首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We recently reported that a chimeric simian/human immunodeficiency virus (SHIVKU-1) developed in our laboratory caused progressive depletion of CD4+T lymphocytes and AIDS within 6 months of inoculation into pig-tailed macaques (M.nemestrina). None of the pig-tailed macaques showed productive SHIV infection in the central nervous system (CNS). In this report, we show that by further passage of the pathogenic virus in rhesus macaques [M. mulatta], we have derived a new strain of SHIV (SHIVKU-2) that has caused AIDS and productive CNS infection in 3 of 5 rhesus macaques infected with the virus. Productive replication of SHIV in the CNS was clearly shown by high infectivity titers and p27 protein levels in brain homogenates, and in 2 of the 3 rhesus macaques this was associated with disseminated, nodular, demyelinating lesions, including focal multinucleated giant cell reaction, largely confined to the white matter. These findings were reminiscent of HIV-1 associated neurological disease, and our immunohistochemical and in situ hybridization data indicated that the neuropathological lesions were associated with the presence of SHIV-specific viral antigens and nucleic acid respectively. However, the concomitant reactivation of opportunistic infections in these macaques suggested that such pathogens may have influenced the replication of SHIV in the CNS, or modified the neuropathological sequelae of SHIV infection in the rhesus species, but not in pig-tailed macaques. Our findings in the two species of macaques highlight the complexities of lentiviral neuropathogenesis, the precise mechanisms of which are still elusive.  相似文献   

3.
The simian immunodeficiency virus (SIV) nef gene is an important determinant of viral load and acquired immunodeficiency syndrome (AIDS) in macaques. A role(s) for the HIV-1 nef gene in infection and pathogenesis was investigated by constructing recombinant viruses in which the nef gene of the pathogenic molecular clone SIVmac239 nef was replaced with either HIV-1sf2nef or HIV-1sf33nef. These chimeras, designated SHIV-2nef and SHIV-33nef, expressed HIV-1 Nef protein and replicated efficiently in cultures of rhesus macaque lymphoid cells. In two SHIV-2nef-infected juvenile rhesus macaques and in one of two SHIV-33nef-infected juvenile macaques, virus loads remained at low levels in both peripheral blood and lymph nodes in acute and chronic phases of infection (for >83 weeks). In striking contrast, the second SHIV-33nef-infected macaque showed high virus loads during the chronic stage of infection (after 24 weeks). CD4+ T-cell numbers declined dramatically in this latter animal, which developed simian AIDS (SAIDS) at 47-53 weeks after inoculation; virus was recovered at necropsy at 53 weeks and designated SHIV-33Anef. Sequence analysis of the HIV-1sf33 nef gene in SHIV-33Anef revealed four consistent amino acid changes acquired during passage in vivo. Interestingly, one of these consensus mutations generated a tyr-x-x-leu (Y-X-X-L) motif in the HIV-1sf33 Nef protein. This motif is characteristic of certain endocytic targeting sequences and also resembles a src-homology region-2 (SH-2) motif found in many cellular signaling proteins. Four additional macaques infected with SHIV-33Anef contained high virus loads, and three of these animals progressed to fatal SAIDS. Several of the consensus amino acid changes in Nef, including Y-X-X-L motif, were retained in these recipient animals exhibiting high virus load and disease. In summary, these findings indicate that the SHIV-33Anef chimera is pathogenic in rhesus macaques and that this approach, i.e., construction of chimeric viruses, will be important for analyzing the function(s) of HIV-1 nef genes in immunodeficiency in vivo, testing antiviral therapies aimed at inhibiting AIDS, and investigating adaptation of this HIV-1 accessory gene to the macaque host.  相似文献   

4.
Losing the decisive virus-specific functions of both CD4(+) and CD8(+) T lymphocytes in the first weeks after immunodeficiency virus infection ultimately leads to AIDS. The SIV/rhesus monkey model for AIDS was used to demonstrate that a 4-week chemotherapeutic reduction of viral load during acute SIV infection of macaques allowed the development of a competent immune response able to control virus replication after discontinuation of treatment in two of five monkeys. Increasing SIV-specific CD4(+) T-helper-cell proliferation was found in all macaques several weeks after treatment, independent of their viral load. However, only macaques with low viral loads showed persistent T-cell reactivity of lymph node cells. In contrast to animals with higher viral loads, T-helper-cell counts and memory T-helper cells did not decline in the two macaques controlling viral replication. Lymphocyte apoptosis was consistently low in all treated macaques. In contrast, high CD8(+) lymphocyte death but only slightly increased CD4(+) lymphocyte apoptosis were observed during the first weeks after infection in untreated control animals, indicating that early apoptotic death of virus-specific CTL could be an important factor for disease development. Antiretroviral treatment early after infection obviously retained virus-specific and competent T lymphocytes, whereby a virus-specific immune response could develop in two animals able to control the viral replication after cessation of treatment.  相似文献   

5.
Summary: Infection of rhesus macaques with simian immunodeficiency virus (SIV) is an excellent model system for studying viral adaptation to immune responses. In this review, we discuss how the SIV-infected macaque has provided unequivocal evidence for cytotoxic T-lymphocyte (CTL) selection of viral escape variants. This improved understanding of CTL escape may influence human immunodeficiency virus (HIV) vaccine design as well as our understanding of HIV pathogenesis.  相似文献   

6.
7.

Background  

In many preclinical AIDS research studies, antiretroviral therapy (ART) is administered to experimentally simian immunodeficiency (SIV)-infected rhesus macaques for reduction of viral load to undetectable levels. Prolonged treatment of macaques with a high dose of PMPA (9-[2-(r)-(phosphonomethoxy) propyl] adenine or tenofovir; 30 mg/kg of body weight subcutaneously once daily) can result in proximal renal tubular dysfunction, a Fanconi-like syndrome characterized by glucosuria, aminoaciduria, hypophosphatemia, and bone pathology. In contrast, chronic administration of a low dose of PMPA (10 mg/kg subcutaneously once daily) starting at birth does not seem to be associated with any adverse health effects within 3 years of treatment. In contrast to PMPA, limited information on systemic toxicity in rhesus monkeys is available for FTC (5-fluoro-1-(2R,5S)-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine; emtricitabine) and stavudine (d4T).  相似文献   

8.
We have monitored kinetics of peripheral blood Interleukin (IL)-18 level, viral RNA load, and CD4(+) T cell counts in cynomolgus and rhesus macaques following infections of various simian/human immunodeficiency viruses (SHIVs) causing differential pathogenicity. Infections of cynomolgus and rhesus macaques with pathogenic SHIVs-C2/1 and -89.6PD, respectively, induced high levels of plasma IL-18 (0.1-1 ng/ml) and enhanced apoptosis of peripheral blood T cells during primary viremia, along with a rapid decline of CD4(+) T cells and a high level of set point viral load after primary viremia (six of six cases). In contrast, infections of cynomolgus macaques with nonpathogenic SHIVs-TH09V3 and -MD14 did not cause such IL-18 elevation, showing no decline of CD4(+) T cells and no or low viral set point level following primary viremia (three of three cases). Thus, the elevation of circulating IL-18 level during primary viral infection can be a good indicator of an active pathogenic viral infection. However, the role of increased IL-18 remains to be elucidated and needs further investigation.  相似文献   

9.
Using long-distance DNA PCR, we prospectively followed rhesus monkeys that had been inoculated intramuscularly with supercoiled plasmid DNA encoding intact simian immunodeficiency virus (SIV). From 4 to 10 weeks postinoculation onward, we detected extensively deleted proviral genomes along with full-length viral genomes in peripheral blood mononuclear cells (PBMC) in adult macaques. During their chronic asymptomatic phase of infection, the frequency of deleted proviral genomes was similar in PBMC and lymph nodes. The latter, however, harbored significantly more full-length proviral DNA than PBMC, consistent with the lack of effective antiviral cytotoxic T-cell activity in lymph nodes described by others during human immunodeficiency virus infection. After the macaques progressed to AIDS, full-length proviral DNA became equally abundant in lymph nodes and in PBMC. We have demonstrated that although a single molecular species of proviral DNA was inoculated, genomic diversity was detected within a short time, thus confirming the genetic instability of the SIV genome in vivo.  相似文献   

10.
Enterocytozoon bieneusi is the most common microsporidian parasite recognized in human patients with AIDS. Recently, we identified a virtually identical organism causing a spontaneous infection associated with hepatobiliary and intestinal disease in simian immunodeficiency virus (SIV)-infected macaques. To examine the natural history of the infection, we examined captive rhesus macaques for E. bieneusi by PCR, in situ hybridization, and cytochemical techniques. PCR performed on fecal DNA detected enterocytozoon infection in 22 (16.7%) of 131 normal rhesus macaques (Macaca mulatta), compared to 18 (33.8%) of 53 rhesus macaques experimentally inoculated with SIV. In normal rhesus macaques, persistence of infection was demonstrated for up to 262 days and was usually not associated with clinical signs. In six of seven normal rhesus animals, E. bieneusi was detected by PCR in bile obtained through percutaneous cholecystocentesis but not by in situ hybridization performed on endoscopic biopsies of duodenum and proximal jejunum.  相似文献   

11.
Infection with Simian Immunodeficiency Virus (SIV) leads to high viral loads and progression to Simian AIDS (SAIDS) in rhesus macaques. The viral accessory protein Nef is required for this phenotype in monkeys as well as in HIV-infected humans. Previously, we determined that HIVNef binds HIVGagPol and Alix for optimal viral replication in cells. In this study, we demonstrated that these interactions could correlate with high viral loads leading to SAIDS in the infected host. By infecting rhesus macaques with a mutant SIVmac239, where sequences in the nef gene that are required for these interactions were mutated, we observed robust viral replication and disease in two out of four monkeys, where they reverted to the wild type genotype and phenotype. These two rhesus macaques also died of SAIDS. Two other monkeys did not progress to disease and continued to harbor mutant nef sequences. We conclude that interactions between Nef, GagPol and Alix contribute to optimal viral replication and progression to disease in the infected host.  相似文献   

12.
Sexually transmitted HIV-1 strains utilize the chemokine receptor CCR5 for viral entry and inhibitors targeting this coreceptor offer great promise for antiretroviral therapy. They also raise the question, however, whether viral variants exhibiting altered coreceptor interactions and resistance against these antiviral agents might still be pathogenic. In the present study, we analyzed a SIVmac239 envelope (Env) mutant (239DL) containing two mutations in the V3 loop which reduced viral entry via CCR5 by 10- to 20-fold, disrupted utilization of common alternative SIV coreceptors and changed the way Env engaged CCR5. To evaluate its replicative capacity and pathogenic potential in vivo we infected six rhesus macaques with 239DL. We found that 239DL replication was only slightly attenuated early during infection. Thereafter, a D324V change, which restored efficient CCR5 usage and coincided with 239wt-like levels of viral replication, emerged in two animals. In contrast, the viral geno- and phenotype remained stable in the other four rhesus macaques. Although these animals had about 100-fold reduced viral RNA loads relative to 239wt-infected macaques, they showed pronounced CD4 T-cell depletion in the intestinal lamina propria, and one developed opportunistic infections and died with simian AIDS. Thus, changes in the V3 loop that diminished CCR5 usage and altered Env interactions with CCR5 reduced the pathogenic potential of SIVmac in rhesus macaques but did not abolish it entirely.  相似文献   

13.
In AIDS patients, wasting in adults and failure to thrive in children are common and devastating problems. Weight loss in rhesus macaques infected with simian immunodeficiency virus (SIV) has not been well characterized. The purpose of this study was to determine growth curves in SIV-infected juvenile macaques to determine the effects of SIV infection on body weight and growth. Medical records of seven juvenile male SIV-infected macaques were retrospectively reviewed to determine body weights, survival time, CD4 count, and viral load. Mean age and body weight at the time of inoculation were 63.3 weeks and 2.4 kg, respectively. Mean survival was 73.7 weeks, and mean body weight at the time of death was 3.0 kg, whereas the published mean body weight for this age of male rhesus macaque is 4.1 kg. Compared with the linear growth pattern of normal animals, the growth pattern for the SIV-infected animals exhibited strong nonlinearity with an inflection point at the mean survival of 74 weeks. After this time point, the discrepancy between growth curves for infected and healthy animals increased at a greater rate. Body weight correlated inversely with viral load (r = -0.368; p = .003) but there was no correlation between body weight and CD4 count. The results of this study suggest that failure to thrive is a consequence of SIV infection and may be related to severity of infection.  相似文献   

14.
Simian immunodeficiency virus (SIV) infection of macaques is the best available animal model for studying the pathogenesis of AIDS. Experimental inoculation of macaques with SIV results in a persistent infection that leads to immunodeficiency, opportunistic infections, and death. Most aspects of the illness, including immunologic and virologic parameters, are easily quantified. Furthermore, pathologic processes can be evaluated throughout the course of experimental infection. Recently, molecular clones of SIV proviral DNA have been used to study genetic variation and specific viral determinants of pathogenesis. Considered together, these observations support the continued detailed study of SIV infection of macaques as a model for human AIDS.  相似文献   

15.
Simian immunodeficiency virus (SIV) infection of macaques is the best available animal model for studying the pathogenesis of AIDS. Experimental inoculation of macaques with SIV results in a persistent infection that leads to immunodeficiency, opportunistic infections, and death. Most aspects of the illness, including immunologic and virologic parameters, are easily quantified. Furthermore, pathologic processes can be evaluated throughout the course of experimental infection. Recently, molecular clones of SIV proviral DNA have been used to study genetic variation and specific viral determinants of pathogenesis. Considered together, these observations support the continued detailed study of SIV infection of macaques as a model for human AIDS.  相似文献   

16.
Simian immunodeficiency virus (SIV) infection of rhesus macaques provides an excellent model for investigating the basis of protective immunity against human immunodeficiency virus (HIV). One limitation of this model, however, has been the availability of a small number of known MHC class I-restricted CTL epitopes for investigating virus-specific immune responses. We assessed CTL responses against SIV Gag in a cohort of DNA/modified vaccinia virus Ankara (MVA)-vaccinated/simian-human immunodeficiency virus (SHIV)-challenged rhesus macaques. Here, we report the identification of five novel SIV CTL epitopes in Gag for the first time (Gag(39-46) NELDRFGL, Gag(169-177) EVVPGFQAL, Gag(198-206) AAMQIIRDI, Gag(257-265) IPVGNIYRR and Gag(296-305) SYVDRFYKSL) that are restricted by the common MHC class I molecule Mamu-B*01. CTL responses to these epitopes were readily detected in cryopreserved PBMC in multiple animals up to 62 weeks post-infection, both by IFN-gamma enzyme-linked immunospot assay and intracellular IFN-gamma staining. Importantly, viral sequencing results revealed that these epitopes are highly conserved in the SIV-challenged macaques over a long period of time, indicating functional constraints in these regions. Moreover, the presence of CTL responses targeting these epitopes has been confirmed in two independent cohorts of rhesus macaques that have been challenged by SHIV or SIV. Our findings provide valuable candidates for poly-epitope vaccines and for long-term quantitative monitoring of epitope-specific CD8(+) responses in the context of this common Mamu class I allele. It may thus help increase the supply of rhesus macaques in which epitope-specific immunity can be studied in the context of SIV vaccine design.  相似文献   

17.
Summary: The AIDS pandemic is a global emergency and a preventive vaccine is urgently needed. CD4 and CD8 T-cell responses appear important in controlling human immunodeficiency virus (HIV)-1 in humans and simian immunodeficiency virus (SIV) in macaques. The utility of vaccines that induce high levels of SIV- or HIV-specific T cells has recently become clearer. Since T cells recognize virus-infected cells rather than free virus, T-cell-based vaccines only have the capacity to control infections (non-sterilizing immunity) and to prevent continuing or persisting infection. An HIV/SIV infection of macaques that is partially controlled by vaccine-induced T-cell responses permits a critical window of opportunity for the efficient generation and recruitment of additional T- and B-cell immune responses to the incoming viral inoculum. Although CD8-depletion experiments in macaques have defined the utility of CD8 T responses in control of SIV infections in macaques, direct evidence on the utility of either CD4 or CD8 T-cell responses in protective immunity to SIV following vaccination is lacking. The availability of genetically identical macaques would allow cell transfer studies and help define with more certainty the role of cellular immune responses in protection from AIDS. The review also focuses on the development of syngeneic macaques by twinning and cloning technologies.  相似文献   

18.
We demonstrate that the FATAL cytolysis assay can be adapted into a rapid and fluorometric antibody-dependent cellular cytotoxicity assay (RFADCC). The RFADCC relies on double-staining target cells with a membrane dye (PKH-26) and a viability dye (CFSE) prior to the addition of antibody and effector cells. We used the RFADCC to assess dose-dependent and envelope-specific anti-human immunodeficiency virus (HIV) ADCC responses mediated by monoclonal antibody-2G12 and human sera. Using the assay, we also detected early anti-simian immunodeficiency virus (SIV) ADCC responses in rhesus macaques infected with pathogenic SIV(mac251). Importantly, the RFADCC was further useful in monitoring anti-HIV and anti-SIV ADCC responses elicited by immunizing chimpanzees and rhesus macaques with replicating adenovirus-based AIDS vaccine candidates. In comparison to the standard chromium release assay, the RFADCC provides a higher cell killing readout and is advantageous in allowing use of viably frozen as well as fresh effector cells, thus facilitating assay standardization. The RFADCC is therefore a simple, reliable, and highly sensitive method that can be applied to assess the ADCC activity of monoclonal antibodies as well as ADCC responses elicited by HIV or SIV infection or by AIDS vaccine candidates.  相似文献   

19.
In this study, we found that the electric potential derived from the redox reaction of ultraviolet (UV)-illuminated CD4-conjugated titanium dioxide (TiO2) inactivated a wide range of high-titered primary HIV-1 isolates, regardless of virus co-receptor usage or genetic clade. In vitro incubation of HIV-1 isolates with CD4-conjugated TiO2 (CD4-TiO2) followed by UV illumination led to inhibition of viral infectivity in both H9 cells and peripheral blood mononuclear cells as well as to the complete inactivation of plasma virions from HIV-1-infected individuals. Treatment with a newly established extra-corporeal circulation system with the photocatalyst in rhesus macaques completely inactivated plasma virus in the system and effectively reduced the infectious plasma viral load. Furthermore, plasma viremia and infectious viral loads were controlled following a second therapeutic photocatalyst treatment during primary SIV(mac239) infection of macaques. Our findings suggest that this therapeutic immunophysical strategy may help control human immunodeficiency viral infection in vivo.  相似文献   

20.
Human immunodeficiency virus-1 (HIV-1) and simian immunodeficiency virus (SIV) have been shown to compartmentalize within various tissues, including the brain. However, the evolution of viral quasispecies in the setting of drug abuse has not been characterized. The goal of this study was to examine viral evolution in the cerebral compartment of morphine-dependent and control macaques to determine its role in rapid disease progression. To address this issue, we analyzed the envelope (env) gene from proviral DNA in our SIV/SHIV macaque model of morphine dependence and AIDS. Analyses of proviral DNA revealed a direct correlation between total genetic changes and survival time. However, the rate of evolution during disease progression was higher in morphine-dependent and rapid-progressor macaques than was the rate of evolution in the control animals. This study provides additional insight into SIV envelope variation in the CNS of morphine-dependent macaques and genotypes that may have evolved in the brain and contributed to disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号