首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Noninfected erythrocytes form rosettes around those infected with trophozoites and schizonts of Plasmodium falciparum in vitro. These rosettes are thought to contribute to the microvascular obstruction which underlies the pathophysiology of severe falciparum malaria. To determine whether the percentage of infected erythrocytes forming rosettes for a parasite isolates in vitro correlates with the in vivo severity of disease, we studied the rosette formation behavior of 35 isolates of P. falciparum from patients with uncomplicated, severe, and cerebral malaria. There was a wide variation in the degree of rosette formation (0 to 53%). Four parasite isolates formed rosettes well (30 to 53%), and seven isolates formed rosettes poorly or not at all (0 to 5%), while the majority of the isolates formed rosettes to various degrees between these two extremes. In this relatively small sample of patients, we were unable to demonstrate a significant association between in vitro rosette formation and patients with cerebral malaria or conscious patients with significant renal (serum creatinine greater than 200 mumol/liter) or hepatic dysfunction (serum bilirubin greater than 50 mumol/liter and aspartate aminotransferase greater than 50 Reitman-Frankel units). However, there was an inverse relationship between rosette formation and cytoadherence (r = -0.575, P less than 0.01) which could not be explained on the basis of steric hindrance. This finding suggests that cytoadherence and rosette formation properties are intrinsic to the parasites, with isolates having a greater propensity for one or the other but not both. Further studies are required to establish the occurrence and pathophysiological role of rosette formation in vivo.  相似文献   

2.
In malarial infections of primates, the spleen has been shown to modulate parasite antigen expression on the surfaces of infected erythrocytes. The processes affected include cytoadherence, which is central to the pathophysiology of severe falciparum malaria, and the related phenomenon of rosette formation. In this study, the cytoadherence and rosette formation behaviors of Plasmodium falciparum-infected erythrocytes from a splenectomized patient were examined during the first erythrocytic cycle in vitro. Ultrastructural studies were also performed. Infected erythrocytes were found to cytoadhere to C32 melanoma cells via leukocyte differentiation antigen CD36 but not intercellular adhesion molecule 1. They also displayed on their surfaces electron-dense knobs similar in structure and density to those on infected erythrocytes from intact hosts. These findings may reflect a stable cytoadherent phenotype of the parasite isolate that is unaffected by the absence of the spleen. Alternatively, the modulating role of the spleen may have been assumed by other organs of the mononuclear phagocytic system in a previously infected individual. No rosette formation was observed, but as not all natural isolates form rosettes, this observation may or may not be related to the asplenic status of the patient. Parasite and host factors appear to be important in determining the effect of splenectomy on cytoadherence and rosette formation in human falciparum malaria.  相似文献   

3.
Little is known about the molecular mechanism underlying the release of merozoites from malaria-infected erythrocytes. In the present study, video microscopy was carried out, and images throughout the process of merozoite release from Plasmodium falciparum-infected erythrocytes were digitized and analyzed. Merozoites were shown to escape from the infected host cell in about 1 s through a single site of the infected erythrocyte membrane, whose dimension was estimated to be 2.5 μm. Merozoites were released together with the residual body containing hemozoin, leaving behind a membranous structure that persisted even after an extended period of observation. Densitometric measurements showed that the cytoplasmic content of the infected erythrocyte did not diffuse out as parasites were released, but was gradually lost thereafter. This would indicate that the release of merozoites from infected erythrocytes is not mediated by an explosive event. Received: 22 December 1998 / Accepted: 20 January 1999  相似文献   

4.
Erythrocytes infected with the human malaria parasite Plasmodium falciparum become structurally and antigenically modified as a consequence of intracellular parasite development. The new antigens that appear on the surface of the infected erythrocyte originate from parasite-encoded proteins and by modification of the erythrocyte membrane protein band 3. Here, we show that anti-peptide antibodies generated against an amino acid sequence (YETFSKLIKIFQDH) of human band 3, and previously identified as mediating adhesion of infected erythrocytes to CD36, recognized P. falciparum-infected erythrocytes. In addition, sera from individuals living in a malaria endemic area (and who are presumably immune) contained immunoglobulins specific for this region of band 3. The anti-peptide antibodies reacted with the surface excrescences (knobs) on falciparum-infected erythrocytes. In uninfected erythrocytes, the band 3 region was cryptic and its exposure on the falciparum-infected erythrocyte surface required clustering of band 3 protein. Thus, a parasite-induced modification of band 3 promotes adhesion and induces antigenic changes in the P. falciparum-infected erythrocyte.  相似文献   

5.
We performed ex vivo experiments with Plasmodium falciparum-infected human placentas from primi- and multigravida women from Cameroon. All women, independent of their gravida status, had anti-chondroitin sulfate A (CSA) adhesion antibodies which cross-reacted with heterologous strains, such as FCR3 and Palo-Alto(FUP)1, which were selected for CSA binding. These antibodies, directed against the surface of infected erythrocytes obtained by flushing with CSA (IRBC(CSA)), were restricted to the immunoglobulin G3 isotypes. Massive desequestration of parasites was achieved with soluble CSA but not with anti-ICAM-1 and anti-CD36 monoclonal antibodies. All of the CSA-flushed parasites were analyzed immediately by using in vitro assays of binding to Saimiri brain endothelial cells (SBEC) expressing various adhesion receptors. Parasites derived from all six placentas displayed the CSA adhesion phenotype. However, only partial inhibition of adhesion was observed in the presence of soluble CSA or when Sc1D SBEC were treated with chondroitinase ABC. These results suggest that an additional adhesive molecule of IRBC(CSA) which binds to an unidentified receptor is present in the placenta. This new phenotype was lost once the parasites adapted to in vitro culture. We observed additional differences in the CSA adhesion phenotype between placental parasites and in vitro-cultured parasites panned on endothelial cells carrying CSA. The minimum size of fractionated CSA required for a significant inhibition of placental IRBC(CSA) adhesion to Sc1D cells was 1 to 2 kDa, which contrasts with the 4-kDa size necessary to reach equivalent levels of inhibition with panned IRBC(CSA) of this phenotype. All placental IRBC(CSA) cytoadhered to Sc17 SBEC, which express only the CSA receptor. Panning of IRBC(CSA) on these cells resulted in a significant quantitative increase of IRBC cytoadhering to the CSA of Sc1D cells but did not change their capacity for adhesion to CSA on normal placenta cryosections. Our results indicate that the CSA binding phenotype is heterogeneous and that several distinct genes may encode P. falciparum-CSA ligands with distinct binding properties.  相似文献   

6.
7.
A feature of malaria in pregnancy is accumulation of P. falciparum-infected erythrocytes (IEs) in the placenta, which is associated with adverse outcomes for mothers and infants. Infection appears to involve parasite adhesion to molecules such as chondroitin sulfate A, hyaluronic acid, and immunoglobulins. In vitro, adhesion is predominantly a property of mature asexual forms of IEs; however, adhesion of immature or ring forms has recently been reported. We have assessed the parasitemia and developmental stages of IEs in the placenta by examination of placental blood and histological sections with comparison to parasites in the peripheral blood from the same individuals. Approximately 90% of IEs in the placenta were mature forms. Compared to peripheral blood, the placental parasitemia was 10-fold higher and the density of mature IEs was over 200-fold higher. By contrast, the average peripheral and placental ring-stage parasitemias were not significantly different. In 2 of 14 cases, the density of ring forms was higher in placental than in peripheral blood. These findings demonstrate prominent selective accumulation of mature asexual-stage IEs but infrequent accumulation of ring stages in the placental blood spaces, consistent with an important role for mature-stage IE adhesion.  相似文献   

8.
Twenty-two sugars and related compounds, nine neoglycoproteins, dopamine, four polyamines and oligomers of glucosamine were examined for their effect on the cytoadherence of Plasmodium falciparum-infected erythrocytes to melanoma cells. Inhibition of cytoadherence was high in the presence of the amino-sugars, glucosamine, galactosamine and mannosamine, and dopamine, and significant, although lower, in the presence of the polyamines, spermine, spermidine and putrescine. N-acetylated amino-sugars and the other compounds were not significant inhibitors of cytoadherence.  相似文献   

9.
A novel flow cytometric technique was developed to determine the absolute numbers of leukocytes of specific phenotypes in whole blood from two lines of inbred chickens (line 7(2) and line 6(1)). This single step method is rapid, accurate, repeatable, can be used in the presence of nucleated erythrocytes and addresses the problems encountered when electronically counting the numbers of leukocytes in specific subpopulations in the blood of non-mammalian species. It is superior to previous methods in that (1) peripheral blood leukocytes (PBL) do not need to be separated by density gradient centrifugation, (2) erythrocyte lysis is not necessary and (3) absolute numbers of specific phenotypes of cells are determined directly. A standard volume of diluted whole blood was added to a standard number of fluorescent beads before incubation with fluorescently-conjugated monoclonal antibodies recognising specific PBL surface antigens. Samples were analysed by flow cytometry and electronic gates were set to count a standard number of beads and the concomitant fluorescently-labelled cells. Absolute numbers of B, CD4+ and CD8+ PBL were determined. Since the bead fluorescence is constant, it was also possible to measure relative MHC class I expression using fluorescence intensity. In both lines of chickens absolute numbers of all of the phenotypes of PBL measured increased with age. Although line 7(2) chickens had greater numbers of B, CD4+, and CD8+ PBL than line 6(1) chickens, there was no significant difference in the CD4+:CD8+ PBL ratios, the T:B PBL ratios or relative MHC class I expression between the two lines. Relative MHC class I expression increased with age in both lines.  相似文献   

10.
Hepatic cell populations play an important role during the malaria life cycle. L-SIGN, a homologue of DC-SIGN, mediating leukocyte and pathogen binding, is selectively expressed on liver endothelial cells. Here, we present evidence that L-SIGN acts as an endocytic cell surface receptor. However, P. falciparum-infected erythrocytes did not cytoadhere to L-SIGN. Thus, L-SIGN contributes to elimination of mannosylated ligands but does not participate in hepatic clearance of P. falciparum-infected erythrocytes.  相似文献   

11.
The most deadly of the human malaria parasites, Plasmodium falciparum, invades the erythrocytes of its host and initiates a remarkable series of morphological rearrangements within the host cell cytoplasm. The mature erythrocyte is effectively a floating sack of haemoglobin with no endogenous protein synthesis or protein trafficking machinery. In order to colonise and remodel its extracellular space, the parasite generates a series of novel structures that are involved in the export of virulence factors to the surface of the host cell. These include extensions of the parasite's vacuolar membrane, known as the tubulovesicular network, and structures referred to as Maurer's clefts. Maurer's clefts are convoluted collections of distorted discs that are tethered to the red blood cell membrane by structures with stalk-like profiles. Recently electron tomography has enabled visualisation--in three dimensions and at unprecedented resolution--the complexity of the membrane systems within the infected RBC cytoplasm.  相似文献   

12.
The adherence of Plasmodium falciparum-infected red blood cells (IRBCs) in human placenta is mediated by chondroitin 4-sulfate (C4S). The C4S-adherent parasites selected from laboratory strains have been widely used for determining the C4S structural elements involved in IRBC binding and for the identification of parasite adhesive protein(s). However, as far as we know, the relative binding strength of the placental versus laboratory-selected parasites has not been reported. In this study, we show that IRBCs from the infected placentas bind to C4S about 3-fold higher than those selected for C4S adherence from laboratory strains. Although adherent parasites selected from several laboratory strains have comparable binding strengths, the one obtained from 3D7 parasites designated as 3D7N61 used for malaria genome sequencing, exhibits markedly lower binding strength. Furthermore, 3D7N61-CSA parasites lose most of the binding capacity by tenth generation in continuous culture.  相似文献   

13.
14.
The adhesion of Plasmodium falciparum-infected erythrocytes is thought to play a central role in the pathogenesis of severe malaria. ICAM-1 has been identified as one of the host receptors for parasitized erythrocytes and has been implicated as being involved in progression to cerebral malaria. Thus, intervention strategies based on the reversal of this interaction could potentially be used to reduce morbidity and mortality. We have investigated the inhibition of the interaction between ICAM-1 and infected erythrocytes by using recombinant soluble ICAM-1 as competitor and find that we are unable to reduce adhesion to ICAM-1 in vitro.  相似文献   

15.
A new procedure has been developed which allows the concomitant isolation of viable parasites and host cell plasma membranes from erythrocytes infected with Plasmodium chabaudi trophozoites. The average final yield of parasites is 56%. Free parasites reveal a well preserved ultrastructure, incorporate [14C]isoleucine for at least 3 h, and synthesize about the same proteins as parasites within erythrocytes as monitored by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)-autoradiography. The host cell plasma membranes can be isolated in the form of ghosts with an average yield of 27%. The ghosts possess a structurally intact plasma membrane as revealed by freeze-etch electron microscopy. The ghosts are regularly associated with seven neo-proteins as identified by SDS-PAGE and isoelectric focusing (IEF)/SDS-PAGE. These neo-proteins have the following apparent molecular masses: 154 kDa, 145 kDa, 90 kDa, 72 kDa (pI 4.5), 67 kDa, 52 kDa, and 33 kDa (pI 5.7), respectively. The contamination of ghosts by parasite material and, conversely, the contamination of parasites by host cell plasma membranes is very low as demonstrated by light and electron microscopy, lactoperoxidase-mediated radioiodination and the distribution of the typical parasite marker enzymes such as choline kinase, cholinephosphotransferase and ethanolaminephosphotransferase.  相似文献   

16.
OKM5 antigen and thrombospondin are currently under investigation as potential receptors on the surface of human monocytes, endothelial cells, and melanomas responsible for the cytoadherence of Plasmodium falciparum-infected erythrocytes. We have studies the binding capacity of six human melanoma cell lines and related this property to the cytoplasmic and surface expression of the OKM5 antigen and thrombospondin by using indirect immunofluorescence assays on methanol-fixed and nonfixed melanomas. The presence of OKM5 antigen was detectable only in the melanoma lines which bound P. falciparum-infected erythrocytes. Thrombospondin was present in the cytoplasm of all the melanoma lines but was not detectable on the surface of any cells. Our work demonstrates a direct correlation between surface OKM5 antigen and cytoadherence in vitro. While our results do not exclude thrombospondin as a mediator of cytoadherence to endothelial cells in vivo, they showed no correlation between the presence of thrombospondin and the ability of melanoma cell lines to cytoadhere in vitro.  相似文献   

17.
The role of the erythrocyte anion exchanger, band 3 protein (AE1), in the adhesion of Plasmodium falciparum-infected erythrocytes to CD36 and thrombospondin (TSP) was studied. Two specific anion exchange inhibitors that bind covalently to different regions of the band 3 molecule affected cytoadherence in dissimilar ways. Modification of lysine 539 by diisothiocyanostilbene sulfonic acid (DIDS) resulted in a significant reduction in the adhesive properties of parasitized erythrocytes for CD36, but not TSP, whereas treatment with fluorescein-5-maleimide, which modifies lysine 430, was without effect on both TSP and CD36 binding. The adhesive properties of the DIDS binding region (DBR) was demonstrated by competition experiments using synthetic peptides and by direct interaction of such peptides with CD36 transfected CHO cells. The results suggest that host membrane proteins such as AE1 contribute to the adhesion of malaria-infected erythrocytes to CD36.  相似文献   

18.
A characteristic feature of malaria during pregnancy is the sequestration of Plasmodium falciparum-infected red blood cells (IRBCs) in the intervillous spaces of the placenta. We have recently shown that unusually low-sulfated chondroitin sulfate proteoglycans (CSPGs) present in the intervillous spaces mediate the adherence of IRBCs in the placenta. In areas of endemicity, the prevalence of P. falciparum infection in pregnant women peaks during weeks 13 to 20 and then gradually declines, implying that the placental CSPGs are available for IRBC adhesion early during the pregnancy. However, there is no information on the expression and composition of CSPGs during pregnancy. In this study, the expression pattern of CSPGs during the course of pregnancy was investigated. The CSPGs were purified from placentas of various gestational ages, characterized, and tested for the ability to bind IRBCs. The data demonstrate that the CSPGs are present in the intervillous spaces throughout the second and third trimesters. The levels of CSPGs expressed per unit tissue weight were similar in placentas of various gestational ages. However, the structures of the intervillous-space CSPGs changed considerably during the course of pregnancy. In particular, the molecular weight was decreased, with an accompanying gradual increase in the CSPG size polydispersity, from 16 weeks until 38 weeks. The sulfate content was increased considerably after 24 weeks. Despite these structural changes, the CSPGs of placentas of various gestational ages efficiently supported the binding of IRBCs. These results demonstrate that CSPGs can mediate the sequestration of IRBCs in the intervillous spaces of the placenta during the entire second and third trimesters and possibly during the later part of the first trimester as well.  相似文献   

19.
We have examined the role of adenylate cyclase-hemolysin (CyaA) by constructing an in-frame deletion in the Bordetella bronchiseptica cyaA structural gene and comparing wild-type and cyaA deletion strains in natural host infection models. Both the wild-type strain RB50 and its adenylate cyclase toxin deletion (DeltacyaA) derivative efficiently establish persistent infections in rabbits, rats, and mice following low-dose inoculation. In contrast, an inoculation protocol that seeds the lower respiratory tract revealed significant differences in bacterial numbers and in polymorphonuclear neutrophil recruitment in the lungs from days 5 to 12 postinoculation. We next explored the effects of disarming specific aspects of the immune system on the relative phenotypes of wild-type and DeltacyaA bacteria. SCID, SCID-beige, or RAG-1(-/-) mice succumbed to lethal systemic infection following high- or low-dose intranasal inoculation with the wild-type strain but not the DeltacyaA mutant. Mice rendered neutropenic by treatment with cyclophosphamide or by knockout mutation in the granulocyte colony-stimulating factor locus were highly susceptible to lethal infection by either wild-type or DeltacyaA strains. These results reveal the significant role played by neutrophils early in B. bronchiseptica infection and by acquired immunity at later time points and suggest that phagocytic cells are a primary in vivo target of the Bordetella adenylate cyclase toxin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号