首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Renal failure》2013,35(5):691-707
One of great use of immunosuppressant, Cyclosporine-A (CsA) is in the solid organ transplantation; however the extensive use of this is cautionable due to its toxic effect in renal tissue, characterized by the tubular atrophy, interstitial fibrosis, and progressive renal impairment. However, there are many mediators are associated with pathogenesis of nephrotoxicity of CsA, the exact mechanism is still in debate. Recent studies indicate that Reactive Oxygen Species (ROS) induced oxidative stress and lipid peroxidations are the important mechanisms implicated in the pathophysiology of nephrotoxicity with CsA. In the present study we examined effect of dietary flavonoid catechin on oxidative damage in cyclosporine-A induced nephrotoxicity. Chronic administration of CsA (20 mg/kg/day) subcutaneously for 21 days significantly decreased the body weight as compared with vehicle treated rats. CsA (20 mg/kg/day) administration for 21 days significantly decreased the renal function by increase in the serum creatinine, blood urea nitrogen, and decrease in the creatinine and urea clearance as compared with vehicle treated rats. Catechin (100 mg/kg/day) for 21 days along with CsA significantly reversed the changed renal parameters, however lower dose of catechin (50 mg/kg/day) restored only increased serum creatinine levels as compared with CsA alone treated group. Biochemical analysis revealed that chronic administration of CsA (20 mg/kg/day) for 21 days significantly induced lipid peroxidation and decreased the glutathione levels in the kidney homogenate of rats. It is also observed that chronic CsA administered rats showed decrease in antioxidant defense enzyme superoxide dismutase and increase in the catalase activity as compared with vehicle treated rats. Co-administration of catechin (100 mg/kg/day) orally along with CsA for 21 days significantly reduced the lipid peroxidation and restored the decreased glutathione levels as compared with CsA alone group, but lower dose of catechin (50 mg/kg/day) restored only decreased glutathione levels induced by CsA. Co-administration of only higher dose of catechin (100 mg/kg/day) along with CsA significantly increased the superoxide dismutase (SOD) levels as compared with CsA alone treated group. It is also observed that catechin (100 mg/kg/day) along with CsA further increased the catalase levels as compared with CsA alone treated group, but not with lower dose of catechin. Animals administered with catechin (100 mg/kg/day) alone for 21 days showed significant increase in the catalase levels as compared with vehicle treated group. The major findings of the present study suggest that oxidative stress might play a significant role in CsA-induced nephrotoxicity. In conclusion, dietary administration of flavonoid catechin could be a useful component for the prevention/treatment of CsA-induced nephrotoxicity.  相似文献   

2.
Cyclosporine A (CsA) is one of the first line immunosuppressants employed in the management of solid organ transplantation and autoimmune diseases. The clinical utility of CsA is limited by the frequent occurrence of chronic nephrotoxicity, characterized by tubular atrophy, interstitial fibrosis and progressive renal impairment. The pathogenesis of CsA nephrotoxicity is still not well delineated. Recent evidences suggest that reactive oxygen species (ROS) play an important role in CsA nephrotoxicity. The present study was designed to demonstrate the role of oxidative stress, its relation to renal dysfunction and to investigate the effect of trimetazidine (TMZ), an anti-ischemic agent with free radical scavenging property, in CsA-induced nephrotoxicity. TMZ (2.5 mg/kg, p.o., twice a day) was administered 24 h before and 21 days concurrently with CsA (20 mg/kg, s.c.). Tissue lipid peroxidation was measured as thiobarbituric acid reacting substances (TBARS). Renal function was assessed by measuring the plasma and urine creatinine concentrations, blood and urine urea nitrogen levels and the creatinine and urea clearances. Renal morphological alterations were assessed by histopathological examination of Hematoxylin-Eosin, PAS and Masson's trichome stained sections of the kidneys. CsA (20 mg/kg, s.c) administration for 21 days produced elevated levels of TBARS and decreased renal function as assessed by increased plasma creatinine, BUN and decreased creatinine and urea clearances as compared to vehicle treated rats. The kidneys of CsA treated rats showed severe striped interstitial fibrosis, arteriolopathy, glomerular basement thickening, tubular vacuolization and hyaline casts. TMZ (2.5 mg/kg) markedly reduced elevated levels of TBARS, significantly attenuated renal dysfunction and the morphological changes in CsA treated rats. These results clearly demonstrate the pivotal role of reactive oxygen species and their relation to renal dysfunction and point to the therapeutic potential of an anti-ischemic agent, trimetazidine, in CsA-induced nephrotoxicity.  相似文献   

3.
《Renal failure》2013,35(3):259-274
Cyclosporine A (CsA) is one of the first line immunosuppressants employed in the management of solid organ transplantation and autoimmune diseases. The clinical utility of CsA is limited by the frequent occurrence of chronic nephrotoxicity, characterized by tubular atrophy, interstitial fibrosis and progressive renal impairment. The pathogenesis of CsA nephrotoxicity is still not well delineated. Recent evidences suggest that reactive oxygen species (ROS) play an important role in CsA nephrotoxicity. The present study was designed to demonstrate the role of oxidative stress, its relation to renal dysfunction and to investigate the effect of trimetazidine (TMZ), an anti-ischemic agent with free radical scavenging property, in CsA-induced nephrotoxicity. TMZ (2.5 mg/kg, p.o., twice a day) was administered 24 h before and 21 days concurrently with CsA (20 mg/kg, s.c.). Tissue lipid peroxidation was measured as thiobarbituric acid reacting substances (TBARS). Renal function was assessed by measuring the plasma and urine creatinine concentrations, blood and urine urea nitrogen levels and the creatinine and urea clearances. Renal morphological alterations were assessed by histopathological examination of Hematoxylin-Eosin, PAS and Masson's trichome stained sections of the kidneys. CsA (20 mg/kg, s.c) administration for 21 days produced elevated levels of TBARS and decreased renal function as assessed by increased plasma creatinine, BUN and decreased creatinine and urea clearances as compared to vehicle treated rats. The kidneys of CsA treated rats showed severe striped interstitial fibrosis, arteriolopathy, glomerular basement thickening, tubular vacuolization and hyaline casts. TMZ (2.5 mg/kg) markedly reduced elevated levels of TBARS, significantly attenuated renal dysfunction and the morphological changes in CsA treated rats. These results clearly demonstrate the pivotal role of reactive oxygen species and their relation to renal dysfunction and point to the therapeutic potential of an anti-ischemic agent, trimetazidine, in CsA-induced nephrotoxicity.  相似文献   

4.
Normal kidneys regenerate after acute injury with little development of chronic fibrosis. However, the long-term effects of an acute injury in kidneys with established chronic toxicity induced by cyclosporine (CsA) are not entirely clear. To study the consequences of an ischemia and reperfusion (IR) injury in long-term CsA-treated rats, male Wistar rats (250-300 g) were treated daily with CsA (10 mg/kg) or vehicle (olive oil 1 mL/kg) for 28 days. On day 21, ischemia was performed by clamping the renal vessel for 1 hour. Blood samples were collected on days 0 and 21 (before IR) as well as days 22 and 28. On day 28, the kidneys were collected to examine the mRNA expression of MCP-1 by real-time PCR. For renal function, serum creatinine levels were measured. Twenty-four hours after reperfusion, long-term CsA-treated animals showed better renal function compared with the control group, as demonstrated by serum creatinine levels: 2.2 +/- 0.13 mg/dL vs 2.9 +/- 0.18 mg/dL, respectively (P < .05). However, 1 week after IR, the renal function was worse among the long-term CsA-treated group than the controls: 1.16 +/- 0.08 mg/dL vs 0.8 +/- 0.09 mg/dL, respectively (P < .05). Interestingly, CsA treatment was associated with lower MCP-1 mRNA expression than that in the control group: mean MCP-1 mRNA expression 0.58 +/- 0.13 vs 1.02 +/- 0.12, respectively (P < .05). In conclusion, animals with chronic CsA nephrotoxicity were protected from an acute renal injury, possibly through decreased chemokine production, although at later time points, renal function was clearly impaired, probably by the acceleration of vasculopathy caused by nephrotoxicity.  相似文献   

5.
Chander V  Chopra K 《Renal failure》2005,27(4):441-450
Cyclosporine A (CsA) is a potent and effective immunosuppressive agent, but its action is frequently accompanied by severe renal toxicity. The causes for the nephrotoxicity of CsA have not been fully elucidated. Intrarenal vasoconstriction induced by several different mediators, both in humans and experimental animals, have been proposed. To determine if the renal alterations are mediated directly by cyclosporine or by secondary hemodynamic alterations induced by cyclosporine, we evaluated if nifedipine prevents these alterations. Eight groups of rats were employed in this study, group 1 served as control, group 2 rats were treated with CsA (20 mg/mL, s.c. for 21 days), groups 3, 4, and 5 received CsA along with various doses of nifedipine (5, 10, and 20 mg/kg, p.o.) 24 h before and 21 days concurrently, groups 6, 7, and 8 received L-NAME (10 mg/kg i.p.), propranolol (10 mg/kg i.p.), and aminoguanidine (100 mg/kg p.o.), respectively, along with CsA. Renal function was assessed by measuring serum creatinine, blood urea nitrogen, creatinine, and urea clearance. Tissue and urine nitrite and nitrate levels were measured to estimate the total nitric oxide levels. The renal oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels, and enzymatic activity of catalase and superoxide dismutase. Renal morphological alterations were assessed by histopathological examination. CsA administration for 21 days resulted in a marked renal oxidative stress, and significantly deranged the renal functions as well as renal morphology. Treatment with nifedipine (10, 20 mg/kg) significantly improved the renal dysfunction, tissue and urine total nitric oxide levels, and renal oxidative stress and prevented the alterations in renal morphology. These results clearly demonstrate that nifedipine is beneficial as a protective agent against nephrotoxicity induced by CsA, and the protection afforded by nifedipine appears to be mediated by an increase in endothelial nitric oxide release.  相似文献   

6.
Yang CW  Ahn HJ  Kim WY  Li C  Jung JY  Yoon SA  Kim YS  Cha JH  Kim J  Bang BK 《Transplantation》2003,75(3):309-315
BACKGROUND: Combined treatments of mycophenolate mofetil (MMF) and losartan (LSRT) have synergistic effects on various renal diseases through their hemodynamic and anti-inflammatory effects. This study investigated whether MMF treatment is effective in inhibiting inflammatory processes in chronic cyclosporine A (CsA) nephrotoxicity, and whether combined treatment using MMF and LSRT affords superior protection compared with the respective monotherapies. METHODS: Rats on a low-salt diet were given vehicle (VH group, olive oil, 1 mg/kg per day), CsA (15 mg/kg per day), CsA and LSRT (CsA+LSRT group, 100 mg/L per day), CsA and MMF (CsA+MMF group; 40 mg/kg per day), or CsA, LSRT and MMF (CsA+LSRT MMF group). Control groups received each drug without CsA treatment. Renal function, histologic parameters (arteriolopathy, tubulointerstitial fibrosis, and inflammatory cell infiltration), and mediators of CsA-induced nephrotoxicity (angiotensin-II, osteopontin, and transforming growth factor [TGF]-beta1) were studied. RESULTS: The CsA-treated rats showed decreased renal function and increased histologic parameters compared with the VH-treated rats. The CsA+MMF treatment significantly improved renal function and histopathologic parameters compared with the CsA group, and combined treatment with MMF and LSRT further improved those parameters compared with the CsA+LSRT and CsA+MMF groups. At a molecular level, increased expression of angiotensin II protein, osteopontin, and TGF-beta1 mRNAs in the CsA group were significantly decreased with MMF, and further decrease was observed with the combined treatment using MMF and LSRT. CONCLUSIONS: MMF treatment decreases CsA-induced nephrotoxicity, and combined treatment with LSRT has a synergistic effect in preventing chronic CsA nephrotoxicity.  相似文献   

7.
The aim of this study is to test whether a stable analogue prostaglandin I2 (OP-41483-alpha-CD) (OP) is effective to prevent Cyclosporine A (CsA)-induced nephrotoxicity. Male Lewis rats were administrated with CsA (50 or 100 mg/kg/day, per os) and treated with OP (25 micrograms/kg/day, subcutaneously). For the quantitativeness of qualitative changes, percent area of tubular vacuolization and the grade of renal arteriolar changes were evaluated at light microscopic level, then further examined under electron microscopy. CsA trough levels in the whole blood were also analyzed with HPLC and prostaglandin I2 was assayed by radioimmunoassay of its stable degeneration product 6-keto-PGF1-alpha. As a result, 1) ultrastructurally, perinuclear vacuoles in arteriolar media consisted of cellular intervaginated cytoplasmic processes of neighboring cells, suggesting spastic vasoconstriction induced by CsA, 2) survival rate of OP-treated rats were significantly high compared to that of rats with CsA alone, 3) pathologically, tubular and arterial damages were reduced in OP-treated models, 4) pharmacokinetic studies revealed that CsA trough levels were not different from those of CsA-received alone and OP-treated models, and 5) mean blood 6-keto-PGF1-alpha excretion in rats given CsA was higher than in normal rats.  相似文献   

8.
Background The use of cyclosporin (CsA) in the presence of other nephrotoxic drugs poses a great challenge to physicians. This study was designed to address the effect of concomitant administration of mercury and cyclosporin on nephrotoxicity of rats. Methods Male Sprague-Dawley rats (weighing 230±20 g) were divided into the following 8 groups of 7 animals each: group 1, control; group 2, mercury alone; group 3, cyclosporin 12.5 mg/kg; group 4, cyclosporin 25 mg/kg; group 5, CsA 50 mg/kg; group 6, CsA 12.5 mg/kg+mercury; group 7, CsA 25 mg/kg+mercury; and group 8, CsA 50 mg/kg+mercury. Mercury (1 mg/kg) was given by subcutaneous injection, and CsA, by oral gavage; drugs were given once a day for 7 days. Twenty-four hours after the last dose of drugs, the animals were killed, and blood samples were assayed for BUN, serum creatinine, and CsA levels. The left kidney was analyzed for malondialdehyde, lipid hydroperoxides, vitamin E, and glutathione levels, and histopathologic analysis was done on the right kidney. Results Mercury significantly exacerbated CsA-induced nephrotoxicity. There was a highly significant increase in oxidative stress in animals treated with the combination of CsA and mercury. Mercury also increased the bioavailability of CsA in rats. Conclusions Concomitant treatment of mercury with CsA produced severe nephrotoxicity. The enhanced nephrotoxicity may be attributed to the increased bioavailability of CsA and an increase in lipid peroxidation after concomitant use of these drugs.  相似文献   

9.
Padi SS  Chopra K 《Nephron》2002,92(3):685-692
BACKGROUND: Cyclosporine A (CsA) is the first-line immunosuppressant employed for the management of solid organ transplantation and autoimmune diseases. Nephrotoxicity is the major limitation of CsA use. Recent evidence suggests that reactive oxygen species (ROS) play an important role in mediating CsA nephrotoxicity. The present study was designed to investigate effects of carvedilol, a third-generation beta-blocker with potent free radical-scavenging activity on CsA-induced oxidative stress and resultant renal dysfunction in a rat model of chronic CsA nephrotoxicity. METHODS: Carvedilol (2.0 and 4.0 mg/kg i.p.) and propranolol (10 mg/kg i.p.) were administered to separate group of animals 24 h before and concurrently with CsA (20 mg/kg s.c.) for 21 days. Renal function was assessed by estimating plasma creatinine, blood urea nitrogen (BUN), creatinine and urea clearance. Tissue lipid peroxidation was measured as thiobarbituric acid-reacting substances (TBARS). Renal morphological alterations were assessed by histopathological examination of hematoxylin-eosin, PAS and Masson's trichrome stained sections of the kidneys. RESULTS: CsA (20 mg/kg s.c) administration for 21 days produced elevated levels of TBARS and deteriorated renal function as assessed by increased plasma creatinine, BUN and decreased creatinine and urea clearance as compared to vehicle-treated rats. The kidneys of CsA-treated rats showed severe striped interstitial fibrosis, arteriolopathy, glomerular basement thickening, tubular vacuolization and hyaline casts. Propranolol neither decreased TBARS nor improved the renal dysfunction and morphological changes induced by CsA. Both doses of carvedilol markedly reduced elevated levels of TBARS, whereas the higher dose of carvedilol significantly attenuated renal dysfunction and morphological changes in CsA-treated rats. CONCLUSIONS: These data clearly indicate the renoprotective potential of carvedilol in CsA-induced nephrotoxicity and suggest a significant contribution of its antilipoperoxidative property in this beneficial effect.  相似文献   

10.
Biochemical mechanisms underlying cyclosporine (CsA)-induced nephrotoxicity and the effect of concomitant administration of prednisolone (Pr) on the nephrotoxicity were studied. Male Wistar rats were treated with the vehicles used for CsA and Pr administration (group 1), Pr alone (group 2), CsA alone (group 3), or CsA plus Pr (group 4), respectively. The dose of CsA was 5 mg/kg/day, i.p. for the initial 7 days, and was decreased to 2.5 mg/kg/day i.p. thereafter. The dose of Pr was always maintained at one-tenth of that of CsA. At 10, 30, and 90 days after the initiation of these treatments, blood urea nitrogen (BUN) and serum levels of creatinine and CsA were determined. The syntheses of DNA, RNA, and protein, Na+, K+-adenosine triphosphate (ATP)ase activity, and ATP content were measured using homogenates of the renal cortex obtained from each experimental group. At an early stage (at 10 and 30 days) of CsA administration, the impairment of renal function and inhibition of the synthesis of DNA and RNA appeared in groups 3 and 4. The magnitude of these changes was found to be greater in group 3 (CsA alone) than in group 4 (CsA plus Pr). Group 3 also showed a significant reduction of Na+, K+-ATPase activity as well as ultrastructural abnormalities. At a later stage (at 90 days), however, such differences in nephrotoxicity between groups 3 and 4 were not detected. These results strongly suggest that inhibition of the synthesis of DNA and RNA and the activity of enzymes related to the functions of cell membrane, such as Na+, K+-ATPase, may be involved in the occurrence of CsA-induced nephrotoxicity. The present results also suggest that the concomitant administration of Pr with CsA may reduce the nephrotoxicity of CsA at early stages of CsA administration, but this preventive effect of Pr may disappear if the administration of CsA is prolonged.  相似文献   

11.
BACKGROUND: Sirolimus (SRL) is increasingly being used to decrease cyclosporine (CsA) exposure. SRL is not known to be nephrotoxic and has a mechanism of action distinct from CsA. We investigated the effect of combining CsA and SRL on renal structure and function and on transforming growth factor-beta1 (TGF-beta1) and extracellular matrix (ECM) proteins in a model of chronic CsA nephrotoxicity. METHODS: Rats treated with vehicle, SRL 0.3 mg/kg/day, CsA 5 or 10 mg/kg/day, or CsA5+SRL were sacrificed at 7 or 28 days. Physiologic and histologic changes were studied in addition to TGF-beta1 mRNA and protein expressions, and mRNA expression of plasminogen activator inhibitor-1 (PAI-1) and ECM proteins biglycan and types I and IV collagen. RESULTS: While SRL alone did not alter renal function and structure, it potentiated the nephrotoxic actions of CsA when used in combination with low-dose CsA5 and resulted in significant changes similar to high-dose CsA10. In addition, SRL alone increased TGF-beta1 by 44% to 49% (P < 0.05 vs. VH). When used in combination with low-dose CsA5, SRL potentiated TGF-beta1 mRNA and protein by 121% and 176%, respectively (P < 0.05 vs. VH and CsA5), to levels achieved with high-dose CsA10. The expression of the ECM proteins followed that of TGF-beta1; a similar effect was observed with PAI-1, suggesting a decrease in ECM degradation. CONCLUSION: Because SRL augments nephrotoxicity, caution should be exercised when it is used in combination with CsA. More studies are needed to determine the long-term clinical impact of SRL on nephrotoxicity and allograft function.  相似文献   

12.
BACKGROUND: Epidermal growth factor (EGF) plays an important role in renal tubular regeneration after ischemic injury in kidney. The present study reports the association between the renin-angiotensin system (RAS) and EGF, and the effect of angiotensin II blockade with losartan (LSRT) on EGF expression in an experimental model of chronic cyclosporine (CsA) nephrotoxicity in rats. METHODS: Two separate experiments were performed. In the first experiment, rats on the normal-salt diet (NSD; 0.3%) or low-salt diet (LSD; 0.05%) were treated with or without LSRT for four weeks. In the second experiment, rats on the NSD or LSD were given vehicle (VH group, olive oil, 1 mg/kg per day) or CsA (15 mg/kg per day) or CsA (15 mg/kg per day) plus LSRT (100 mg/L per day). Renal function, histopathology, TUNEL staining, plasma renin activity (PRA), and the expression of renin and EGF were studied. RESULTS: Normal rats on the LSD showed significantly increased EGF expression (cortex, 2.6-fold; medulla, 1.7-fold) and significantly decreased EGF expression with the LSRT treatment compared with the rats treated with the NSD (cortex, 74.8 vs. 10%; medulla, 22.5 vs. 5%). In contrast, the CsA-treated rats on the LSD had a significantly lower EGF expression (cortex, 98 vs. 53%; medulla, 94 vs. 14%); however, concomitant administration of LSRT increased the EGF expression (cortex, 91- vs. 3.8-fold; medulla, 19- vs. 2.4-fold) compared with the rats on the NSD. In the normal and CsA-treated LSD rats, EGF expression was well correlated with PRA. In addition, EGF expression was well correlated with the interstitial fibrosis score (r = 0.664, P < 0.01) or number of TUNEL-positive cells (r = 0.822, P < 0.01) in CsA-treated LSD rats. CONCLUSIONS: These results suggest that angiotensin II blockade with LSRT decreases EGF expression in normal rats on the LSD, but it protects EGF expression in CsA-induced nephrotoxicity. This finding provides a new perspective on the renoprotection of angiotensin II blockade in chronic CsA nephrotoxicity.  相似文献   

13.
Cyclosporine A (CsA), a fungal undecapeptide, is the most common immunosuppressive drug used in organ transplantation and autoimmune diseases. However, nephrotoxicity is the major adverse effect of CsA use. The molecular mechanisms of CsA nephrotoxicity are not well characterized, but more recent studies suggest an involvement of angiotensin II (ANG II) and reactive oxygen species in the development of cyclosporine nephrotoxicity. Induction of heat shock proteins (HSPs) is one of the best-described cellular responses to heat stress, hypoxia, and exposure to oxidants. HSPs have beneficial roles in protein processing and protection against cell injury. There is emerging evidence that ANG II induces oxidative stress in vitro and in vivo. This study was thus designed to investigate the role of Angiotensin II type I (AT1) receptor antagonist, irbesartan, on CsA-induced nephrotoxicity. Five groups of rats were employed in this study: group 1 served as control, group 2 rats were treated with CsA (20 mg kg(-1), subcutaneously for 21 days), and groups 3, 4, and 5 received CsA along with irbesartan (10, 25, and 50 mg kg(-1), perorally 24 hr before and 21 days concurrently), respectively. Renal function was assessed by measuring serum creatinine, blood urea nitrogen, creatinine, and urea clearance. The renal oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels, and enzymatic activity of catalase, glutathione reductase, and superoxide dismutase. Renal morphological alterations were assessed by histopathological examination. CsA administration for 21 days resulted in a marked renal oxidative stress and significantly deranged the renal functions as well as renal morphology. All these factors were significantly improved by irbesartan (50 mg kg(-1)) treatment. HSP72, HSP47, and HSP25 were clearly induced and expressed in CsA-treated animals. The induction and expression of HSP25 was markedly protected by treatment with irbesartan, whereas the induction and expression of HSP47 and HSP72 remained unaltered with the irbesartan treatment. These results clearly demonstrate the pivotal role of ANG II-induced oxidative stress and therapeutic potential of AT, receptor antagonist in ameliorating CsA-induced nephrotoxicity.  相似文献   

14.
The aim of our study was to determine the effect of recombinant human erythropoietin (rhEPO) on cyclosporine (CsA) nephrotoxicity. Twenty-six female Wistar rats were injected with 15 mg/kg subcutaneous CsA and intraperitoneal saline/rhEPO for 28 days. Four groups were formed: Group 1 (n = 5), a control group; Group 2 (n = 7), CsA + saline; Group 3 (n = 7), CsA + low dose (20 U/kg per day) rhEPO; Group 4 (n = 7), CsA + high dose (100 U/kg per day) rhEPO. Body weights, creatinine clearance, urinary protein/creatinine, hematocrit, serum creatinine levels, histopathological parameters, apoptosis and lipid peroxidation tests were compared between the three groups. Body weights and renal functions were similar in Groups 2, 3 and 4 rats but significantly lower than the values found for the control group at the end of the study. The hematocrit was significantly different between the four groups, showing a positive association with the strength of the injected rhEPO doses. Tubular and arteriolar damage was significantly lower in Groups 3 and 4 rats than in Group 2 rats, while chronic changes were similar between the three groups. TUNEL-positive cells and thiobabarbituric acid reacting substance (TBARS) levels were significantly higher in Group 2 rats, whereas superoxide dismutase levels were significantly lower in Group 2 rats than in those of the other three groups. Low or high dose rhEPO had no significant protective effects on body weight, renal functions, chronic fibrotic changes, but both doses reduced tubular and arteriolar changes, apoptotis and oxidative stress.  相似文献   

15.
The effect of the rate of infusion of single and multiple doses of cyclosporine (CsA) on renal function was evaluated in Sprague-Dawley rats. CsA was dissolved in cremophore (Crem) or Tween 80 (Tween) and infused over consecutive 10-min periods at doses of 10, 20, 30 and 40 mg/kg. CsA-Crem and CsA-Tween produced similar and progressive changes in MAP, RBF, and RVR. By the end of the infusion, the mean values (% of control) of MAP (122 +/- 16% and 131 +/- 22%), RBF (56 +/- 11% and 66 +/- 20%), and RVR (222 +/- 38% and 232 +/- 134%) were significantly different from their respective preinfusion values. Infusion of Crem alone resulted in renal vasodilation at low doses and renal vasoconstriction at high doses. Vasoconstriction was not produced by infusion of Tween alone. In addition, animals were treated with vehicle alone (Gp 1), CsA 10 mg/kg/day by injection (Gp 2), or CsA 20 mg/kg/day by i.v. infusion over 4 hr (Gp 3), and were studied at 1 week. Systemic toxicity was greater with the 4-hr infusion as judged by an increase in MAP. The mean values of MAP were 107 +/- 8 (Gp 1), 101 +/- 13 (Gp 2), and 135 +/- 5 mm Hg (Gp 3; p less than 0.05). However, renal function was less severely affected with the 4-hr infusion. The mean values of CIn were 434 +/- 99 (Gp 1), 298 +/- 101 (Gp 2; p less than 0.05), and 425 +/- 114 microL/min/100 g BW (Gp 3); and the mean values for RBF were 2.72 +/- 0.74 (Gp 1), 2.08 +/- 0.17 (Gp 2; p less than 0.05), and 3.35 +/- 0.61 mL/min/100 g BW (Gp 3), respectively. Microangiograms showed marked abnormalities in the intrarenal perfusion pattern in the rats injected with CsA, 10 mg/kg BW. In rats infused over 4 hr with CsA, 20 mg/kg BW, the microangiographic pattern was normal. These studies demonstrate that the acute hemodynamic effects of CsA are directly related to the rate of infusion. Furthermore, the renal toxicity which follows repetitive injection of CsA can be minimized or avoided by administering CsA as a slow infusion. In addition to the total dose administered, the rate of infusion is an important determinant of nephrotoxicity.  相似文献   

16.
17.
Wang J  Xu R  Jin R  Chen Z  Fidler JM 《Transplantation》2000,70(3):447-455
BACKGROUND: PG27 is an immunosuppressive fraction purified from an extract of a Chinese medicinal plant, Tripterygium wilfordii. We tested PG27 in rat cardiac and renal allotransplantation, and we examined the immunosuppressive interaction with cyclosporine (CsA). METHODS: Brown Norway (BN) rat heart or kidney allografts were transplanted into the abdomen of Lewis rats, which were treated by the intraperitoneal or oral route with PG27, CsA, or both. RESULTS: PG27 administered intraperitoneally to Lewis recipients for 16 days at 10-30 mg/kg/day significantly increased the median survival time of BN heart allografts from 7 to 18-22 days. Oral administration was effective, with cardiac allograft survival prolonged to > 100 days with 52 days of treatment. PG27 at 20-30 mg/kg/day significantly extended the median survival time of BN kidney allograft recipients from 9 to 36.5-77 days, and 30 mg/kg/day for 52 days extended survival beyond 200 days. PG27 combined with CsA significantly enhanced heart and kidney allograft survival, even at doses of CsA ineffective when administered alone. The addition of 5 or 10 mg/kg/day PG27 reduced by 50-75% the CsA dose needed for 100% kidney allograft survival. The combination index was less than 1.0, indicating synergy of PG27 with CsA in prolonging cardiac and renal allograft survival. Furthermore, the PG27/CsA combination exerted a positive influence on renal allograft function. PG490 (triptolide, a constituent of PG27) and PG490-88 (a semisynthetic derivative of PG490) suppressed rejection of cardiac and renal allografts. CONCLUSIONS: The PG27 herbal extract demonstrated immunosuppressive activity by prolonging heart and kidney allograft survival, displaying synergy in the immunosuppressive interaction with CsA, and improving renal allograft function in combination with CsA. PG490 and PG490-88 compounds were also effective.  相似文献   

18.
The clinical usefulness of Cyclosporine is limited by its intrinsic nephrotoxicity. A potential mechanism of CsA-mediated renal injury may involve an alteration in the prostaglandin-thromboxane (PG-TX) cascade. In our studies, pharmacological manipulation of the PG-TX system in normal and nephrotoxic animals was conducted using a specific thromboxane synthetase inhibitor U63,557A, and the cyclooxygenase inhibitor indomethacin. Administration of CsA 50 mg/kg/day for 7 days to Sprague Dawley rats resulted in a 99% increase in urinary thromboxane B2 excretion compared with controls (48.2 +/- 3.1 vs. 24.2 +/- 2.6 ng/24 hr, P less than 0.001), while plasma levels remained unchanged. Glomerular and tubular function was significantly reduced at this time, with a 48% decrease in creatinine clearance (CCr), and a 25% reduction in the fractional excretion of sodium (FeNa) (P less than 0.001). Histological injury included cortical tubular vacuolization and necrosis. Administration of indomethacin 8 mg/kg/day to both normal and CsA-treated rats resulted in a significant reduction in prostanoid excretion. Indomethacin alone had no adverse effect on glomerular function; however, when coadministered with CsA an exaggerated decrease in renal function was observed. CCr in this group fell by a further 27% compared with the CsA-50 group, while FeNa decreased by 76% (P less than 0.001). Histologic injury intensified, with an increase in vacuolization and necrosis. In contrast, coadministration of U63,557A with CsA prevented the rise in urinary TXB2 excretion, improved CCr by 20% (P less than 0.05), and restored FeNa to control levels. The severity of CsA-induced vacuolization was significantly diminished. Selective inhibition of thromboxane production may therefore be valuable in mitigating the clinical nephrotoxicity of CsA.  相似文献   

19.
Chronic cyclosporine A (CsA) nephrotoxicity has been widely assessed but only few studies have described acute nephrotoxicity. As CsA is now used for short periods, we developed an experimental model of acute CsA-induced nephrotoxicity. Renal clearances of inulin and para-aminohippurate were assessed in 35 New Zealand rabbits. Group 1: control, no treatment; group 2: CsA 25 mg/kg per day in 0.5 ml/kg per day for 5 days; group 3: vehicle Cremophor-EL, 0.5 ml/kg per day for 5 days; group 4: follow-up, the same as group 2, then CsA discontinuation for 31 days. Compared with group 1, CsA significantly decreased glomerular filtration rate (GFR), renal blood flow (RBF), and diuresis, with a significant increase in renal vascular resistance (RVR). The proportional fall in GFR (–32.3%) and RBF (–33.1%) suggests both pre- and postglomerular vasoconstriction.Discontinuation of CsA in group 4 led to normalization of RVR with improvement of other renal function parameters. Compared with group 1, Cremophor-EL induced no significant changes but an increased RBF. Microvacuolization of proximal tubule epithelial cells was the sole histological abnormality observed only in group 2. The overall results suggest that CsA induced a vasomotor acute renal failure which was not due to Cremophor-EL. This effect was partly reversible after discontinuation of treatment. Received: 20 January 1999 / Revised: 24 June 1999 / Accepted: 13 August 1999  相似文献   

20.
The aim of the present in vivo experimental study was to investigate changes in bone turnover and bone mineral density (BMD) induced by cyclosporine (CsA) administration. The effectiveness of olpadronate (OPD) in preventing bone loss associated with CsA treatment was also evaluated. Forty male Sprague-Dawley rats (approximately 5 months old) were treated as follows: Group I: CsA+OPD vehicles (control); Group II: CsA 15 mg/kg + OPD vehicle; Group III: CsA 15 mg/kg + 4 ug OPD/100g rat; Group IV: CsA 15 mg/kg + 8 ug OPD/100g rat; Group V: CsA 15 mg/kg + 16 ug OPD/100g rat. CsA was administered by daily oral gavage and OPD by intraperitoneal injection once a week. Serum bone-alkaline phosphatase (b-ALP) and urinary deoxypyridinoline (DPyr) were measured on days 0, 14 and 30. Total skeleton, femur, lumbar spine, proximal, and middle tibia BMDs were measured on days 0 and 30. No significant differences were found between the CsA and the control groups as regards serum bALP levels, on days 14 and 30. CsA+OPD treated rats presented a transient increment in serum b-ALP on day 14 and a significantly lower level on day 30 compared to the control and CsA groups (P < 0.05). On days 14 and 30, DPyr excretion increased in the CsA group compared to control animals (P < 0.05). The three studied doses of OPD induced a significant decrease in DPyr excretion in the CsA group on days 14 and 30 (P < 0.05). Group V (receiving the highest dose of OPD) presented a significantly lower level of DPyr compared to the other two OPD-treated groups (P < 0.05). On day 30, the CsA group presented a significant reduction in proximal tibia, spine and whole femur BMDs (P < 0.05) compared to controls. On day 30, OPD treatment increased BMD of all the studied areas in CsA rats. Proximal tibia BMD of group V reached significantly higher values than the other studied OPD groups (P < 0.05). In summary, this study suggests that CsA-induced high bone resorption and trabecular bone loss is prevented by cotreatment with OPD. Moreover, it encourages the possible use of OPD to treat patients receiving CsA as immunosuppressive therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号