首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Comprehensive analysis of CpG islands in human chromosomes 21 and 22   总被引:32,自引:0,他引:32  
CpG islands are useful markers for genes in organisms containing 5-methylcytosine in their genomes. In addition, CpG islands located in the promoter regions of genes can play important roles in gene silencing during processes such as X-chromosome inactivation, imprinting, and silencing of intragenomic parasites. The generally accepted definition of what constitutes a CpG island was proposed in 1987 by Gardiner-Garden and Frommer [Gardiner-Garden, M. & Frommer, M. (1987) J. Mol. Biol. 196, 261-282] as being a 200-bp stretch of DNA with a C+G content of 50% and an observed CpG/expected CpG in excess of 0.6. Any definition of a CpG island is somewhat arbitrary, and this one, which was derived before the sequencing of mammalian genomes, will include many sequences that are not necessarily associated with controlling regions of genes but rather are associated with intragenomic parasites. We have therefore used the complete genomic sequences of human chromosomes 21 and 22 to examine the properties of CpG islands in different sequence classes by using a search algorithm that we have developed. Regions of DNA of greater than 500 bp with a G+C equal to or greater than 55% and observed CpG/expected CpG of 0.65 were more likely to be associated with the 5' regions of genes and this definition excluded most Alu-repetitive elements. We also used genome sequences to show strong CpG suppression in the human genome and slight suppression in Drosophila melanogaster and Saccharomyces cerevisiae. This finding is compatible with the recent detection of 5-methylcytosine in Drosophila, and might suggest that S. cerevisiae has, or once had, CpG methylation.  相似文献   

5.
Mammalian genomes are threatened with gene inactivation and chromosomal scrambling by recombination between repeated sequences such as mobile genetic elements and pseudogenes. We present and test a model for a defensive strategy based on the methylation and subsequent mutation of CpG dinucleotides in those DNA duplications that create uninterrupted homologous sequences longer than about 0.3 kilobases. The model helps to explain both the diversity of CpG frequencies in different genes and the persistence of gene fragmentation into exons and introns.  相似文献   

6.
A striking feature of the human genome is the dearth of CpG dinucleotides (CpGs) interrupted occasionally by CpG islands (CGIs), regions with relatively high content of the dinucleotide. CGIs are generally associated with promoters; genes, whose promoters are especially rich in CpG sequences, tend to be expressed in most tissues. However, all working definitions of what constitutes a CGI rely on ad hoc thresholds. Here we adopt a direct and comprehensive survey to identify the locations of all CpGs in the human genome and find that promoters segregate naturally into two classes by CpG content. Seventy-two percent of promoters belong to the class with high CpG content (HCG), and 28% are in the class whose CpG content is characteristic of the overall genome (low CpG content). The enrichment of CpGs in the HCG class is symmetric and peaks around the core promoter. The broad-based expression of the HCG promoters is not a consequence of a correlation with CpG content because within the HCG class the breadth of expression is independent of the CpG content. The overall depletion of CpGs throughout the genome is thought to be a consequence of the methylation of some germ-line CpGs and their susceptibility to mutation. A comparison of the frequencies of inferred deamination mutations at CpG and GpC dinucleotides in the two classes of promoters using SNPs in human-chimpanzee sequence alignments shows that CpGs mutate at a lower frequency in the HCG promoters, suggesting that CpGs in the HCG class are hypomethylated in the germ line.  相似文献   

7.
DNA cytosine methylation is a central epigenetic marker that is usually mutagenic and may increase the level of sequence divergence. However, methylated genes have been reported to evolve more slowly than unmethylated genes. Hence, there is a controversy on whether DNA methylation is correlated with increased or decreased protein evolutionary rates. We hypothesize that this controversy has resulted from the differential correlations between DNA methylation and the evolutionary rates of coding exons in different genic positions. To test this hypothesis, we compare human–mouse and human–macaque exonic evolutionary rates against experimentally determined single-base resolution DNA methylation data derived from multiple human cell types. We show that DNA methylation is significantly related to within-gene variations in evolutionary rates. First, DNA methylation level is more strongly correlated with C-to-T mutations at CpG dinucleotides in the first coding exons than in the internal and last exons, although it is positively correlated with the synonymous substitution rate in all exon positions. Second, for the first exons, DNA methylation level is negatively correlated with exonic expression level, but positively correlated with both nonsynonymous substitution rate and the sample specificity of DNA methylation level. For the internal and last exons, however, we observe the opposite correlations. Our results imply that DNA methylation level is differentially correlated with the biological (and evolutionary) features of coding exons in different genic positions. The first exons appear more prone to the mutagenic effects, whereas the other exons are more influenced by the regulatory effects of DNA methylation.  相似文献   

8.
9.
10.
Epigenetics of lung cancer   总被引:5,自引:0,他引:5  
  相似文献   

11.
The amount of noncoding genomic DNA sequence that aligns between human and mouse varies substantially in different regions of their genomes, and the amount of repetitive DNA also varies. In this report, we show that divergence in noncoding nonrepetitive DNA is strongly correlated with the amount of repetitive DNA in a region. We investigated aligned DNA in four large genomic regions with finished human sequence and almost or completely finished mouse sequence. These regions, totaling 5.89 Mb of DNA, are on different chromosomes and vary in their base composition. An analysis based on sliding windows of 10 kb shows that the fraction of aligned noncoding nonrepetitive DNA and the fraction of repetitive DNA are negatively correlated, both at the level of an entire region and locally within it. This conclusion is strongly supported by a randomization study, in which repetitive elements are removed and randomly relocated along the sequences. Thus, regions of noncoding genomic DNA that accumulated fewer point mutations since the primate-rodent divergence also suffered fewer retrotransposition events. These results indicate that some regions of the genome are more "flexible" over the time scale of mammalian evolution, being able to accommodate many point mutations and insertions, whereas other regions are more "rigid" and accumulate fewer changes. Stronger conservation is generally interpreted as indicating more extensive or more important function. The evidence presented here of correlated variation in the rates of different evolutionary processes across noncoding DNA must be considered in assessing such conservation for evidence of selection.  相似文献   

12.
The recent, unexpected discovery of a functional DNA methylation system in the genome of the social bee Apis mellifera underscores the potential importance of DNA methylation in invertebrates. The extent of genomic DNA methylation and its role in A. mellifera remain unknown, however. Here we show that genes in A. mellifera can be divided into 2 distinct classes, one with low-CpG dinucleotide content and the other with high-CpG dinucleotide content. This dichotomy is explained by the gradual depletion of CpG dinucleotides, a well-known consequence of DNA methylation. The loss of CpG dinucleotides associated with DNA methylation also may explain the unusual mutational patterns seen in A. mellifera that lead to AT-rich regions of the genome. A detailed investigation of this dichotomy implicates DNA methylation in A. mellifera development. High-CpG genes, which are predicted to be hypomethylated in germlines, are enriched with functions associated with developmental processes, whereas low-CpG genes, predicted to be hypermethylated in germlines, are enriched with functions associated with basic biological processes. Furthermore, genes more highly expressed in one caste than another are overrepresented among high-CpG genes. Our results highlight the potential significance of epigenetic modifications, such as DNA methylation, in developmental processes in social insects. In particular, the pervasiveness of DNA methylation in the genome of A. mellifera provides fertile ground for future studies of phenotypic plasticity and genomic imprinting.  相似文献   

13.
14.
Strand-symmetric relative abundance functionals for di-, tri-, and tetranucleotides are introduced and applied to sequences encompassing a broad phylogenetic range to discern tendencies and anomalies in the occurrences of these short oligonucleotides within and between genomic sequences. For dinucleotides, TA is almost universally under-represented, with the exception of vertebrate mitochondrial genomes, and CG is strongly under-represented in vertebrates and in mitochondrial genomes. The traditional methylation/deamination/mutation hypothesis for the rarity of CG does not adequately account for the observed deficiencies in certain sequences, notably the mitochondrial genomes, yeast, and Neurospora crassa, which lack the standard CpG methylase. Homodinucleotides (AA.TT, CC.GG) and larger homooligonucleotides are over-represented in many organisms, perhaps due to polymerase slippage events. For trinucleotides, GCA.TGC tends to be under-represented in phage, human viral, and eukaryotic sequences, and CTA.TAG is strongly under-represented in many prokaryotic, eukaryotic, and viral sequences. The CCA.TGG triplet is ubiquitously over-represented in human viral and eukaryotic sequences. Among the tetranucleotides, several four-base-pair palindromes tend to be under-represented in phage sequences, probably as a means of restriction avoidance. The tetranucleotide CTAG is observed to be rare in virtually all bacterial genomes and some phage genomes. Explanations for these over- and under-representations in terms of DNA/RNA structures and regulatory mechanisms are considered.  相似文献   

15.
Number of CpG islands and genes in human and mouse.   总被引:27,自引:1,他引:26       下载免费PDF全文
Estimation of gene number in mammals is difficult due to the high proportion of noncoding DNA within the nucleus. In this study, we provide a direct measurement of the number of genes in human and mouse. We have taken advantage of the fact that many mammalian genes are associated with CpG islands whose distinctive properties allow their physical separation from bulk DNA. Our results suggest that there are approximately 45,000 CpG islands per haploid genome in humans and 37,000 in the mouse. Sequence comparison confirms that about 20% of the human CpG islands are absent from the homologous mouse genes. Analysis of a selection of genes suggests that both human and mouse are losing CpG islands over evolutionary time due to de novo methylation in the germ line followed by CpG loss through mutation. This process appears to be more rapid in rodents. Combining the number of CpG islands with the proportion of island-associated genes, we estimate that the total number of genes per haploid genome is approximately 80,000 in both organisms.  相似文献   

16.
Comparisons of gene expression between human and non-human primate brains have identified hundreds of differentially expressed genes, yet translating these lists into key functional distinctions between species has proved difficult. Here we provide a more integrated view of human brain evolution by examining the large-scale organization of gene coexpression networks in human and chimpanzee brains. We identify modules of coexpressed genes that correspond to discrete brain regions and quantify their conservation between the species. Module conservation in cerebral cortex is significantly weaker than module conservation in subcortical brain regions, revealing a striking gradient that parallels known evolutionary hierarchies. We introduce a method for identifying species-specific network connections and demonstrate how differential network connectivity can be used to identify key drivers of evolutionary change. By integrating our results with comparative genomic sequence data and estimates of protein sequence divergence rates, we confirm a number of network predictions and validate these findings. Our results provide insights into the molecular bases of primate brain organization and demonstrate the general utility of weighted gene coexpression network analysis.  相似文献   

17.
18.
Haemophilia B is an X-linked recessively inherited bleeding disorder caused by heterogeneous mutations spanning the entire factor IX gene. As spontaneous germ-line mutations are known to occur mostly at CpG dinucleotides in the FIX gene, control of the disease would require continuous carrier detection and mutation screening. Identification of point mutations, the most common type of mutation in FIX gene, is more challenging compared with deletion and insertion mutations. We examined the haemophilia B database to identify specific nucleotides in the FIX gene that are mutated in relatively large number of patients and the variability (if any) in the mutational hotspots at CpG dinucleotides. It was found that while mutations responsible to account for all 2348 haemophilia B patients covered 20% of the FIX cDNA, only 1% of the cDNA involving mostly CpG dinucleotides accounted for mutation in 42.41% of the patient pool. Thus, only 27 nucleotides need to be investigated to identify the common point mutations, among which 15 are predicted to undergo change in restriction sites on mutation. It is interesting to note that seven nucleotides occurring in CpG dinucleotides do not have any reported mutation despite each of those being predicted to harbour mutation as a result of transition and having mutations recorded in the database for the neighbouring nucleotides. Strikingly large number of mutation in codon 296 causing T to M change in catalytic domain originally proposed to be the result of the founder effect also contains largest number of haplotype suggesting recurrence of de novo mutation.  相似文献   

19.
Local hypomethylation in atherosclerosis found in rabbit ec-sod gene.   总被引:9,自引:0,他引:9  
Extracellular superoxide dismutase (EC-SOD) protects arteries against deleterious effects of superoxide anions and the development of atherosclerosis. In this study, we cloned and characterized rabbit ec-sod gene. We identified 6 rabbit C-elements and 5 CpG clusters in the cloned sequence. One of the CpG clusters is located on the coding sequence. Because CpG clusters are potential sites for methylation and may explain the occurrence of mutations, methylation status of each of the CpG dimers located in the coding sequence CpG cluster was characterized using direct genomic sequencing. Unexpectedly, a marked reduction in the amount of methylated CpG dinucleotides in ec-sod gene was detected in atherosclerotic aortas as compared with normal aortic intima-media. Although alterations in DNA methylation are well characterized in malignant tumors, the presence of methylation changes in atherosclerosis has not been studied even though both diseases are characterized by excess cellular proliferation and alterations in gene expression. Further analysis of the whole genomic methylation by high-pressure liquid chromatography in normal and atherosclerotic aortas revealed a tendency for a decreased 5-methylcytosine (5-mC) content in atherosclerotic aortas as compared with normal arteries. Hypomethylation in atherosclerotic aortas occurred at the same level as has been reported from malignant tumors. Although a causal relationship between the methylation level and expression of EC-SOD cannot be proven, our results show that ec-sod hypomethylation is associated with the development of atherosclerosis and suggest that it may affect structure and function of ec-sod and other genes possibly involved in the development of atherosclerotic lesions.  相似文献   

20.
Global loss of DNA methylation has been known for decades as an epigenomic aberration associated with carcinogenesis and cancer progression. Loss of DNA methylation affects predominantly repetitive elements, which encompass >50% of the CpG dinucleotides present in the human genome. Because of the lack of an effective approach, no studies have been conducted to reveal such genome-wide methylation changes at a single-base resolution. To precisely determine the CpG sites with methylation loss during progression of pediatric intracranial ependymomas, we exploited a high-throughput bisulfite sequencing approach that simultaneously generates methylation profiles for thousands of Alu elements and their flanking sequences. Comparison of the methylation profiles of normal and tumor tissues revealed that the methylation status of the majority of CpG sites adjacent to or within Alu repeats remain unaltered, while a small set of CpG sites gain or lose methylation in ependymomas. Compared to the CpG sites with stable methylation level between normal control and ependymomas, the differentially methylated CpG sites are enriched in the sequences with low CpG density in the flanking regions of Alu repeats, rather than within the Alu sequences themselves. In addition, the CpG sites that are hypermethylated in ependymomas are proximal to CpG islands, whereas those that are hypomethylated are overrepresented in intergenic regions. Lastly, aberrant methylation of several genomic loci was confirmed to be associated with the aggressive primary tumors and the relapsed ependymomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号