首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the flexion reflex of the tibialis anterior muscle of acute spinal cats were examined during conditioning, sensitization and habituation paradigms. Experimental animals were classically conditioned by pairing electrical stimulation of the saphenous nerve (CS) with stimulation of the superficial peroneal nerve (US). Recordings from these nerves assured known and constant stimulus inputs. The response observed was an increase in the magnitude of the reflex response to the CS over training. Habituation (CS only) and sensitization (CS and US presentations, unpaired) control animals exhibited no such reflex facilitation. The results of post-tetanic potentiation studies indicated that the intertrial intervals used were not a factor in the differences observed between experimental and control groups. The results give positive support to the concept of spinal conditioning and emphasize the potential of this model system for the study of neural correlates of learning.  相似文献   

2.
1. We previously demonstrated in the spinal cat that superficial peroneal cutaneous nerve stimulation produced strong reflex contraction in tibialis anterior (TA) and semitendinosus (St) muscles but unexpectedly produced mixed effects in another physiological flexor muscle, extensor digitorum longus (EDL). The goal of the present study was to further characterize the organization of ipsilateral cutaneous reflexes by examining the postsynaptic potentials (PSPs) produced in St, TA, and EDL motoneurons by superficial peroneal and saphenous nerve stimulation in decerebrate, spinal cats. 2. In TA and St motoneurons, low-intensity cutaneous nerve stimulation that activated only large (A alpha) fibers [i.e., approximately 2-3 times threshold (T)], typically produced biphasic PSPs consisting of an initial excitatory phase and subsequent inhibitory phase (EPSP, IPSP). Increasing the stimulus intensity to activate both large (A alpha) and small (A delta) myelinated cutaneous fibers supramaximally (15-45 T) tended to enhance later excitatory components in TA and St motoneurons. 3. In EDL motoneurons, 2-3 T stimulation of the superficial peroneal nerve evoked initial inhibition (of variable magnitude) in 7/10 EDL motoneurons tested, with either excitation (n = 2) or mixed effects (n = 1) observed in the remaining EDL motoneurons. Saphenous nerve stimuli produced excitation either alone, or preceded by an inhibitory phase in EDL. Increasing the stimulus intensity enhanced later inhibitory influences from superficial peroneal and excitatory influences both from superficial peroneal and saphenous nerve inputs in EDL motoneurons. 4. Short-latency (less than 1.8 ms) EPSPs were observed in a few motoneurons in all reflex pathways examined, except for EPSPs in EDL motoneurons evoked by saphenous stimulation. IPSPs with central latencies less than 1.8 ms were also produced by both saphenous (TA, n = 1; EDL, n = 2) and superficial peroneal (EDL, n = 4) nerve stimulation. 5. The results, in comparison with other reports employing spinal and nonspinal preparations, suggest that removal of influences from higher centers reveals inhibitory circuits from the superficial peroneal and saphenous nerves to EDL motoneurons in the spinal preparation. The inhibitory inputs observed are thought to reflect the activation of "specialized" reflex pathways. Additionally, the demonstration of short-latency EPSPs and IPSPs suggest that the minimal linkage in both the excitatory and inhibitory cutaneous reflex pathways examined is disynaptic. The results are discussed in relation to previous studies on classically conditioned flexion reflex facilitation in spinal cat.  相似文献   

3.
The present study aimed to establish a new interoceptive fear conditioning paradigm. The conditioned stimulus (CS) was a flow resistor that slightly obstructs breathing; the unconditional stimulus (US) was a breathing occlusion. The paired group (N = 21) received 6 acquisition trials with paired CS–US presentations. The unpaired group (N = 19) received 6 trials of unpaired CS–US presentations. In the extinction phase, both groups were administered 6 CS‐only trials. Measurements included startle eyeblink response, electrodermal responses, and self‐reported US expectancy. In the paired group, startle blink responses were larger during CS compared to intertrial interval during acquisition and extinction. Electrodermal and US expectancies were larger for the paired than for the unpaired group during acquisition, but not during extinction. The present paradigm successfully established interoceptive fear conditioning with panic‐relevant stimuli.  相似文献   

4.
Summary Multiple-unit activity (MUA) was recorded from chronically implanted electrodes in the medial prefrontal cortex (PFCm) and the agranular insular cortex (Iag) in separate groups of rabbits during habituation training, followed by aversive Pavlovian conditioning and subsequent extinction training. Control animals received explicitly unpaired presentations of the tone conditioned stimulus (CS) and eye-shock unconditioned stimulus (US). Both the cardiac orienting reflex and the conditioned heart rate response (HR CR) consisted of bradycardia, whereas tone-evoked tachycardia was observed in animals that received unpaired stimuli. Short-latency (<20–60 ms), tone-evoked increases in PFCm MUA were observed during the initial trials of habituation training, with their magnitude declining predictably across repeated tonealone presentations. Subsequent CS/US pairings, however, served systematically to reinstate and enhance this CS-evoked MUA, while both non-associative (unpaired CS/US) and extinction (CS alone) training resulted in significant attenuation of such activity. Unconditioned tone-evoked increases in MUA were also observed in the Iag during habituation; however, such unit responses appeared to be more variable than their PFCm counterparts and were of considerably lesser magnitude. Moreover, in striking contrast to the above PFCm findings, conditioning and non-associative training did not differentially affect overall mean evoked MUA in the Iag, although different post-tone patterns of activity were obtained with the two procedures. The contrasting training effects observed in animals with PFCm vs. Iag electrode placements did not appear to be attributable to differences in regional sensitivity to the US, since excitatory patterns of MUA were elicited by unsignalled presentations of eye-shock at most placements within each cortical field. Accordingly, the present findings are consistent with our previous lesion data in suggesting that, although training-induced changes in PFCm neuronal activity may contribute to the initial events in aversive Pavlovian conditioning, an involvement of the Iag in such processes, if any, remains to be demonstrated.  相似文献   

5.
Output from the interpositus nucleus can inhibit the inferior olive, probably via the GABA-ergic nucleo-olivary pathway. It has been suggested that the function of this inhibition might be to regulate synaptic plasticity resulting from parallel fibre/climbing fibre interaction in cerebellar Purkinje cells, by providing negative feedback information to the olive. Thus, when a learned response, generated by the interpositus nucleus, reaches a sufficient amplitude, the olive would be inhibited and further learning blocked. This suggestion was tested in a classical conditioning paradigm. Decerebrate ferrets were trained using electrical skin stimulation of the forelimb as the conditioned stimulus (CS) and periorbital stimulation as the unconditioned stimulus (US). Climbing fibre responses evoked in Purkinje cells by the US were recorded as surface field potentials in the part of the c3 zone controlling eyeblink. It was found that the CS did not inhibit the olive at the beginning of training, but when conditioned responses were large, the olive was inhibited by the CS in some animals. After a number of unpaired CS presentations, which caused extinction of the conditioned response, the inhibition disappeared. The size of individual conditioned responses correlated negatively with the size of the climbing fibre responses evoked by the US. Climbing fibre responses evoked by direct stimulation of the olive were also inhibited. It was concluded that cerebellar output during performance of a conditioned response inhibits the inferior olive. The results thus support the hypothesis of a cerebellar locus of conditioning and are consistent with the proposed role of cerebello-olivary inhibition.  相似文献   

6.
Summary Neural cuffs, implanted around various hindlimb nerves (sural, common peroneal, posterior tibial), were used to deliver brief stimulus trains to unrestrained cats walking on a treadmill. The resulting perturbations of the step cycle were evaluated by analyzing the EMG bursts recorded from the ankle extensors and by high speed cinematography. It was found that relatively weak stimulation (1.4 to 2 X T) of the posterior tibial nerve was very effective in eliciting a prolongation of the flexion phase provided the stimuli were applied just prior to the expected onset of the ankle extensor EMG burst. This ipsilateral hyperflexion was correlated with a prolongation of the contralateral extension. The same stimuli applied during stance usually evoked a yielding of the stimulated leg and a prolongation of the ongoing contralateral stance. In addition to these flexor and extensor reflex effects, it was found that low threshold stimulation of the sural and common peroneal nerves resulted in a powerful reflex activation of the ankle extensors. In contrast, stimulation of the gastrocnemius-soleus nerve (a muscle nerve) produced no discernible behavioral effects, even for stimuli at 3 X T, indicating that the observed reflexes are probably mediated by cutaneous afferents. The results were largely confirmed in experiments using the same cuffs implanted in spontaneously walking premammillary cats.  相似文献   

7.
A pair of studies examined how cortical intracerebellar stimulation (ICS) affects eyeblink conditioning in the rabbit. Rabbits were implanted with chronic bipolar stimulating electrodes in the cell body layers of cerebellar lobule H-VI. Brief (40 ms) trains of intracranial stimulation (100 Hz, 250 microA) were delivered during training trials [forward pairings of a tone-conditioned stimulus (CS) with an air puff unconditioned stimulus (US)]. In Experiment 1, the onset of ICS varied randomly within sessions. US-onset-coincident ICS proved detrimental to the maintenance of conditioning [measured as the percentage of trials on which conditioned responses (CRs) were made] compared to ICS that ended 60 ms before US onset. Based on these findings, a second experiment compared a group trained with ICS consistently delivered at US onset to groups trained with ICS consistently delivered either at CS onset or between the two stimuli, as well as to unstimulated control subjects. Animals receiving CS- or US-coincident ICS learned slowest, whereas animals receiving middle stimulation learned more quickly than all other groups. In both Experiments 1 and 2, highly trained animals produced blinks in direct response to the stimulation. These data are discussed in terms of a new hypothesis concerning interactions between cerebellar cortex and the deep cerebellar nuclei during eyeblink conditioning--a rebound from inhibition hypothesis.  相似文献   

8.
This paper contrasts responses in the soleus muscle of normal human subjects to two major inputs: the tibial nerve (TN) and the corticospinal tract. Paired transcranial magnetic stimulation (TMS) of the motor cortex at intervals of 10–25 ms strongly facilitated the motor evoked potential (MEP) produced by the second stimulus. In contrast, paired TN stimulation produced a depression of the reflex response to the second stimulus. Direct activation of the pyramidal tract did not facilitate a second response, suggesting that the MEP facilitation observed using paired TMS occurred in the cortex. A TN stimulus also depressed a subsequent MEP. Since the TN stimulus depressed both inputs, the mechanism is probably post-synaptic, such as afterhyperpolarization of motor neurons. Presynaptic mechanisms, such as homosynaptic depression, would only affect the pathway used as a conditioning stimulus. When TN and TMS pulses were paired, the largest facilitation occurred when TMS preceded TN by about 5 ms, which is optimal for summation of the two pathways at the level of the spinal motor neurons. A later, smaller facilitation occurred when a single TN stimulus preceded TMS by 50–60 ms, an interval that allows enough time for the sensory afferent input to reach the sensory cortex and be relayed to the motor cortex. Other work indicates that repetitively pairing nerve stimuli and TMS at these intervals, known as paired associative stimulation, produces long-term increases in the MEP and may be useful in strengthening residual pathways after damage to the central nervous system.  相似文献   

9.
Previous studies demonstrated that the development of auditory conditioned stimulus (CS) input to the cerebellum may be a neural mechanism underlying the ontogenetic emergence of eyeblink conditioning in rats. The current study investigated the role of developmental changes in the projections of the cochlear nucleus (CN) in the ontogeny of eyeblink conditioning using electrical stimulation of the CN as a CS. Rat pups were implanted with a bipolar stimulating electrode in the CN and given six 100-trial training sessions with a 300 ms stimulation train in the CN paired with a 10 ms periorbital shock unconditioned stimulus (US) on postnatal days (P) 17-18 or 24-25. Control groups were given unpaired presentations of the CS and US. Rats in both age groups that received paired training showed significant increases in eyeblink conditioned responses across training relative to the unpaired groups. The rats trained on P24-25, however, showed stronger conditioning relative to the group trained on P17-18. Rats with missed electrodes in the inferior cerebellar peduncle or in the cerebellar cortex did not show conditioning. The findings suggest that developmental changes in the CN projections to the pons, inferior colliculus, or medial auditory thalamus may be a neural mechanism underlying the ontogeny of auditory eyeblink conditioning.  相似文献   

10.
Rabbits were implanted with chronic stimulating electrodes in white matter underlying lobule HVI of the cerebellar cortex. Stimulation elicited movements of the face or neck and, when paired with a tone conditioned stimulus (CS), produced learning comparable to that seen with peripheral unconditioned stimuli (USs). CS-alone trials produced extinction. Reinstatement of paired trials produced reacquisition with savings. Additional groups received either explicitly or randomly unpaired CS-US trials before paired conditioning. Low-frequency responding during these sessions indicated that the paired training results were associative and not due to pseudoconditioning or sensitization. Explicitly unpaired sessions retarded learning on subsequent paired trials compared with groups that received either randomly unpaired or no CS-US preexposure. These results are interpreted in terms of the role of the cerebellum and associated pathways in classical conditioning of motor responses.  相似文献   

11.
The effects of conditioned stimulus (CS) pre-exposure and fear-relevance of the CS on human Pavlovian electrodermal conditioning were investigated. A differential delayed conditioning paradigm was used with a CS-unconditioned stimulus (US; shock) interval of 8 s. In Experiment 1, 64 subjects were randomized into four groups, two of which received fear-relevant stimuli and the other two fear-irrelevant stimuli. Half of the subjects were pre-exposed to the to-be-CSs and the other half to two not-to-be-CSs, with 15 exposure of each stimulus. During acquisition, subjects received 8 reinforced and 8 nonreinforced CS+ and CS- trials, and during the extinction phase 15 nonreinforced trials of each CS. Pre-exposure to the to-be-CSs retarded conditioning for the first and second interval anticipatory responses (FIRs and SIRs); that is, a latent inhibition effect was demonstrated, although the results for the FIR were inconclusive. The expected effects of fear-relevance were not revealed. Experiment 2 addressed the question whether the long pre-exposure period interfered with the frequently observed "preparedness effect" of higher resistance to extinction to fear-relevant stimuli. The design was similar to that of Experiment 1, but for half of the subjects the acquisition phase was initiated immediately after a short rest period, and for the other half acquisition started after an extended rest period, equal to the duration of the pre-exposure phase in Experiment 1. Twenty extinction trials of each CS were presented. A reliable difference in arousal in terms of spontaneous fluctuations was produced by the rest periods, but although differential conditioning was observed, no effect of fear-relevance was seen during extinction.  相似文献   

12.
Despite known health risks, nicotine use remains high, especially in populations diagnosed with mental illnesses, including anxiety disorders and Post-Traumatic Stress Disorder (PTSD). Smoking in these populations may relate to the effects of nicotine on emotional memories. The current study examined the effects of nicotine administration on the extinction of conditioned fear memories. C57BL/6J mice were trained with two white noise conditioned stimulus (CS; 30 s, 85 dB)–foot shock (2 s, 0.57 mA) pairings. Extinction sessions consisted of six presentations of the CS (60 s) across multiple days. Mice were either tested in an AAA design, in which all stages occurred in the same context, or in an ABA design to identify if context changes alter extinction. Saline or nicotine was administered 5 min before training and/or extinction. In the AAA design, nicotine administration before training did not alter extinction. Nicotine administered prior to extinction sessions enhanced extinction and nicotine administered before training and extinction decreased extinction. In the ABA design, nicotine administered before extinction enhanced extinction and blocked context renewal of conditioned fear, while nicotine administered during training and extinction did not alter extinction but enhanced the context renewal of conditioned fear. Nicotine has a differential effect on extinction of fear conditioning depending on when it is administered. Administration during extinction enhances extinction whereas administration during training and extinction may strengthen contextual fear memories and interfere with extinction.  相似文献   

13.
Intracortical circuit excitability of the human motor cortex has been studied by measuring effects of some conditioning TMS stimulus on the succeeding test TMS stimulus in the motor cortex, such as short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). A single-pulse TMS was used as a conditioning stimulus (CS) in these techniques, but a train of several TMS pulses might induce some intracortical changes in the motor cortex more effectively. For nine healthy volunteers, we compared the SICI and ICF induced by a single conditioning biphasic TMS pulse with those induced by a train of 10 biphasic TMS pulses of the same intensity. As a conditioning stimulus, we delivered a subthreshold single biphasic pulse (CS1) or 10, 10-Hz biphasic pulses (CS10) before a suprathreshold monophasic test stimulus at several interstimulus intervals (ISIs) of 3–40 ms over the hand motor area. The CS intensity was 50–100% of the active motor threshold (AMT). We compared the motor cortical excitability after the conditioning stimulus (single pulse or a train of ten pulses) at the intervals for SICI and ICF. A train of ten 10-Hz pulses elicited greater inhibition at short ISIs than a single conditioning pulse did. The facilitation at ISIs around 10 ms corresponding to the ICF was evoked by CS1 only at an intensity of 80% AMT; CS10 evoked no ICF. Furthermore, CS10 evoked MEP inhibition at longer intervals. Results show that a train of high-frequency, low-intensity, biphasic TMS pulses can have a strong inhibitory effect on the motor cortex.  相似文献   

14.
I investigated whether classical eyeblink conditioning increases the activating effect of the conditional stimulus (CS) on the relevant alpha motoneuron pool in the facial nucleus. The activating effect was measured by the reflex modification method, where startle reflexes, sharing the facial nerve motor pathway with conditional and unconditional eyeblink reflexes, were elicited in the presence of reinforced and nonreinforced CSs (CS+ and CS?). To reduce influences of conditional arousal on startle, a weak airpuff to the eye was used as unconditional stimulus and relatively short stimulus onset asynchronies (SOAs) of 300 and 600 ms were used in three startle tests presented while conditioning was in progress. Two groups (N= 72) received 100% or 0% reinforcement (Groups 100 and 0) of a tone CS+. The CS? was not reinforced. Three startle tests, consisting of acoustic startle probes presented alone and after CS+ and CS? onset, were conducted early, middle, and late in conditioning. Results showed increased startle reflex facilitation after CS+ onset in the late startle test in Group 100, indicating that startle increased as a function of classical conditioning. Although reflex facilitation at the 300-ms SOA in Group 100 is consistent with the hypothesis that CS presentations activated motoneurons in the facial nucleus, the present study cannot itself definitively support this hypothesis. Reflex facilitation at the 600-ms SOA in Group 100 could be influenced by conditional arousal.  相似文献   

15.
Two experiments investigated the effects of conditioned stimulus (CS) preexposure on Pavlovian differential conditioning and extinction of the skin conductance response. In both experiments, half the subjects were exposed to 20 presentations each of the CS+ and CS-, and the other half were exposed to control stimuli. CS duration was 8 sec. The unconditioned stimulus in Experiment 1 (N = 48) was a 1000 Hz tone of 80 dB which signalled a reaction time requirement, and in Experiment 2 (N = 48), it was a 1 sec burst of white noise at 105 dB. The results of Experiment 1 indicated that no-preexposure groups displayed more CS+/CS- differentiation than preexposure groups during acquisition and more resistance to extinction, at least for the first interval anticipatory response. In addition, the results of Experiment 2 indicated that no-preexposure groups displayed more differentiation than preexposure groups in terms of the second interval anticipatory response. These data constitute a demonstration of the latent inhibition effect with human subjects, and imply that there is an intrinsic relationship between the orienting response and the conditioning process.  相似文献   

16.
Most learned responses can be diminished by extinction, a process that can be engaged when a conditioned stimulus (CS) is presented but not reinforced. We present evidence that plasticity in at least two brain regions can mediate extinction of responses produced by trace eyelid conditioning, where the CS and the reinforcing stimulus are separated by a stimulus-free interval. We observed individual differences in the effects of blocking extinction mechanisms in the cerebellum, the structure that, along with several forebrain structures, mediates acquisition of trace eyelid responses; in some rabbits extinction was prevented, whereas in others it was largely unaffected. We also show that cerebellar mechanisms can mediate extinction when noncerebellar mechanisms are bypassed. Together, these observations indicate that trace eyelid responses can be extinguished via processes operating at more than one site, one in the cerebellum and one upstream in forebrain. The relative contributions of these sites may vary from animal to animal and situation to situation.  相似文献   

17.
We tested the hypothesis that some of the electromyographic (EMG) responses elicited in preactivated forearm muscles by transcranial stimulation of the human motor cortex are produced by activity in a disynaptic corticospinal linkage involving propriospinal-like interneurones with cell bodies in the spinal C3–4 segments. The experimental design incorporated a previous observation that stimulation of afferents in the superficial radial nerve inhibits propriospinal-like neurones projecting to the extensor carpi radialis (ECR) muscle. Surface EMG responses were recorded from the active ECR muscle after transcranial electrical or magnetic stimulation over the motor cortex. In random trials, single conditioning stimuli at twice perceptual threshold were given to the superficial radial nerve at the wrist at different times before a cortical shock. When the cortex was stimulated electrically, the conditioning stimulus suppressed the EMG responses when the interval between the shocks was 11 ms or more. This was about 3.5 ms longer than the minimum time calculated for a possible direct cutaneous effect on spinal motoneurones. The time course of suppression began earlier and was more complex during magnetic stimulation of the cortex. It is argued that this difference is due to the repetitive I waves generated by the magnetic shock. Whether electrical or magnetic stimulation was used, the first 1–3 ms of the EMG response was relatively unaffected by superficial radial nerve stimulation at any interstimulus interval, whereas clear suppression was seen in the later portion of the response. In contrast, if the EMG response in ECR was suppressed by a conditioning stimulus to the median nerve at the elbow, then all portions of the EMG response were inhibited including the first 1–3 ms. The median nerve effect is thought to be due to direct reciprocal inhibition of the extensor motoneurones. Thus sparing of the initial part of the cortically evoked response with superficial radial stimulation suggests that the latter type of inhibition occurs at a premotoneuronal level. The timing of the effect is compatible with the explanation that corticospinal excitation is produced in ECR motoneurones through both monosynaptic and disynaptic (including propriospinal premotoneuronal) pathways, with superficial radial nerve inhibition being exerted at the propriospinal level.  相似文献   

18.
Kellett J  Kokkinidis L 《Neuroscience》2004,127(2):277-287
Generalized seizures produced by electrical kindling of the amygdala in laboratory rats are a widely used animal model of temporal lobe epilepsy. In addition to seizure evolution amygdala kindling enhances emotionality. The relative roles of electrical stimulation and seizure induction in fear responding are unclear. Here we investigate this issue using extinction and reinstatement of fear-potentiated startle. After classical conditioning (light+footshock pairings) laboratory rats were fear extinguished with each light presentation followed by nonepileptogenic amygdala stimulation. In contrast to the normal extinction learning of control subjects, amygdala stimulated animals exhibited conditioned fear after 120 presentations of the nonreinforced conditioned stimulus (CS). In a second experiment electrical stimulation of the amygdala restored extinguished fear responding and the fear reinstatement was specific to extinction context. The reinstatement effect did not involve sensitized fear to the CS produced by amygdala stimulation. The possibility that electrical activation of the amygdala produces unconditioned fear was considered. Animals uniformly failed to demonstrate fear-potentiated startle using electrical stimulation of the amygdala as the unconditioned stimulus. This was the case with a subthreshold afterdischarge stimulus and a stimulation schedule that produced kindled seizures. The extinction deficit and fear reinstatement results were interpreted to suggest that amygdala stimulation activates acquired excitatory stimulus-affect neural connections formed during Pavlovian fear conditioning. Our data supports a model in which excitation of an amygdala-based memory-retrieval system reinforces the expression of learned fear behaviors.  相似文献   

19.
Bite-strike responses of Hermissenda crassicornis, elicited by chemosensory stimulation of the lips, were found to be modified when food extracts were paired with rotation-produced stimulation of the statocysts. Animals that received repeated pairings of an extract of 1 food (conditioned stimulus, CS) with rotation exhibited suppressed bite-strike responses to that food for up to 48 hr after training. This suppression was usually specific to the trained food and was pairing-specific as well. Discriminative conditioning was also demonstrated. Animals trained with 1 CS paired with rotation and a second CS that was unpaired (CS-) showed suppressed bite-strike responses to the first CS. The results demonstrate that Hermissenda can learn to avoid foods that reliably signal an aversive event and may allow an analysis of higher order conditioning phenomena.  相似文献   

20.
Changes in the firing probability of motor units belonging to leg and thigh muscles were used to describe the pattern of distribution of recurrent inhibition evoked by motor discharges from various motor nuclei in the human lower limb. Discharges of units in soleus, gastrocnemius medialis, peroneus brevis, tibialis anterior, quadriceps and biceps femoris were investigated following a conditioning stimulation which evoked either a monosynaptic reflex in quadriceps, triceps surae or peroneal motor neurones, or an antidromic motor volley in one of the following nerves: inferior soleus, gastrocnemius medialis, superficial peroneal, deep peroneal, or femoral nerve. In many motor unit-nerve combinations a trough in the post-stimulus time histogram, indicating an inhibition, appeared immediately after the heteronymous Ia excitation. This inhibition is thought to be Renshaw in origin, because it appeared and increased with the conditioning motor discharge, was independent of the conditioning stimulus intensity per se and had a long duration. These recurrent connections were widely distributed with a pattern very similar to that described for heteronymous monosynaptic Ia excitation. In particular Renshaw coupling between muscles operating at different joints seems to be the rule in the human lower limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号