首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We have generated an embryonic stem (ES) cell line in which sequences encoding green fluorescent protein (GFP) were targeted to the locus of the pancreatic-duodenal homeobox gene (Pdx1). Analysis of chimeric embryos derived from blastocyst injection of Pdx1(GFP/w) ES cells demonstrated that the pattern of GFP expression was consistent with that reported for the endogenous Pdx1 gene. By monitoring GFP expression during the course of ES cell differentiation, we have shown that retinoic acid (RA) can regulate the commitment of ES cells to form Pdx1(+) pancreatic endoderm. RA was most effective at inducing Pdx1 expression when added to cultures at day 4 of ES differentiation, a period corresponding to the end of gastrulation in the embryo. RT-PCR analysis showed that Pdx1-positive cells from day 8 cultures expressed the early endoderm markers Ptf1a, Foxa2, Hnf4alpha, Hnf1beta, and Hnf6, consistent with the notion that they corresponded to the early pancreatic endoderm present in the embryonic day 9.5 mouse embryo. These results demonstrate the utility of Pdx1(GFP/w) ES cells as a tool for monitoring the effects of factors that influence pancreatic differentiation from ES cells.  相似文献   

5.
The phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (ped/pea-15) gene is overexpressed in human diabetes and causes this abnormality in mice. Transgenic mice with beta-cell-specific overexpression of ped/pea-15 (beta-tg) exhibited decreased glucose tolerance but were not insulin resistant. However, they showed impaired insulin response to hyperglycemia. Islets from the beta-tg also exhibited little response to glucose. mRNAs encoding the Sur1 and Kir6.2 potassium channel subunits and their upstream regulator Foxa2 were specifically reduced in these islets. Overexpression of PED/PEA-15 inhibited the induction of the atypical protein kinase C (PKC)-zeta by glucose in mouse islets and in beta-cells of the MIN-6 and INS-1 lines. Rescue of PKC-zeta activity elicited recovery of the expression of the Sur1, Kir6.2, and Foxa2 genes and of glucose-induced insulin secretion in PED/PEA-15-overexpressing beta-cells. Islets from ped/pea-15-null mice exhibited a twofold increased activation of PKC-zeta by glucose; increased abundance of the Sur1, Kir6.2, and Foxa2 mRNAs; and enhanced glucose effect on insulin secretion. In conclusion, PED/PEA-15 is an endogenous regulator of glucose-induced insulin secretion, which restrains potassium channel expression in pancreatic beta-cells. Overexpression of PED/PEA-15 dysregulates beta-cell function and is sufficient to impair glucose tolerance in mice.  相似文献   

6.
7.
8.
Cao LZ  Tang DQ  Horb ME  Li SW  Yang LJ 《Diabetes》2004,53(12):3168-3178
Pdx1 has been shown to convert hepatocytes into both exocrine and endocrine pancreatic cells in mice, but it fails to selectively convert hepatocytes into pure insulin-producing cells (IPCs). The molecular mechanisms underlying the transdifferentiation remain unclear. In this study, we generated a stably transfected rat hepatic cell line named WB-1 that expresses an active form of Pdx1 along with a reporter gene, RIP-eGFP. Our results demonstrate that Pdx1 induces the expression of multiple genes related to endocrine pancreas development and islet function in these liver cells. We do not however find any expression of the late-stage genes (Pax4, Pax6, Isl-1, and MafA) related to beta-cell development, and the cells do not secrete insulin upon the glucose challenge. Yet when WB-1 cells are transplanted into diabetic NOD-scid mice, these genes become activated and hyperglycemia is completely reversed. Detailed comparison of gene expression profiles between pre- and posttransplanted WB-1 cells demonstrates that the WB-1 cells have similar properties as that seen in pancreatic beta-cells. In addition, in vitro culture in high-glucose medium is sufficient to induce complete maturation of WB-1 cells into functional IPCs. In summary, we find that Pdx1-VP16 is able to selectively convert hepatic cells into pancreatic endocrine precursor cells. However, complete transdifferentiation into functional IPCs requires additional external factors, including high glucose or hyperglycemia. Thus, transdifferentiation of hepatocytes into functional IPCs may serve as a viable therapeutic option for patients with type 1 diabetes.  相似文献   

9.
Animal studies show that G(1/S) regulatory molecules (D-cyclins, cdk-4, p18, p21, p27) are critical for normal regulation of beta-cell proliferation, mass, and function. The retinoblastoma protein, pRb, is positioned at the very end of a cascade of these regulatory proteins and is considered the final checkpoint molecule that maintains beta-cell cycle arrest. Logically, removal of pRb from the beta-cell should result in unrestrained beta-cell replication, increased beta-cell mass, and insulin-mediated hypoglycemia. Because global loss of both pRb alleles is embryonic lethal, this hypothesis has not been tested in beta-cells. We developed two types of conditional knockout (CKO) mice in which both alleles of the pRb gene were inactivated specifically in beta-cells. Surprisingly, although the pRb gene was efficiently recombined in beta-cells of both CKO models, changes in beta-cell mass, beta-cell replication rates, insulin concentrations, and blood glucose levels were limited or absent. Other pRb family members, p107 and p130, were not substantially upregulated. In contrast to dogma, the pRb protein is not essential to maintain cell cycle arrest in the pancreatic beta-cell. This may reflect fundamental inaccuracies in models of beta-cell cycle control or complementation for pRb by undefined proteins.  相似文献   

10.
11.
12.
13.
14.
Lu Y  Herrera PL  Guo Y  Sun D  Tang Z  LeRoith D  Liu JL 《Diabetes》2004,53(12):3131-3141
The dogma that IGF-I stimulates pancreatic islet growth has been challenged by combinational targeting of IGF or IGF-IR (IGF receptor) genes as well as beta-cell-specific IGF-IR gene deficiency, which caused no defect in islet cell growth. To assess the physiological role of locally produced IGF-I, we have developed pancreatic-specific IGF-I gene deficiency (PID) by crossing Pdx1-Cre and IGF-I/loxP mice. PID mice are normal except for decreased blood glucose level and a 2.3-fold enlarged islet cell mass. When challenged with low doses of streptozotocin, control mice developed hyperglycemia after 6 days that was maintained at high levels for at least 2 months. In contrast, PID mice only exhibited marginal hyperglycemia after 12 days, maintained throughout the experiment. Fifteen days after streptozotocin, PID mice demonstrated significantly higher levels of insulin production. Furthermore, streptozotocin-induced beta-cell apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL] assay) was significantly prevented in PID mice. Finally, PID mice exhibited a delayed onset of type 2 diabetes induced by a high-fat diet, accompanied by super enlarged pancreatic islets, increased insulin mRNA levels, and preserved sensitivity to insulin. Our results suggest that locally produced IGF-I within the pancreas inhibits islet cell growth; its deficiency provides a protective environment to the beta-cells and potential in combating diabetes.  相似文献   

15.
16.
Inadequate pancreatic beta-cell mass resulting from excessive beta-cell apoptosis is a key defect in type 1 and type 2 diabetes. Caspases are the major molecules involved in apoptosis; however, in vivo roles of specific caspases in diabetes are unclear. The purpose of this study is to examine the role of Caspase (Casp)8 in beta-cells in vivo. Using the Cre-loxP system, mice lacking Casp8 in beta-cells (RIPcre(+)Casp8(fl/fl) mice) were generated to address the role of Casp8 in beta-cells in physiological and diabetes models. We show that islets isolated from RIPcre(+)Casp8(fl/fl) mice were protected from Fas ligand (FasL)-and ceramide-induced cell death. Furthermore, RIPcre(+)Casp8(fl/fl) mice were protected from in vivo models of type 1 and type 2 diabetes. In addition to being the central mediator of apoptosis in diabetes models, we show that Casp8 is critical for maintenance of beta-cell mass under physiological conditions. With aging, RIPcre(+)Casp8(fl/fl) mice gradually develop hyperglycemia and a concomitant decline in beta-cell mass. Their islets display decreased expression of molecules involved in insulin/IGF-I signaling and show decreased pancreatic duodenal homeobox-1 and cAMP response element binding protein expression. At the level of individual islets, we observed increased insulin secretory capacity associated with increased expression of exocytotic proteins. Our results show distinct context-specific roles of Casp8 in physiological and disease states; Casp8 is essential for beta-cell apoptosis in type 1 and type 2 diabetes models and in regulating beta-cell mass and insulin secretion under physiological conditions.  相似文献   

17.
M A Magnuson 《Diabetes》1990,39(5):523-527
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号