首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Valine-proline-aspartate-proline-arginine (VPDPR), the amino terminal pentapeptide of pancreatic procolipase, produced a dose-dependent reduction in food intake when injected intraperitoneally into Osborne-Mendel rats that had been starved overnight. This inhibition of feeding was observed when the rats were fed a high-fat diet but not in rats fed a high-carbohydrate, low-fat diet. At higher doses of VPDPR, the inhibition of feeding was maintained for over 6 hours. An equimolar mixture of the free amino acids had no effect on food intake. In rats adapted to a three-choice macronutrient diet, VPDPR inhibited fat intake but had no effect on carbohydrate or protein intake. This selective inhibition of fat intake was observed in both overnight-fasted rats presented with food and in ad-lib-fed rats at the beginning of the dark-onset feeding period. It is suggested that this peptide may be a feedback signal to regulate the intake of dietary fat.  相似文献   

2.
A high-fat diet easily promotes hyperphagia giving an impression of an uncontrolled process. Fat digestion itself however provides control of fat intake through the digestion itself, carried out by pancreatic lipase and its protein cofactor colipase, and through enterostatin, a peptide released from procolipase during fat digestion. Procolipase (-/-) knockout mice have a severely reduced fat digestion and fat uptake, pointing to a major role of the digestive process itself. With a normal fat digestion, enterostatin basically restricts fat intake by preventing the overconsumption of fat. The mechanism for enterostatin might be an inhibition of a mu-opioid-mediated pathway, demonstrated through binding studies on SK-N-MC-cells and crude brain membranes. Another target protein of enterostatin is the beta-subunit of F1F0-ATPase, displaying a distinct binding of enterostatin, established through an aqueous two-phase partition system. The binding of enterostatin to F1-ATPase was partially displaced by beta-casomorphin, a peptide stimulating fat intake and acting competitively to enterostatin. We frame a hypothesis that regulation of fat intake through enterostatin contains a reward component, which is an F1-ATPase-mediated pathway, possibly complemented with an opioidergic pathway.  相似文献   

3.
High-fat diets are often associated with greater caloric intake and weight gain. Since satiety during fat intake is induced by fat in the intestine we investigated the efficiency of a lipid compound that retards fat digestion to regulate fat intake. We found this compound to reduce high-fat food intake, body weight and blood lipids in Sprague-Dawley rats, without causing steatorrhea. The absence of steatorrhea is explained by an increased pancreatic lipase/colipase secretion, compensating the impaired lipolysis by the added compound. The animals also had an elevated CCK secretion. The satiety for fat may be the consequence of elevated CCK and procolipase/enterostatin levels. We conclude that compounds can be found that delay intestinal fat digestion and control high-fat food intake through the release of satiety signals, without causing steatorrhea. The absence of steatorrhea makes such compounds advantageous over lipase inhibitors in the treatment of obesity.  相似文献   

4.
The effect on food intake of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a serotonin 1-A agonist, has been evaluated in two strains of rats that differ in their sensitivity to becoming obese while eating a high-fat diet. Male Osborne-Mendel (OM) and S5B/Pl rats were tested at 8 weeks and 16 weeks of age. Both strains were adapted to choose between two diets-a 56% fat energy diet, and a 10% fat energy diet-which were equicaloric for protein (24% energy). Daily food intake was measured for 2 weeks before injection of 8-OH-DPAT. The younger OM rats had no diet preference, while the older OM rats preferred the high-fat diet. The younger S5B/P1 rats preferred the low-fat diet, while the older S5B/P1 rats had no diet preference. Satiated rats were injected subcutaneously with 8-OH-DPAT at doses of 0.3, 1.0, or 3.0 mg/kg or vehicle. During the light phase, subcutaneous 8-OH-DPAT increased the intake of the high-fat diet in the 16-week-old OM rats but not the 8-week-old OM rats. 8-OH-DPAT had no effect on the low-fat diet intake in either age OM rat. The 8-week-old S5B/P1 rats showed a significant decrease in intake of the high-fat diet in response to 8-OH-DPAT, whereas an increase in the intake of the low-fat diet was observed in the older S5B/P1 rats. These data are consistent with the hypothesis that increased fat preference in Osborne-Mendel rats may result in part from altered serotonin activity of 5-HT(1A) receptors.  相似文献   

5.
Enterostatin, the N-terminal activation pentapeptide of procolipase that is produced by the pancreas, reduces food intake from high-fat diet when injected either peripherally or centrally to rats. We investigated uptake across the blood-brain barrier (BBB) and tissue distribution of enterostatin by giving radioactive-labeled enterostatin (3H-VPDPR) intravenously. Low levels of 3H-VPDPR were detected in many areas of the brain, with greatest radioactivity in the frontal cortex, hippocampus and cerebellum. Radioactivity was found in the plasma and all tissues, with the highest amount detected in the pancreas.  相似文献   

6.
Two experiments examined the hypophagia that occurs when rats are switched from a high-fat to a low-fat diet. In the first experiment, rats fed a high-fat diet for eight weeks weighed 79 g more than rats fed a low-fat diet. Removal of the high-fat diet led to reduced food intake for at least four weeks. Reducing the body weight of the rats by a 24 hour fast did not alter the time course of the hypophagia. Plasma levels of free glycerol, free fatty acids and ketones were elevated during and after feeding the high-fat diet; suggesting that feeding a high-fat diet increases fat oxidation even after the high-fat diet is withdrawn. In the second experiment, feeding rats the high-fat diet for four weeks increased body weight and body fat. Starving the rats for two days after feeding the high-fat diet did not alter subsequent hypophagia and did not alter the percentage of body fat. This pattern of results is similar to that previously seen following termination of obesity-inducing insulin treatment. The results are consistent with the idea that a persistent increase in fat oxidation is responsible for the hypophagia.  相似文献   

7.
Humans in many countries are currently experiencing what has been called an epidemic of obesity. That is, the average body weight (and amount of fat stored in the body) is increasing over years, carrying with it a multitude of associated medical, psychological, and economic problems. While there is no shortage of possible causes of this epidemic, increased availability and consumption of high-fat (HF), calorically dense and generally quite palatable food is often touted as a likely culprit. In order to better assess the impact of consuming a diet with those qualities, we have developed a well-controlled animal model in which the effects of chronic consumption of a high-fat diet can be dissociated from those of becoming obese per se. Long-Evans rats are fed one of two semipurified pelleted diets, a HF diet that contains 20% fat by weight and a low-fat (LF) diet that contains 4% fat by weight. Pair-fed animals consume the HF diet but are limited to the daily caloric intake of LF rats. Another group receives pelleted chow. Relative to animals consuming diets low in fat, HF animals weigh more, have more carcass fat, are hyperinsulinemic and hyperleptinemic, and are insulin resistant. HF-fed animals, independent of whether they become obese or not, also have central insulin and MTII insensitivity. Finally, HF rats have a down-regulated hypothalamic apo A-IV system that could contribute to their hyperphagia.  相似文献   

8.
Mice fed a high-fat diet are reported to be resistant to peripheral injections of leptin. We previously failed to induce leptin resistance in female mice fed a high-fat diet for 15 weeks. Therefore, we measured the responsiveness to peripheral infusions (10 microg/day) of leptin, and the responsiveness to third ventricle injections of leptin (1 microg) in male and female NIH Swiss mice fed low-fat (10% kcal) or high-fat (45% kcal) diets. Male and female 15-week-old mice that had been fed low- or high-fat diet from 10 days of age lost fat during a 13-day intraperitoneal infusion of leptin and lost weight in response to a single central injection of leptin. Fifteen-week-old male mice fed a high-fat diet for 5 weeks did not lose body fat during a peripheral infusion of leptin and did not lose weight in response to a central injection of leptin. Female mice fed high-fat diet for 5 weeks remained leptin-responsive. Weight loss was achieved without a significant voluntary decrease in food intake, suggesting that both peripherally and centrally administered leptin increases energy expenditure. These results demonstrate that the development of leptin resistance in NIH Swiss mice fed a high-fat diet is dependent upon the gender of the mice and either the duration of exposure to high-fat diet or the age at which the mice are first exposed to the diet.  相似文献   

9.
Dietary hyperphagia in rats: role of fat, carbohydrate, and energy content   总被引:2,自引:0,他引:2  
Dietary energy, fat and carbohydrate content were varied to determine the nutritional factors responsible for hyperphagia induced by feeding rats high-fat diets. In the first experiment, rats were fed isoenergetic high-fat or high-carbohydrate diets for 2 weeks. Weight gain and energy intake were lower in rats given the high-fat diet. When some of the rats were switched to a diet that was high in fat, carbohydrate and energy, gram food intake was initially unchanged, resulting in a substantial increase in energy intake and weight gain. Energy intake gradually declined over the 4 weeks following the switch to the high-energy diet. In the second experiment, rats were fed high-fat diets that were either high or low in carbohydrate content and either high or low in energy content (kcal/g). Rats fed a high-fat diet that was high in energy and carbohydrate ate the most energy and gained the most body weight and carcass fat. In the third experiment, rats were fed high-carbohydrate diets varying in fat and cellulose content. Energy intake and body weight gain varied directly as a function of caloric density regardless of the fat or cellulose content of the diets. It is concluded that hyperphagia induced by feeding high-fat diets is not due to the high dietary fat content alone. Rather, high levels of fat, carbohydrate, and energy interact to produce overeating and obesity in rats fed high-fat diets.  相似文献   

10.
Food intake may be differentially responsive to the type of fat in the diet. The present investigation sought to evaluate the energy intake of rats maintained on either a low-fat or a high-fat diet mixed with an oil rich in either linoleic (18:2; n-6; safflower oil) or linolenic (18:3; n-3; flaxseed oil) acid. In Experiment 1, rats (n=28) consumed low-fat versions of either the safflower oil diet or the flaxseed oil diet, each at 9.28% fat (wt/wt). In Experiment 2, different rats (n=28) consumed high-fat versions of these diets, each at 23.6% fat (wt/wt). Within each experiment, the energy intake of rats receiving the safflower oil diet was compared to the energy intake of rats receiving the flaxseed oil diet. Food intake was measured under short-term, long-term and food-deprived conditions. In Experiment 1, short-term energy intakes were not different between the groups, thus demonstrating equal acceptance of the test diets. There were no consistent differences in long-term energy intakes between the safflower group and the flaxseed group. In addition, there were no differences in energy intake under the food-deprivation condition. Results from Experiment 2 paralleled those of Experiment 1. Taken together, the present results suggest that the essential fatty acid profile of the maintenance diet does not influence food intake when nutritive oils are the predominant fatty acid source.  相似文献   

11.
Weanling rats were fed either a high-fat (30% of calories) or a low-fat (10% of calories) diet for four weeks, after which fat preference was assessed using a choice paradigm. Fat preference was measured during 2-hour intake tests in which three peanut butter/peanut oil mixtures containing 0.50, 0.61, and 0.71 grams fat/gram were offered to each animal. Rats fed the high-fat (HF) diet preferred the highest-fat mixture and consumed more total fat during intake tests than animals fed the low-fat (LF) diet. Intake of NaCl and sucrose solutions was measured during separate intake tests. LF-fed rats drank more NaCl solution than HF-fed rats. Following these tests a subgroup of the LF-fed animals was fed the HF diet, and a subgroup of the HF-fed group was fed the LF diet for a further four weeks. Upon repetition of the intake tests, rats that had been fed the HF diet during the initial four weeks still preferred the highest-fat mixture.  相似文献   

12.
Three experiments have examined the effects of ad lib and forced intake of a high-fat diet on sympathetic firing rate to brown adipose tissue. Seven days after beginning of ad lib intake of either a low-fat or high-fat diet, sympathetic activity was not significantly different in either group nor was it significantly different from the values obtained in animals measured at the switch from the chow to a semisynthetic high- or low-fat diet. After 22 days on the semisynthetic diet, however, the sympathetic firing rate of animals eating the high-fat diet had decreased nearly 25% and was significantly lower than the animals maintained on the semisynthetic low-fat diet or animals studied at the transition from the chow to the low-fat diet. In a second experiment animals were tube-fed for 3, 6 or 9 weeks on a high- or low-fat diet. Sympathetic firing rate of the rats eating the low-fat diet was higher at all three times, but the difference decreased with longer feeding. To eliminate differences in food intake, animals were tube-fed a moderate- or high-fat liquid diet three times a day for six days. The 80 kcal/day intake produced a steady weight gain in both groups. Liver weight, retroperitoneal white adipose tissue weight, and interscapular brown adipose tissue weight were all significantly greater in the animals fed the high-fat diet. Sympathetic firing rate, however, was significantly lower in the animals fed the high-fat semisynthetic diet as compared to animals fed the moderate-fat diet. These data show the high-fat diets are associated with a reduction in sympathetic activity to brown adipose tissue.  相似文献   

13.
Plasma insulin enters the CNS where it interacts with insulin receptors in areas that are related to energy homeostasis and elicits a decrease of food intake and body weight. Here, we demonstrate that consumption of a high-fat (HF) diet impairs the central actions of insulin. Male Long-Evans rats were given chronic (70-day) or acute (3-day) ad libitum access to HF, low-fat (LF), or chow diets. Insulin administered into the 3rd-cerebral ventricle (i3vt) decreased food intake and body weight of LF and chow rats but had no effect on HF rats in either the chronic or the acute experiment. Rats chronically pair-fed the HF diet to match the caloric intake of LF rats, and with body weights and adiposity levels comparable to those of LF rats, were also unresponsive to i3vt insulin when returned to ad libitum food whereas rats pair-fed the LF diet had reduced food intake and body weight when administered i3vt insulin. Insulin's inability to reduce food intake in the presence of the high-fat diet was associated with a reduced ability of insulin to activate its signaling cascade, as measured by pAKT. Finally, i3vt administration of insulin increased hypothalamic expression of POMC mRNA in the LF- but not the HF-fed rats. We conclude that consumption of a HF diet leads to central insulin resistance following short exposure to the diet, and as demonstrated by reductions in insulin signaling and insulin-induced hypothalamic expression of POMC mRNA.  相似文献   

14.
15.
Recent studies have shown that the opioid enkephalin (ENK), acting in part through the hypothalamic paraventricular nucleus (PVN), can stimulate consumption of a high-fat diet. The objective of the present study was to examine sub-populations of Sprague-Dawley rats naturally prone to overconsuming a high-fat diet and determine whether endogenous ENK, in different brain regions, is altered in these animals and possibly contributes to their behavioral phenotype. An animal model, involving a measure of initial high-fat diet intake during a few days of access that predicts long-term intake, was designed to classify rats at normal weight that are either high-fat consumers (HFC), which ingest 35% more calories of the high-fat than low-fat chow diet, or controls, which consume similar calories of these two diets. Immediately after their initial access to the diet, the HFC compared to control rats exhibited significantly greater expression of ENK mRNA, in the PVN, nucleus accumbens and central nucleus of the amygdala, but not the arcuate nucleus or basolateral amygdala. This site-specific increase in ENK persisted even when the HFC rats were maintained on a chow diet, suggesting that it reflects an inherent characteristic that can be expressed independently of the diet. It was also accompanied by a greater responsiveness of the HFC rats to the stimulatory effect of a PVN-injected, ENK analogue, D-ala2-met-enkephalinamide, compared to saline on consumption of the high-fat diet. Thus, normal-weight rats predicted to overconsume a fat-rich diet exhibit disturbances in endogenous ENK expression and functioning that may contribute to their long-term, behavioral phenotype.  相似文献   

16.
Galanin, a brain and pancreatic peptide with three receptor subtypes (GALR1, GALR2, and GALR3), is hypothesized to participate in energy homeostasis and glucoregulation. Hypothalamic galanin expression is induced by dietary fat, and intra-hypothalamic galanin administration has orexigenic/anabolic properties. Systemic galanin infusion alters glucoregulation in non-human species, partly through direct actions on pancreatic islets. However, the physiologic significance of endogenous galanin-GALR signaling is unclear. The present studies tested the hypotheses that GALR1 deficiency alters food intake and feed efficiency following switches to high-fat diet and that GALR1 deficiency alters whole-body glucose homeostasis. Adult, male GALR1 knockout (-/-), heterozygote (+/-), and C57BL/6J control (+/+) mice were studied. GALR1 deficiency impaired adaptation to a 3-day high-fat diet challenge, leading to increased food intake, feed efficiency and weight gain. However, during the following 2 weeks, GALR1 knockout mice decreased intake, consuming less daily energy than while maintained on low-fat diet and also than heterozygote littermates. Chow-maintained GALR1 knockout mice showed relative hyperglycemia in fed and d-glucose (i.p. 1.5 g/kg)-challenged states. GALR1 knockout mice showed normal food intake, feed efficiency and weight accrual on low-fat diets, normal fasted glucose levels, and normal glucose sensitivity to porcine insulin (i.p. 1 IU/kg) in vivo. The results support the hypotheses that galanin-GALR1 systems help adapt food intake and metabolism to changes in dietary fat and modulate glucose disposition in mice.  相似文献   

17.
Adult female rats were allowed to self-select their diet from separate sources of fat, protein, and carbohydrate (starch). Other rats were fed a composite diet that matched the nutrient composition chosen by the self-selecting rats (50% fat, 28% protein, 22% carbohydrate) or a low-fat, high-carbohydrate chow diet. Half of the rats in each diet condition were given access to a 32% sucrose solution for 30 days. Sucrose availability increased total caloric intake (approximately 20%) and body weight gain in all three groups compared to control groups not fed the sucrose solution. The selection animals compensated for their sucrose intake by reducing their fat intake, and to a lesser degree, their starch intake; protein intake was the least affected by sucrose availability. The selection rats consumed less sucrose than the chow-fed rats and displayed a smaller increase in weight, relative to controls, than the chow-fed rats. These differences were attributed to the high-fat intake of the selection animals since similar results were obtained with the rats fed the composite diet. In particular, both the selection and composite diets produced mild obesity in the absence of sucrose. The results demonstrate that sucrose-induced overeating and overweight is not an artifact of restraining the diet choices of rats to a pure sugar and a nutritionally complete diet.  相似文献   

18.
To test the hypothesis that mammals that show decrease in body mass under short-day condition should be resistant to high-fat induced obesity, we traced the changes of energy balance in a wild rodent, Brandt's voles (Lasiopodomys brandtii), which were acclimated to either long day (16 L: 8D, LD) or short day (8 L: 16D, SD) and fed either low-fat diet (LFD) or high-fat diet (HFD) in each photoperiodic manipulation. We found that Brandt's vole was not resistant to high-fat diet-induced obesity and SD, not HFD, induced the elevation in basal metabolic rate, the maximal rate of oxygen consumption after norepinephrine injection, and uncoupling protein 1 content in brown adipose tissue. HFD caused the increase in apparent digestibility and body fat mass, and the decrease in energy intake in both LD and SD voles. The enhancement of energy absorption associated with small intestine tissue recruitment can compensate the lower energy intake, which may contribute to the high-fat diet-induced body fat deposition. Thus, a decrease in body-weight gain but has no resistance to high-fat induced obesity implies an evolutionary and adaptive mechanism which is a benefit for their winter survival.  相似文献   

19.
The purpose of the present study was to test the hypothesis that short-term alternations of high-fat with normal chow feeding result in higher fat accumulation in liver than continuous intake of the same high-fat diet. Male Sprague-Dawley rats (7 weeks of age) were divided into 3 groups according to diet composition: standard chow (SD; 12,5% kcal as fat), high-fat (HF; 42% kcal as fat), and food cycles (FC) consisting of 10-day alternations between HF and SD diets beginning with the high-fat diet. Rats in each of these 3 groups were sacrificed after 10, 30, and 50 days (n = 10 rats/sub-groups). Energy intake, body weight, liver and muscle relative weights were not significantly (P > 0.05) different between FC- and HF-fed rats. Using the total energy intake for the 50-day period, it was calculated that approximately 30% less calories as fat was ingested in the FC- compared to the HF-fed rats. In spite of this, liver lipid infiltration as well as fat accretion in abdominal adipose tissues were increased (P < 0.01) similarly in FC- and HF-fed rats. Plasma FFA and insulin levels depicted strong tendencies (P < 0.07) to be higher in FC- than in continuous HF-fed rats at the end of the 50-day period. These results indicate that, despite a 30% reduction in ingested lipids, alternations of HF with normal chow diet compared to the continuous hyperlipidic diet caused the same level of infiltration of lipids in the liver and in the abdominal adipose tissues and, to a certain extent, may even result in a larger deterioration of the metabolic profile.  相似文献   

20.
High-fat diets typically elicit greater kcal intake and/or weight gain than low-fat diets. Palatability, caloric density, and the unique postingestive effects of fat have each been shown to contribute to high-fat diet hyperphagia. Because long-term intake reflects the sum of many individual eating episodes (meals), it is important to investigate factors that may modulate fat intake at a meal. The present studies used high-fat (hi-fat) and high-carbohydrate (hi-carb) liquid diets (both 2.3 kcal/mL) to assess the effect of hunger level (0 versus 24-h food deprivation) and fat content of the maintenance diet (12 versus 48%) on fat preference (when a choice among foods is offered in a two-bottle test), and acceptance (only one food offered) in male rats. Preference for hi-fat relative to hi-carb (two-bottle test) was enhanced by 24-h food deprivation, and by a high-fat maintenance diet. In contrast, neither deprivation nor maintenance diet composition influenced relative meal size (one-bottle test) of hi-fat and hi-carb: irrespective of test conditions, meal size of hi-fat was bigger than meal size of hi-carb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号