首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Both the dystrophin-glycoprotein complex and alpha7beta1 integrin have critical roles in the maintenance of muscle integrity via the provision of mechanical links between muscle fibres and the basement membrane. Absence of either dystrophin or alpha7 integrin results in a muscular dystrophy. To clarify the role of alpha7 integrin and dystrophin in muscle development and function, we generated integrin alpha7/dystrophin double-mutant knockout (DKO) mice. Surprisingly, DKO mice survived post-natally and were indistinguishable from wild-type, integrin alpha7-deficient and mdx mice at birth, but died within 24-28 days. Histological analysis revealed a severe muscular dystrophy in DKO mice with endomysial fibrosis and ectopic calcification. Weight loss was correlated with the loss of muscle fibres, indicating that progressive muscle wasting in the double mutant was most likely due to inadequate muscle regeneration. The data further support that premature death of DKO mice is due to cardiac and/or respiratory failure. The integrin alpha7/dystrophin-deficient mouse model, therefore, resembles the pathological changes seen in Duchenne muscular dystrophy and suggests that the different clinical severity of dystrophin deficiency in human and mouse may be due to a fine-tuned difference in expression of dystrophin and integrin alpha7 in both species. Together, these findings indicate an essential role for integrin alpha7 in the maintenance of dystrophin-deficient muscles.  相似文献   

2.
3.
Desmin-related myopathy is characterised by skeletal muscle weakness often combined with cardiac involvement. Mutations in the desmin gene have been described as a cause of desmin-related myopathy (OMIM 601419). We report here on two distantly related Dutch families with autosomal dominant inheritance of desmin-related myopathy affecting 15 family members. A highly heterogeneous clinical picture is apparent, varying from isolated dilated cardiomyopathy to a more generalised skeletal myopathy and mild respiratory problems. Morphological analysis of muscle biopsies revealed intracytoplasmic desmin aggregates (desmin and p62 staining). In both families we identified an identical novel pathogenic heterozygous missense mutation, S13F, in the 'head' domain of the desmin gene which cosegregates with the disease phenotype. This is the 5th reported missense mutation located at the 'head' domain of the desmin gene and the first reported Dutch family with desmin-related myopathy. This article illustrates the importance of analysing the desmin gene in patients with (familial) cardiac conduction disease, dilated cardiomyopathy and/or a progressive skeletal myopathy resembling limb-girdle muscular dystrophy.  相似文献   

4.
Complete laminin alpha2 (LAMA2) deficiency causes approximately half of congenital muscular dystrophy (CMD) cases. Many loss-of-function mutations have been reported in these severe, neonatal-onset patients, but only single missense mutations have been found in milder CMD with partial laminin alpha2 deficiency. Here, we studied nine patients diagnosed with CMD who showed abnormal white-matter signal at brain MRI and partial deficiency of laminin alpha2 on immunofluorescence of muscle biopsy. We screened the entire 9.5 kb laminin alpha2 mRNA from patient muscle biopsy by direct capillary automated sequencing, single strand conformational polymorphism (SSCP), or denaturing high performance liquid chromatography (DHPLC) of overlapping RT-PCR products followed by direct sequencing of heteroduplexes. We identified laminin alpha2 sequence changes in six of nine CMD patients. Each of the gene changes identified, except one, was novel, including three missense changes and two splice-site mutations. The finding of partial laminin alpha2 deficiency by immunostaining is not specific for laminin alpha2 gene mutation carriers, with only two patients (22%) showing clear causative mutations, and an additional three patients (33%) showing possible mutations. The clinical presentation and disease progression was homogeneous in the laminin alpha2-mutation positive and negative CMD patients.  相似文献   

5.
We previously reported that enhanced expression of the alpha7beta1 integrin ameliorates the development of muscular dystrophy and extends longevity in alpha7BX2-mdx/utr(-/-) transgenic mice (Burkin DJ, Wallace GQ, Nicol KJ, Kaufman DJ, Kaufman SJ: Enhanced expression of the alpha7beta1 integrin reduces muscular dystrophy and restores viability in dystrophic mice. We now report on the mechanism by which these mice were rescued by the integrin. As a result of increased integrin in alpha7BX2-mdx/utr(-/-) mice the structural integrity of the myotendinous and neuromuscular junctions are maintained. A twofold increase in satellite cells in alpha7BX2-mdx/utr(-/-) skeletal muscle was detected by immunofluorescence using the satellite cell marker c-met. These cells enhanced the regenerative capacity of muscle in the transgenic animals as determined by fusion of BrdUrd-labeled cells into muscle fibers. Increased integrin also leads to hypertrophy. Finally, transgenic expression of alpha7BX2 integrin chain in skeletal muscle secondarily reduces the development of cardiomyopathy, the ultimate cause of death in these animals. We believe this multiplicity of responses to increased alpha7beta1 integrin collectively inhibits the development of muscle disease and increases longevity in these mice.  相似文献   

6.
Mutations in dysferlin were recently described in patients with Miyoshi myopathy, a disorder that preferentially affects the distal musculature, and in patients with Limb-Girdle Muscular Dystrophy 2B, a disorder that affects the proximal musculature. Despite the phenotypic differences, the types of mutations associated with Miyoshi myopathy and Limb-Girdle Muscular Dystrophy 2B do not differ significantly. Thus, the etiology of the phenotypic variability associated with dysferlin mutations remains unknown. Using genetic linkage and mutation analysis, we identified a large inbred pedigree of Yemenite Jewish descent with limb-girdle muscular dystrophy. The phenotype in these patients included slowly progressive, proximal, and distal muscular weakness in the lower limbs with markedly elevated serum creatine kinase (CK) levels. These patients had normal development and muscle strength and function in early life. Muscle biopsies from 4 affected patients showed a typical dystrophic pattern but interestingly, in 2, an inflammatory process was seen. The inflammatory infiltrates included primarily CD3 positive lymphocytes. Associated with this phenotype, we identified a previously undescribed frameshift mutation at nucleotide 5711 of dysferlin. This mutation produced an absence of normal dysferlin mRNA synthesis by affecting an acceptor site and cryptic splicing. Thus, splice site mutations that disrupt dysferlin may produce a phenotype associated with inflammation.  相似文献   

7.
Objective: Dysferlin is a sarcolemmal protein that plays an important role in membrane repair by regulating vesicle fusion with the sarcolemma. Mutations in the dysferlin gene (DYSF) lead to multiple clinical phenotypes, including Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD 2B), and distal myopathy with anterior tibial onset (DMAT). Patients with dysferlinopathy also show muscle inflammation, which often leads to a misdiagnosis as inflammatory myopathy. In this study, we examined and analyzed the dyferlinopathy-associated immunological features. Methods: Comparative immunohistochemical analysis of inflammatory cell infiltration, and muscle expression of MHC-I and C5b-9 was performed using muscle biopsy samples from 14 patients with dysferlinopathy, 7 patients with polymyositis, and 8 patients with either Duchenne muscular dystrophy or Becker muscular dystrophy (DMD/BMD). Results: Immunohistochemical analysis revealed positive staining for immune response-related CD4+ cells, macrophages, MHC-I and C5b-9 in dysferlinopathy, which is in a different mode of polymyositis and DMD/BMD. Conclusion: These results demonstrated the involvement of immune factors in the pathogenesis of dysferlinopathy.  相似文献   

8.
Caveolin-3 is the muscle-specific isoform of the caveolin protein family, which is a major component of caveolae, small membrane invaginations found in most cell types. Caveolins play important roles in the formation of caveola membranes, acting as scaffolding proteins to organize and concentrate lipid-modified signaling molecules, and modulate a signaling pathway. For instance, caveolin-3 interacts with neuronal nitric oxide synthase (nNOS) and inhibits its catalytic activity. Recently, specific mutations in the caveolin-3 gene, including the Pro104Leu missense mutation, have been shown to cause an autosomal dominant limb-girdle muscular dystrophy (LGMD1C), which is characterized by the deficiency of caveolin-3 in the sarcolemma. However, the molecular mechanism by which these mutations cause the deficiency of caveolin-3 and muscle cell degeneration remains elusive. Here we generated transgenic mice expressing the Pro104Leu mutant caveolin-3. They showed severe myopathy accompanied by the deficiency of caveolin-3 in the sarcolemma, indicating a dominant negative effect of mutant caveolin-3. Interestingly, we also found a great increase of nNOS activity in their skeletal muscle, which, we propose, may play a role in muscle fiber degeneration in caveolin-3 deficiency.  相似文献   

9.
Limb girdle muscular dystrophy is a group of clinically and genetically heterogeneous disorders inherited in an autosomal recessive or dominant mode. Caveolin-3, the muscle-specific member of the caveolin gene family, is implicated in the pathogenesis of autosomal dominant limb girdle muscular dystrophy 1C. Here we report on a 4-year-old girl presenting with myalgia and muscle cramps due to a caveolin-3 deficiency in her dystrophic skeletal muscle as a result of a heterozygous 136G-->A substitution in the caveolin-3 gene. The novel sporadic missense mutation in the caveolin signature sequence of the caveolin-3 gene changes an alanine to a threonine (A46T) and prevents the localization of caveolin-3 to the plasma membrane in a dominant negative fashion. Caveolin-3 has been suggested to interact with the dystrophin-glycoprotein complex, which in striated muscle fibers links the cytoskeleton to the extracellular matrix and with neuronal nitric oxide synthase. Similar to dystrophin-deficient Duchenne muscular dystrophy, a secondary decrease in neuronal nitric oxide synthase and alpha-dystroglycan expression was detected in the caveolin-3-deficient patient. These results implicate an important function of the caveolin signature sequence and common mechanisms in the pathogenesis of dystrophin-glycoprotein complex-associated muscular dystrophies with caveolin-3-deficient limb girdle muscular dystrophy.  相似文献   

10.
In 2005 the commonality of sarcotubular myopathy (STM) and limb girdle muscular dystrophy type 2H (LGMD2H) was demonstrated, as both are caused by the p D487N missense mutation in TRIM32 originally found in the Manitoba Hutterite population. Recently, three novel homozygous TRIM32 mutations have been described in LGMD patients. Here we describe a three generation Swedish family clinically presenting with limb girdle muscular weakness and histological features of a microvacuolar myopathy. The two index patients were compound heterozygotes for a frameshift mutation in TRIM32 (c.1560delC ) and a 30 kb intragenic deletion, encompassing parts of intron 1 and the entire exon 2 of TRIM32. In these patients, no full‐length or truncated TRIM32 could be detected. Interestingly, heterozygous family members carrying only one mutation showed mild clinical symptoms and vacuolar changes in muscle. In our family, the phenotype encompasses additionally a mild demyelinating polyneuropathic syndrome. Thus STM and LGMD2H are the result of loss of function mutations that can be either deletions or missense mutations. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Mutations in dysferlin were recently described in patients with Miyoshi myopathy, a disorder that preferentially affects the distal musculature, and in patients with Limb‐Girdle Muscular Dystrophy 2B, a disorder that affects the proximal musculature. Despite the phenotypic differences, the types of mutations associated with Miyoshi myopathy and Limb‐Girdle Muscular Dystrophy 2B do not differ significantly. Thus, the etiology of the phenotypic variability associated with dysferlin mutations remains unknown. Using genetic linkage and mutation analysis, we identified a large inbred pedigree of Yemenite Jewish descent with limb‐girdle muscular dystrophy. The phenotype in these patients included slowly progressive, proximal, and distal muscular weakness in the lower limbs with markedly elevated serum creatine kinase (CK) levels. These patients had normal development and muscle strength and function in early life. Muscle biopsies from 4 affected patients showed a typical dystrophic pattern but interestingly, in 2, an inflammatory process was seen. The inflammatory infiltrates included primarily CD3 positive lymphocytes. Associated with this phenotype, we identified a previously undescribed frameshift mutation at nucleotide 5711 of dysferlin. This mutation produced an absence of normal dysferlin mRNA synthesis by affecting an acceptor site and cryptic splicing. Thus, splice site mutations that disrupt dysferlin may produce a phenotype associated with inflammation. Am. J. Med. Genet. 91:305–312, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

12.
Transgenic expression of the alpha7beta1 integrin in the dystrophic mdx/utr-/- mouse decreases development of muscular dystrophy and enhances longevity. To explore the possibility that elevating alpha7beta1 integrin expression could also ameliorate different forms of muscular dystrophy, we used transgenic technology to enhance integrin expression in mice lacking delta-sarcoglycan (delta sgc), a mouse model for human limb girdle muscular dystrophy type 2F. Unlike alpha7 transgenic mdx/utr-/- mice, enhanced alpha7beta1 integrin expression in the delta sgc-null mouse did not alleviate muscular dystrophy in these animals. Expression of the transgene in the delta sgc-null did not alleviate dystrophic histopathology, nor did it decrease cardiomyopathy or restore exercise tolerance. One hallmark of integrin-mediated alleviation of muscular dystrophy in the mdx/utr-/- background is the restoration of myotendinous junction integrity. As assessed by atomic force microscopy, myotendinous junctions from normal and delta sgc-null mice were indistinguishable, thus suggesting the important influence of myotendinous junction integrity on the severity of muscular dystrophy and providing a possible explanation for the inability of enhanced integrin expression to alleviate dystrophy in the delta sgc-null mouse. These results suggest that distinct mechanisms underlie the development of the diseases that arise from deficiencies in dystrophin and sarcoglycan.  相似文献   

13.
Limb girdle muscular dystrophy type 2A (LGMD2A) is caused by mutations in the calpain 3 gene. In a large family affected by LGMD2A with four severely affected members, three additional asymptomatic relatives had very high serum creatine kinase concentrations. All were homozygous for the R110X mutation and showed a total absence of calpain 3 in the muscle. Histological analysis of muscle in these three rare preclinical cases showed a consistent but unusual pattern, with isolated fascicles of degenerating fibres in an almost normal muscle. This pattern was also seen in one patient with early stage LGMD2A who had a P82L missense mutation and a partial deficiency of calpain 3 in the muscle, but was not seen in early stage patients affected by other forms of LGMD. These findings suggest that a peculiar pattern of focal degeneration occurs in calpainopathy, independently of the type of mutation or the amount of calpain 3 in the muscle.  相似文献   

14.
The mdx mouse, an animal model of Duchenne muscular dystrophy, develops an X-linked recessive inflammatory myopathy. During onset of disease and height of myonecrosis, mdx mice also display important changes in the microenvironment of lymphoid tissues. Draining lymph nodes showed reduced cellularity and atrophy accompanied by intense immunolabeling for fibronectin, laminin, and type-IV collagen. Following clinical amelioration of dystrophy, mdx mice showed enhanced cellularity and a consistent increase in the absolute numbers of CD4(+) and CD8(+) cells expressing alpha4(high) and alpha5(high) extracellular matrix receptors. Furthermore, infiltrating cells in the proximity of myonecrosis expressed alpha4, alpha5, and alpha6 integrin chains during both height of myonecrosis and muscular tissue regeneration. Such results indicate that during distinct phases of muscular dystrophy, altered expression of extracellular matrix ligands and receptors may be influencing myonecrosis by promoting adhesion and migration of mononuclear cells into the altered skeletal muscle and toward local draining lymphoid tissue.  相似文献   

15.
The congenital muscular dystrophies (CMD, MDC) represent a heterogeneous group of autosomal recessive disorders manifesting in infancy by muscle weakness and hypotonia. Approximately 40% of patients with CMD have a primary deficiency of the laminin alpha 3. chain of merosin (laminin-2) due to mutations in LAMA2 gene. Laminin-2 bound to alpha-dystroglycan forms a link between actin--associated cytoskeletal proteins and the components of extracellular matrix. Disruption of this axis is responsible for several forms of muscular dystrophy. A unique case of congenital muscular dystrophy simulating a juvenile polymyositis in a muscle biopsy is presented. A profound reduction of alpha-dystroglycan and less pronounced secondary deficiency of alpha 2-laminin were found. All known forms of CMD were excluded, and the disorder was diagnosed as so far undescribed form of CMD. The mutation in a gene encoding the protein, that seems to play a role in a glycosylation of alpha-dystroglycan, is presumed.  相似文献   

16.
17.
18.
Initial reports of patients with laminin alpha2 chain (merosin) deficiency had a relatively homogeneous phenotype, with classical congenital muscular dystrophy (CMD) characterised by severe muscle weakness, inability to achieve independent ambulation, markedly raised creatine kinase, and characteristic white matter hypodensity on cerebral magnetic resonance imaging. We report a series of five patients with laminin alpha2 deficiency, only one of whom has this severe classical CMD phenotype, and review published reports to characterise the expanded phenotype of laminin alpha2 deficiency, as illustrated by this case series. While classical congenital muscular dystrophy with white matter abnormality is the commonest phenotype associated with laminin alpha2 deficiency, 12% of reported cases have later onset, slowly progressive weakness more accurately designated limb-girdle muscular dystrophy. In addition, the following clinical features are reported with increased frequency: mental retardation (~6%), seizures (~8%), subclinical cardiac involvement (3-35%), and neuronal migration defects (4%). At least 25% of patients achieve independent ambulation. Notably, three patients with laminin alpha2 deficiency were asymptomatic, 10 patients had normal MRI (four with LAMA2 mutations reported), and between 10-20% of cases had maximum recorded creatine kinase of less than 1000 U/l. LAMA2 mutations have been identified in 25% of cases. Sixty eight percent of these have the classical congenital muscular dystrophy, but this figure is likely to be affected by ascertainment bias. We conclude that all dystrophic muscle biopsies, regardless of clinical phenotype, should be studied with antibodies to laminin alpha2. In addition, the use of multiple antibodies to different regions of laminin alpha2 may increase the diagnostic yield and provide some correlation with severity of clinical phenotype.  相似文献   

19.
We have identified a new pathogenic mechanism for an inherited muscular dystrophy in which functional haploinsufficiency of the extracellular matrix protein collagen VI causes Bethlem myopathy. The heterozygous COL6A1 mutation results in a single base deletion from the mRNA and a premature stop codon. The mutant mRNA is unstable, subject to nonsense- mediated mRNA decay, and is almost completely absent both from patient fibroblasts and skeletal muscle, resulting in haploinsufficiency of the alpha1(VI) subunit and reduced production of structurally normal collagen VI. This is the first example of a muscular dystrophy caused by haploinsufficiency of a structural protein or member of the dystrophin-glycoprotein complex, and identifies collagen VI as a critical contributor to cell-matrix adhesion in skeletal muscle.   相似文献   

20.
Laminin (LN) alpha2 chain deficiency in humans and mice leads to severe forms of congenital muscular dystrophy (CMD). Here, we investigated whether LNalpha1 chain in mice can compensate for the absence of LNalpha2 chain and prevent the development of muscular dystrophy. We generated mice expressing a LNalpha1 chain transgene in skeletal muscle of LNalpha2 chain deficient mice. LNalpha1 is not normally expressed in muscle, but the transgenically produced LNalpha1 chain was incorporated into muscle basement membranes, and normalized the compensatory changes of expression of certain other laminin chains (alpha4, beta2). In 4-month-old mice, LNalpha1 chain could fully prevent the development of muscular dystrophy in several muscles, and partially in others. The LNalpha1 chain transgene not only reversed the appearance of histopathological features of the disease to a remarkable degree, but also greatly improved health and longevity of the mice. Correction of LNalpha2 chain deficiency by LNalpha1 chain may serve as a paradigm for gene therapy of CMD in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号