首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friedreich's ataxia (FRDA), an autosomal recessive disorder, is characterized by spinocerebellar degeneration and cardiomyopathy. Here we explore some of the putative mechanisms underlying the cardiomyopathy in FRDA that have been elucidated using different experimental models. FRDA is characterized by a deficiency in frataxin, a protein vital in iron handling. Iron accumulation, lack of functional iron-sulphur clusters, and oxidative stress seem to be among the most important consequences of frataxin deficiency explaining the cardiac abnormalities in FRDA.  相似文献   

2.
Friedreich ataxia (FRDA) is an autosomal recessive, multi-systemic degenerative disease that results from reduced synthesis of the mitochondrial protein frataxin. Frataxin has been intensely studied since its deficiency was linked to FRDA in 1996. The defining properties of frataxin – (i) the ability to bind iron, (ii) the ability to interact with, and donate iron to, other iron-binding proteins, and (iii) the ability to oligomerize, store iron and control iron redox chemistry – have been extensively characterized with different frataxin orthologs and their interacting protein partners. This very large body of biochemical and structural data [reviewed in (Bencze et al., 2006)] supports equally extensive biological evidence that frataxin is critical for mitochondrial iron metabolism and overall cellular iron homeostasis and antioxidant protection [reviewed in (Wilson, 2006)]. However, the precise biological role of frataxin remains a matter of debate. Here, we review seminal and recent data that strongly link frataxin to the synthesis of iron–sulfur cluster cofactors (ISC), as well as controversial data that nevertheless link frataxin to additional iron-related processes. Finally, we discuss how defects in ISC synthesis could be a major (although likely not unique) contributor to the pathophysiology of FRDA via (i) loss of ISC-dependent enzymes, (ii) mitochondrial and cellular iron dysregulation, and (iii) enhanced iron-mediated oxidative stress. This article is part of a Special Issue entitled ‘Mitochondrial function and dysfunction in neurodegeneration’.  相似文献   

3.
Rescue of the Friedreich's ataxia knockout mouse by human YAC transgenesis   总被引:3,自引:0,他引:3  
We have generated and characterised transgenic mice that contain the entire Friedreich's ataxia gene (FRDA) within a human YAC clone of 370 kb. In an effort to overcome the embryonic lethality of homozygous Frda knockout mice and to study the behaviour of human frataxin in a mouse cellular environment, we bred the FRDA YAC transgene onto the null mouse background. Phenotypically normal offspring that express only YAC-derived human frataxin were identified. The human frataxin was expressed in the appropriate tissues at levels comparable to the endogenous mouse frataxin, and it was correctly processed and localised to mitochondria. Biochemical analysis of heart tissue demonstrated preservation of mitochondrial respiratory chain function, together with some increase in citrate synthase and aconitase activities. Thus, we have demonstrated that human frataxin can effectively substitute for endogenous murine frataxin in the null mutant. Our studies are of immediate consequence for the generation of Friedreich's ataxia transgenic mouse models, and further contribute to the accumulating knowledge of human-mouse functional gene replacement systems. Electronic Publication  相似文献   

4.
Patients with Friedreich ataxia (FRDA) have severely reduced levels of the mitochondrial protein frataxin, which results from a large GAA triplet-repeat expansion within the frataxin gene (FXN). High evolutionary conservation of frataxin across species has enabled the development of disease models of FRDA in various unicellular and multicellular organisms. Mouse models include classical knockout models, in which the Fxn gene is constitutively inactivated, and knock-in models, in which a GAA repeat mutation or the conditional allele is inserted into the genome. Recently, “humanised” GAA repeat expansion mouse models were obtained by combining the constitutive knockout with the transgenic expression of a yeast artificial chromosome carrying the human FRDA locus. In lower organisms such as Caenorhabditis elegans and Drosophila, straight-forward and conditional RNA interference technology has provided an easy way to knock down frataxin expression. Conditional mouse models have been used for pre-clinical trials of potential therapeutic agents, including idebenone, MnTBAP (a superoxide dismutase mimetic), and iron chelators. Various models of FRDA have shown that different, even opposite, phenotypes can be observed, depending on the level of frataxin expression. Additional studies with animal models will be essential for an enhanced understanding of the disease pathophysiology and for the development of better therapies.  相似文献   

5.
Friedreich's ataxia (FRDA) is caused by point mutations or trinucleotide repeat expansions in both alleles of the gene encoding frataxin. Studies of frataxin homologues in lower eukaryotes suggest that mitochondrial iron accumulation may underlie the pathophysiology of FRDA. To evaluate the possible role of iron-chelation therapy for FRDA, we measured serum iron and ferritin concentration in 10 FRDA patients. The measurements were within normal limits, suggesting that iron-chelation therapy for FRDA may be problematic.  相似文献   

6.
Friedreich's ataxia (FRDA) is an autosomal recessive inherited disorder characterized by progressive gait and limb ataxia, dysarthria, areflexia, loss of vibratory and position sense, and a progressive motor weakness of central origin. Additional features include hypertrophic cardiomyopathy and diabetes. Large GAA repeat expansions in the first intron of the FXN gene are the most common mutation underlying FRDA. Patients show severely reduced levels of a FXN-encoded mitochondrial protein called frataxin. Frataxin deficiency is associated with abnormalities of iron metabolism: decreased iron-sulfur cluster (ISC) biogenesis, accumulation of iron in mitochondria and depletion in the cytosol, enhanced cellular iron uptake. Some models have also shown reduced heme synthesis. Evidence for oxidative stress has been reported. Respiratory chain dysfunction aggravates oxidative stress by increasing leakage of electrons and the formation of superoxide. In vitro studies have demonstrated that Frataxin deficient cells not only generate more free radicals, but also show a reduced capacity to mobilize antioxidant defenses. The search for experimental drugs increasing the amount of frataxin is a very active and timely area of investigation. In cellular and in animal model systems, the replacement of frataxin function seems to alleviate the symptoms or even completely reverse the phenotype. Therefore, drugs increasing the amount of frataxin are attractive candidates for novel therapies. This review will discuss recent findings on FRDA pathogenesis, frataxin function, new treatments, as well as recent animal and cellular models. Controversial aspects are also discussed.  相似文献   

7.
Inherited neurodegenerative diseases such as Friedreich's ataxia (FRDA), produced by deficiency of the mitochondrial chaperone frataxin (Fxn), shows specific neurological deficits involving different subset of neurons even though deficiency of Fxn is ubiquitous. Because astrocytes are involved in neurodegeneration, we analyzed whether they are also affected by frataxin deficiency and contribute to the disease. We also tested whether insulin-like growth factor I (IGF-I), that has proven effective in increasing frataxin levels both in neurons and in astrocytes, also exerts in vivo protective actions. Using the GFAP promoter expressed by multipotential stem cells during development and mostly by astrocytes in the adult, we ablated Fxn in a time-dependent manner in mice (FGKO mice) and found severe ataxia and early death when Fxn was eliminated during development, but not when deleted in the adult. Analysis of underlying mechanisms revealed that Fxn deficiency elicited growth and survival impairments in developing cerebellar astrocytes, whereas forebrain astrocytes grew normally. A similar time-dependent effect of frataxin deficiency in astrocytes was observed in a fly model. In addition, treatment of FGKO mice with IGF-I improved their motor performance, reduced cerebellar atrophy, and increased survival. These observations indicate that a greater vulnerability of developing cerebellar astrocytes to Fxn deficiency may contribute to cerebellar deficits in this inherited disease. Our data also confirm a therapeutic benefit of IGF-I in early FRDA deficiency.  相似文献   

8.
Friedreich ataxia (FRDA) is the most common hereditary autosomal recessive ataxia, but is also a multisystemic condition with frequent presence of cardiomyopathy or diabetes. It has been linked to expansion of a GAA-triplet repeat in the first intron of the FXN gene, leading to a reduced level of frataxin, a mitochondrial protein which, by controlling both iron entry and/or sulfide production, is essential to properly assemble and protect the Fe-S cluster during the initial stage of biogenesis. Several data emphasize the role of oxidative damage in FRDA, but better understanding of pathophysiological consequences of FXN mutations has led to develop animal models. Conditional knockout models recapitulate important features of the human disease but lack the genetic context, GAA repeat expansion-based knock-in and transgenic models carry a GAA repeat expansion but they only show a very mild phenotype. Cells derived from FRDA patients constitute the most relevant frataxin-deficient cell model as they carry the complete frataxin locus together with GAA repeat expansions and regulatory sequences. Induced pluripotent stem cell (iPSC)-derived neurons present a maturation delay and lower mitochondrial membrane potential, while cardiomyocytes exhibit progressive mitochondrial degeneration, with frequent dark mitochondria and proliferation/accumulation of normal mitochondria. Efforts in developing therapeutic strategies can be divided into three categories: iron chelators, antioxidants and/or stimulants of mitochondrial biogenesis, and frataxin level modifiers. A promising therapeutic strategy that is currently the subject of intense research is to directly target the heterochromatin state of the GAA repeat expansion with histone deacytelase inhibitors (HDACi) to restore frataxin levels.  相似文献   

9.
Understanding the role of frataxin in mitochondria is key to an understanding of the pathogenesis of Friedreich ataxia. Frataxins are small essential proteins whose deficiency causes a range of metabolic disturbances, which include oxidative stress, deficit of iron-sulphur clusters, and defects in heme synthesis, sulfur amino acid and energy metabolism, stress response, and mitochondrial function. Structural studies carried out on different orthologues have shown that the frataxin fold consists of a flexible N-terminal region present only in eukaryotes and in a highly conserved C-terminal globular domain. Frataxins bind iron directly but with very unusual properties: iron coordination is achieved solely by glutamates and aspartates exposed on the protein surface. It has been suggested that frataxin function is that of a ferritin-like protein, an iron chaperone of the ironsulphur cluster machinery and heme metabolism and/or a controller of cellular oxidative stress. To understand FRDA pathogenesis and to design novel therapeutic strategies, we must first precisely identify the cellular role of frataxin.  相似文献   

10.
Friedreich ataxia (FRDA) is an autosomal recessive inherited neurodegenerative disorder leading to reduced expression of the mitochondrial protein frataxin. Previous studies showed frataxin upregulation in FRDA following treatment with recombinant human erythropoietin (rhuEPO). Dose-response interactions between frataxin and rhuEPO have not been studied until to date. We administered escalating rhuEPO single doses (5,000, 10,000 and 30,000?IU) in monthly intervals to five adult FRDA patients. Measurements of frataxin, serum erythropoietin levels, iron metabolism and mitochondrial function were carried out. Clinical outcome was assessed using the "Scale for the assessment and rating of ataxia". We found maximal erythropoietin serum concentrations 24?h after rhuEPO application which is comparable to healthy subjects. Frataxin levels increased significantly over 3?months, while ataxia rating did not reveal clinical improvement. All FRDA patients had considerable ferritin decrease. NADH/NAD ratio, an indicator of mitochondrial function, increased following rhuEPO treatment. In addition to frataxin upregulation in response to continuous low-dose rhuEPO application shown in previous studies, our results indicate for a long-lasting frataxin increase after single high-dose rhuEPO administration. To detect frataxin-derived neuroprotective effects resulting in clinically relevant improvement, well-designed studies with extended time frame are required.  相似文献   

11.
12.
13.
Hypertrophic cardiomyopathy is a common complication of Friedreich's ataxia (FRDA). Histological sections reveal abnormal cardiomyocytes, muscle fiber necrosis, reactive inflammation, and increased endomysial connective tissue. Scattered muscle fibers display perinuclear collections of minute iron-positive granules that lie in rows between myofibrils. Frataxin deficiency in FRDA causes mitochondrial iron dysmetabolism. We studied total iron and the iron-related proteins ferritin, mitochondrial ferritin, divalent metal transporter 1 (DMT1), and ferroportin in FRDA hearts by biochemical and histological techniques. Total iron in the left ventricular wall of FRDA patients (30.7+/-19.3 mg/100 g dry weight) was not significantly higher than normal (31.3+/-24.1 mg/100 g dry weight). Similarly, cytosolic holoferritin levels in FRDA hearts (230+/-172 microg/g wet weight) were not significantly elevated above normal (148+/-86 microg/g wet weight). The iron-positive granules exhibited immunoreactivity for cytosolic ferritin, mitochondrial ferritin, and ferroportin. Electron microscopy showed enhanced electron density of mitochondrial deposits after treatment with bismuth subnitrate supporting ferritin accumulation. The inflammatory cells in the endomysium were reactive for CD68, cytosolic ferritin, and the DMT1 isoform(s) translated from messenger ribonucleic acids containing iron-responsive elements (DMT1+). Progressive cardiomyopathy in FRDA is the likely result of iron-catalyzed mitochondrial damage followed by muscle fiber necrosis and a chronic reactive myocarditis.  相似文献   

14.
BACKGROUND: Most patients with Friedreich ataxia (FRDA) have abnormal GAA triplet repeat expansions in both X25 genes. The size of the GAA expansion in the shorter of the 2 expanded alleles correlates significantly with parameters of clinical severity and is inversely related to the age at onset. OBJECTIVES: To describe the clinical and molecular genetic findings in a patient with very late-onset FRDA and to review the literature. PATIENT AND METHODS: A 58-year-old white woman with mild progressive gait disturbance of 15 years' duration whose examination revealed mild incoordination was analyzed for mutations in the X25 gene. A combination of long-range polymerase chain reaction and genomic Southern blot analyses were used to identify GAA expansions in intron 1 of the X25 gene. To uncover evidence of somatic variability in triplet repeat length, DNA isolated from several tissue samples was similarly analyzed. Single-strand conformational polymorphism analysis was used to screen for mutations spanning the entire coding sequence of frataxin and all intron-exon junctions of the X25 gene. RESULTS: DNA isolated from blood leukocytes revealed GAA triplet repeat expansions in both X25 genes, which were estimated to contain 835 and 1200 repeats. Similar expansions were detected in DNA isolated from lymphoblasts, fibroblasts, buccal cells, and sural nerve, with estimated mean (+/- SD) lengths of the shorter and longer expansions being 854 (+/-69) and 1283 (+/-72) triplets, respectively. A review of reported cases of late-onset Friedreich ataxia (25-39 years) and very late-onset Friedreich ataxia (> or =40 years) demonstrated that this is the first instance of a patient presenting with very late-onset FRDA despite carrying more than 800 GAA repeats in both expanded X25 alleles. CONCLUSIONS: This unique case of very late-onset FRDA highlights a limitation in our ability to accurately predict the phenotype in FRDA based solely on the size of the GAA expansion. Other genetic or environmental factors may significantly modify disease severity in FRDA.  相似文献   

15.
16.
Brain-derived neurotrophic factor (BDNF) heterozygous mice (BDNF (+/-)) kindle slowly and have a higher seizure threshold. However, BDNF (+/-) mice exhibit reduced cortical inhibition and disrupted balance of excitation/inhibition synaptic transmission. We investigated penicillin-induced focal cortical epileptiform activity and electroencephalogram (EEG) spectral power of BDNF (+/-) mice, by using electrocorticogram (ECoG) recordings. BDNF (+/-) mice (n=10) and wild type littermates (n=9) were anesthetized with i.p. urethane (1.750g/kg). The recordings of ECoG were carried out by using a data acquisition system and 100IU penicillin was administered intracortically to induce epileptiform activity. The latencies for the onset of spikes and the amplitude of the spikes showed no differences. However the frequency of the spikes was significantly lower in BDNF (+/-) mice at 40th and 45th min following penicillin injection. Additionally, the EEG power for both BDNF (+/-) and wild type mice reduced after penicillin injection and enhanced during epileptiform activity. The spectral power analysis also revealed that the absolute Gamma power of BDNF (+/-) was significantly smaller than wild types. The results of the present study provide the first in vivo electrophysiological evidence that BDNF heterozygous mice exhibited suppressed epileptiform activity. Moreover, reduced levels of BDNF led to a reduction of absolute Gamma band power.  相似文献   

17.
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease most commonly caused by a GAA trinucleotide repeat expansion in the first intron of FXN, which reduces expression of the mitochondrial protein frataxin. Approximately 98% of individuals with FRDA are homozygous for GAA expansions, with the remaining 2% compound heterozygotes for a GAA expansion and a point mutation within FXN. Two siblings with early onset of symptoms experienced rapid loss of ambulation by 8 and 10 years. Diagnostic testing for FRDA demonstrated one GAA repeat expansion of 1010 repeats and one non-expanded allele. Sequencing all five exons of FXN identified a novel deletion-insertion mutation in exon 3 (c.371_376del6ins15), which results in a modified frataxin protein sequence at amino acid positions 124–127. Specifically, the amino acid sequence changes from DVSF to VHLEDT, increasing frataxin from 211 residues to 214. Using the known structure of human frataxin, a theoretical 3D model of the mutant protein was developed. In the event that the modified protein is expressed and stable, it is predicted that the acidic interface of frataxin, known to be involved in iron binding and interactions with the iron–sulphur cluster assembly factor IscU, would be impaired.  相似文献   

18.
Friedreich's ataxia (FRDA), the most-common form of autosomal recessive ataxia, is inherited in most cases by a large expansion of a GAA triplet repeat in the first intron of the frataxin (X25) gene. Genetic heterogeneity in FRDA has been previously reported in typical FRDA families that do not link to the FRDA locus on chromosome 9q13. We report localization of a second FRDA locus (FRDA2) to chromosome 9p23-9p11, and we provide evidence for further genetic heterogeneity of the disease, in a family with the classic FRDA phenotype.  相似文献   

19.
Friedreich's ataxia (FRDA) is the most common hereditary ataxia, affecting about 1 in 50,000 individuals. It is caused by mutations in the frataxin gene; 98% of cases have homozygous expansions of a GAA trinucleotide in intron 1 of the frataxin gene. The remaining 2% of patients are compound heterozygotes, who have a GAA repeat expansion in one allele and a point mutation in the other allele. FRDA patients with point mutation have been suggested to have atypical clinical features. We present a case of compound heterozygotes in a FRDA patient who has a deletion of one T in the start codon (ATG) of the frataxin gene and a GAA repeat expansion in the other allele. The patient presented with chorea and subsequently developed FRDA symptoms. The disease in this case is the result of both a failure of initiation of translation and the effect of the expansion. This novel mutation extends the range of point mutations seen in FRDA patients, and also broadens the spectrum of FRDA genotype associated with chorea.  相似文献   

20.
Friedreich's ataxia (FA) is the most common form of autosomal recessive spinocerebellar ataxia and is often associated with a cardiomyopathy. The disease is caused by an expanded intronic GAA repeat, which results in deficiency of a mitochondrial protein called frataxin. In the yeast YFH1 knockout model of the disease there is evidence that frataxin deficiency leads to a severe defect of mitochondrial respiration, intramitochondrial iron accumulation, and associated production of oxygen free radicals. Recently, the analysis of FA cardiac and skeletal muscle samples and in vivo phosphorus magnetic resonance spectroscopy (31P-MRS) has confirmed the deficits of respiratory chain complexes in these tissues. The role of oxidative stress in FA is further supported by the accumulation of iron and decreased aconitase activities in cardiac muscle. We used 31P-MRS to evaluate the effect of 6 months of antioxidant treatment (Coenzyme Q10 400 mg/day, vitamin E 2,100 IU/day) on cardiac and calf muscle energy metabolism in 10 FA patients. After only 3 months of treatment, the cardiac phosphocreatine to ATP ratio showed a mean relative increase to 178% (p = 0.03) and the maximum rate of skeletal muscle mitochondrial ATP production increased to 139% (p = 0.01) of their respective baseline values in the FA patients. These improvements, greater in prehypertrophic hearts and in the muscle of patients with longer GAA repeats, were sustained after 6 months of therapy. The neurological and echocardiographic evaluations did not show any consistent benefits of the therapy after 6 months. This study demonstrates partial reversal of a surrogate biochemical marker in FA with antioxidant therapy and supports the evaluation of such therapy as a disease-modifying strategy in this neurodegenerative disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号