation and densification were the relevant mechanisms of compression. Fragmentation was regarded as non-existent. The release behaviour of tablets made of pellets comprising LAC or beta-CD was anomalous having diffusional exponent (n) values of 0.706 and 0.625, respectively. Drug diffusion and erosion were competing mechanisms of drug release from those tablets.  相似文献   

18.
目的制备具有适宜临界相变温度和临界相变阳离子强度,及适宜的喷雾粒度、使用方便、缓慢释放药物的温度-离子敏感复合型鼻用原位凝胶。方法以临界相变温度、临界相变阳离子强度、喷雾粒度为考察指标筛选温敏及离子敏材料的用量,制备利巴韦林温度-离子敏感复合型原位凝胶。以透析袋法评价该复合凝胶的凝胶外排水量、溶蚀速率、体外释放度,并以断裂距离为指标评价凝胶的黏膜黏附力。结果以质量分数为0.3%的去乙酰化结冷胶和质量分数为18.0%的泊洛沙姆407制备的温度-离子敏感复合型原位凝胶,临界相变温度为32.6℃,临界相变阳离子强度为93.4 mmol.kg-1,喷雾粒度为68.0μm,凝胶外排水质量分数为(13.8±0.8)%,溶蚀速度常数为1×10-4min-1,断裂距离为(1.60±0.06)mm。该混合凝胶具有良好的体外缓释特征。结论该复合型原位凝胶剂适宜作为水溶性药物的鼻用缓释载体。  相似文献   

19.
Sodium salicylate was microencapsulated with ethylcellulose 100 cp by polymer deposition from cyclohexane by temperature change to give a finer product, with slower drug release, than that obtained with 10 cp grade of ethylcellulose. Scanning electron microscope and polymer disc swelling studies confirmed that larger microcapsules after drug release ruptured into smaller particles with swollen surfaces containing pores. Treatment of microcapsules with paraffin wax solution retarded release of core material, the release being affected by the percentage of sealant used and the particle size of the product. The mechanism of release from the sealed microcapsules was complex involving mainly diffusion, but polymer erosion and drug binding were also involved. Other sealant materials were less effective in retarding dissolution.  相似文献   

20.
The purpose of present work was to develop suppositories containing mucoadhesive microspheres of granisetron hydrochloride (GH) using combination of xanthan gum and sodium alginate. Twelve different batches of microspheres containing GH were prepared by simple emulsification method and evaluated for surface morphology, particle size, equilibrium swelling degree, drug content, in vitro mucoadhesion, and in vitro drug release. The suppositories containing optimized batch of microspheres (C2) were formulated by fusion method using hydrophilic and lipophilic polymer base. The suppositories were evaluated for weight variation, hardness, macromelting range, drug content, drug release, morphology of rectal tissues, and in vivo suppository localization. Results show that, all microsphere batches were spherical and had size range 23.56–36.76 μm. The % drug encapsulation was found in the range 61.67–92.30 %, and showed satisfactory mucoadhesion. Especially, C2 batch had 83.67 % mucoadhesion and 92.30 % drug encapsulation and showed release retardation for 4 h. The results of all suppositories were within the pharmacopoeial standard limits. Drug content of all the suppositories was in the range 93.20–98.40 %. The suppository batch (P2M) was considered best on the basis of optimum retardation up to 5 h, high drug content, optimum mechanical strength and zero order release (r2 = 0.9860). The suppository of batch P2M showed no morphological changes in rectal tissues indicating its safety. In vivo localization revealed satisfactory mucoadhesion of microspheres. Hence, it can be concluded that, delivery of GH in suppository form can avoid its presystemic metabolism, thus, may be an efficient alternative to its oral dosage form and conventional suppository.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号