首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Time-frequency balanced spectral entropy of electroencephalogram (EEG) and frontal electromyogram (FEMG) is a novel measure of hypnosis during anesthesia. Two Entropy parameters are described: Response entropy (RE) is calculated from EEG and FEMG; and State Entropy (SE) is calculated mainly from EEG. This study was performed to validate their performance during transition from consciousness to unconsciousness under different anesthetic agents. METHODS: Response entropy, SE [S/5 Entropy Module, M-ENTROPY (later in text: Entropy), Datex-Ohmeda Division, Instrumentarium Corp., Helsinki, Finland] and BIS (BIS XP, A-2000, Aspect Medical Systems, Newton, MA) data were collected from 70 patients; 30 anesthetized with propofol 2 mg kg-1, 20 with sevoflurane inhalation, and 20 with thiopental 5 mg kg-1. Loss and regaining of consciousness (LOC, ROC) was tested every 10 s, and sensitivity, specificity, and prediction probability (Pk) were calculated. Behavior of the indices was studied. RESULTS: Sensitivity, specificity, and Pk values for consciousness were high and similar for all indices. During regaining of consciousness after propofol bolus, RE, SE, and BIS values recovered by 81 +/- 22%, 75 +/- 26%, and 59 +/- 18% (mean +/- SD), respectively, from the minimum relative to their baseline. After thiopental bolus, RE, SE, and BIS values recovered by 86+/-21%, 88 +/- 13%, and 63 +/- 14%, respectively. The relative rise was higher in RE and SE compared with BIS (P < 0.01). During deep levels of hypnosis, RE and SE decreased monotonously as a function of burst suppression ratio, while BIS showed biphasic behavior. On average, RE indicated emergence from anesthesia 11 s earlier than SE, and 12.4 s earlier than BIS. CONCLUSIONS: All indices, RE, SE, and BIS, distinguished excellently between conscious and unconscious states during propofol, sevoflurane, and thiopental anesthesia. During burst suppression, Entropy parameters RE and SE, but not BIS, behave monotonously. During regaining of consciousness after a thiopental or propofol bolus, RE and SE values recovered significantly closer to their baseline values than did BIS. Response entropy indicates emergence from anesthesia earlier than SE or BIS.  相似文献   

2.
BACKGROUND: Entropy, a newly available electroencephalographic monitor, demonstrates two parameters, response entropy (RE) and state entropy (SE). The aim of this study is to compare RE and SE with bispectral index (BIS) during anesthetic induction with propofol. METHODS: Fifteen patients received target controlled infusion of propofol starting at 3 microg x ml(-1). We measured RE, SE and BIS and recorded effect-site concentrations of propofol at three sedation levels: VR1; conscious state before infusion of propofol, VR2; no response to verbal command, and VR3; no response to verbal command and shaking. Spearman rank correlations and prediction probability for sedation level were analyzed. RESULTS: Effect-site concentrations of propofol at VR1, VR2, and VR3 were 0, 1.8 +/- 0.7, and 2.4 +/- 0.7, respectively. All three parameters showed significant correlations with sedation levels. Prediction probability values of SE, RE, and BIS were 0.905, 0.894, and 0.890, respectively. CONCLUSIONS: Response entropy and SE can provide similar information as BIS about the sedation level with propofol.  相似文献   

3.
Recently, Datex-Ohmeda introduced the Entropy Moduletrade mark for measuring depth of anesthesia. Based on the Shannon entropy of the electroencephalogram, state entropy (SE) and response entropy (RE) are computed. We investigated the dose-response relationship of SE and RE during propofol anesthesia in comparison with the Bispectral Indextrade mark (BIS). Twenty patients were studied without surgical stimulus. Anesthesia was induced by a constant propofol infusion of 2000 mg/h (451 +/- 77 microg x min(-1) x kg(-1)) via a large forearm vein. Propofol was infused until substantial burst suppression occurred (more than 50%) or mean arterial blood pressure decreased to <60 mm Hg. Hereafter, infusions were stopped until recovery of BIS values up to 60 was reached. Subsequently, the constant propofol infusion of 2000 mg/h was restarted to increase depth of anesthesia and again decreased (infusion was stopped) within the BIS value range of 40-60. The coefficient of determination (R2) and the prediction probability (P(K)) were calculated to evaluate the performance of SE, RE, and BIS to predict changing propofol effect-site concentrations. R2 values for SE, RE, and BIS of 0.88 +/- 0.08, 0.89 +/- 0.07, and 0.92 +/- 0.06, respectively, were similar. The calculated P(K) values, however, revealed a significant difference between SE and RE compared with BIS, with P(K) = 0.77 +/- 0.09, 0.76 +/- 0.10, and 0.84 +/- 0.06, respectively. BIS seems to show slight advantages in predicting propofol effect-site concentrations compared with SE and RE, as measured by P(K) but not as measured by R2.  相似文献   

4.
BACKGROUND: Different analytical concepts were introduced to quantify the changes of the electroencephalogram. The Datex-Ohmeda S/5 Entropy Module (Datex-Ohmeda Division, Instrumentarium Corp., Helsinki, Finland) was the first commercial monitor based on the entropy generating two indices, the state entropy (SE) and the response entropy (RE). The aim of the current study was to compare the accuracy of SE and RE with the Bispectral Index(R) monitor (BIS(R); Aspect Medical Systems, Newton, MA) during propofol-remifentanil anesthesia. METHODS: The authors investigated 20 female patients during minor gynecologic surgery. SE, RE, BIS, mean arterial blood pressure, heart rate, and sedation level were recorded every 20 s during stepwise increase (target-controlled infusion, 0.5 microg/ml) of propofol until the patients lost response. Five minutes after loss of response, remifentanil infusion (0.4 microg . kg(-1) . min(-1)) was started. Spearman correlation coefficient and prediction probability were calculated for sedation levels with SE, RE, BIS, mean arterial blood pressure, and heart rate. The ability of the investigated parameters to distinguish between the anesthesia steps awake versus loss of response, awake versus anesthesia, anesthesia versus first reaction, and anesthesia versus extubation was analyzed with the prediction probability. RESULTS: SE correlates best with sedation levels, but no significant differences of the prediction probability values among SE, RE, and BIS were found. The prediction probability for all investigated steps of anesthesia did not show significant differences among SE, RE, and BIS. SE, RE, and BIS were superior to mean arterial blood pressure and heart rate. CONCLUSION: SE, RE, and BIS revealed similar information about the level of sedation and allowed the authors to distinguish between different steps of anesthesia. Both monitors provided useful additional information for the anesthesiologist.  相似文献   

5.
Background: Different analytical concepts were introduced to quantify the changes of the electroencephalogram. The Datex-Ohmeda S/5 Entropy Module (Datex-Ohmeda Division, Instrumentarium Corp., Helsinki, Finland) was the first commercial monitor based on the entropy generating two indices, the state entropy (SE) and the response entropy (RE). The aim of the current study was to compare the accuracy of SE and RE with the Bispectral Index(R) monitor (BIS(R); Aspect Medical Systems, Newton, MA) during propofol-remifentanil anesthesia.

Methods: The authors investigated 20 female patients during minor gynecologic surgery. SE, RE, BIS, mean arterial blood pressure, heart rate, and sedation level were recorded every 20 s during stepwise increase (target-controlled infusion, 0.5 [mu]g/ml) of propofol until the patients lost response. Five minutes after loss of response, remifentanil infusion (0.4 [mu]g [middle dot] kg-1 [middle dot] min-1) was started. Spearman correlation coefficient and prediction probability were calculated for sedation levels with SE, RE, BIS, mean arterial blood pressure, and heart rate. The ability of the investigated parameters to distinguish between the anesthesia steps awake versus loss of response, awake versus anesthesia, anesthesia versus first reaction, and anesthesia versus extubation was analyzed with the prediction probability.

Results: SE correlates best with sedation levels, but no significant differences of the prediction probability values among SE, RE, and BIS were found. The prediction probability for all investigated steps of anesthesia did not show significant differences among SE, RE, and BIS. SE, RE, and BIS were superior to mean arterial blood pressure and heart rate.  相似文献   


6.
BACKGROUND: Recently, entropy algorithms have been proposed as electroencephalographic measures of anesthetic drug effects. Datex-Ohmeda (Helsinki, Finland) introduced the Entropy Module, a new electroencephalographic monitor designed for measuring depth of anesthesia. The monitor calculates a state entropy (SE) computed over the frequency range of 0.8-32 Hz and a response entropy (RE) computed over the frequency range of 0.8-47 Hz. The authors investigated the dose-response relation of SE and RE during sevoflurane anesthesia in comparison with the Bispectral Index (BIS). METHODS: Sixteen patients were studied without surgical stimulus. Anesthesia was induced by sevoflurane inhalation with a tight-fitting facemask. Sevoflurane concentrations were increased and subsequently decreased and increased two to four times until the measurement was stopped and patients were intubated for surgery. The performances of SE, RE, and BIS to predict the estimated sevoflurane effect site concentration, obtained by simultaneous pharmacokinetic and pharmacodynamic modeling, were compared by calculating the correlation coefficients and the prediction probability. RESULTS: State entropy, RE, and BIS values decreased continuously over the observed concentration range of sevoflurane. Correlation coefficients were slightly but not significantly better for entropy parameters (0.87 +/- 0.09 and 0.86 +/- 0.10 for SE and RE, respectively) than for BIS (0.85 +/- 0.12). Calculating the prediction probability confirmed these results with a prediction probability of 0.84 +/- 0.05 and 0.82 +/- 0.06 for SE and RE, respectively, and 0.80 +/- 0.06 for BIS. CONCLUSION: State entropy and RE seem to be useful electroencephalographic measures of sevoflurane drug effect.  相似文献   

7.
Background: Recently, entropy algorithms have been proposed as electroencephalographic measures of anesthetic drug effects. Datex-Ohmeda (Helsinki, Finland) introduced the Entropy Module, a new electroencephalographic monitor designed for measuring depth of anesthesia. The monitor calculates a state entropy (SE) computed over the frequency range of 0.8-32 Hz and a response entropy (RE) computed over the frequency range of 0.8-47 Hz. The authors investigated the dose-response relation of SE and RE during sevoflurane anesthesia in comparison with the Bispectral Index (BIS).

Methods: Sixteen patients were studied without surgical stimulus. Anesthesia was induced by sevoflurane inhalation with a tight-fitting facemask. Sevoflurane concentrations were increased and subsequently decreased and increased two to four times until the measurement was stopped and patients were intubated for surgery. The performances of SE, RE, and BIS to predict the estimated sevoflurane effect site concentration, obtained by simultaneous pharmacokinetic and pharmacodynamic modeling, were compared by calculating the correlation coefficients and the prediction probability.

Results: State entropy, RE, and BIS values decreased continuously over the observed concentration range of sevoflurane. Correlation coefficients were slightly but not significantly better for entropy parameters (0.87 +/- 0.09 and 0.86 +/- 0.10 for SE and RE, respectively) than for BIS (0.85 +/- 0.12). Calculating the prediction probability confirmed these results with a prediction probability of 0.84 +/- 0.05 and 0.82 +/- 0.06 for SE and RE, respectively, and 0.80 +/- 0.06 for BIS.  相似文献   


8.
Background: The Datex-Ohmeda S/5 Entropy Module (Datex-Ohmeda Division, Instrumentarium Corp., Helsinki, Finland), using time-frequency balanced Spectral Entropy, is a novel tool for monitoring the hypnotic state during anesthesia. The Entropy Module produces two values, State Entropy (SE) and Response Entropy (RE), and in adults, it has been shown to measure reliably the hypnotic effects of various drugs. In children, Spectral Entropy has been only preliminary studied. The authors' aim was to study Spectral Entropy as a marker of hypnotic state during general anesthesia in infants and children.

Methods: Twenty infants (aged 1 month-1 yr) and 40 children (aged 1-15 yr) were anesthetized for surgery using standardized sevoflurane-nitrous oxide-based anesthesia. The relationships between SE, RE, or Bispectral Index (BIS) and (1) a modified Observer's Assessment of Alertness/Sedation Scale, (2) non-steady state end-tidal concentration of sevoflurane, (3) steady state end-tidal concentration of sevoflurane, and (4) hemodynamic values were calculated using prediction probability, nonlinear regression, and correlation coefficients, as appropriate. The performances of SE, RE, and BIS were compared.

Results: The prediction probability values (+/- SEM) of SE, RE, and BIS versus the modified Observer's Assessment of Alertness/Sedation Scale in the induction phase were 0.83 +/- 0.06, 0.88 +/- 0.06, and 0.87 +/- 0.08 for children and 0.76 +/- 0.08,0.79 +/- 0.08, and 0.73 +/- 0.10 for infants; values in the emergence phase were 0.68 +/- 0.05, 0.74 +/- 0.04, and 0.64 +/- 0.05 for children and 0.64 +/- 0.07, 0.69 +/- 0.06, and 0.72 +/- 0.06 for infants, respectively. SE, RE, and BIS values were inversely proportionally related to the end-tidal concentration of sevoflurane for children, but for infants, the correlation was much less clear. No significant correlations were found between SE, RE, or BIS values and the hemodynamic values.  相似文献   


9.
BACKGROUND: The Datex-Ohmeda S/5 Entropy Module (Datex-Ohmeda Division, Instrumentarium Corp., Helsinki, Finland), using time-frequency balanced Spectral Entropy, is a novel tool for monitoring the hypnotic state during anesthesia. The Entropy Module produces two values, State Entropy (SE) and Response Entropy (RE), and in adults, it has been shown to measure reliably the hypnotic effects of various drugs. In children, Spectral Entropy has been only preliminary studied. The authors' aim was to study Spectral Entropy as a marker of hypnotic state during general anesthesia in infants and children. METHODS: Twenty infants (aged 1 month-1 yr) and 40 children (aged 1-15 yr) were anesthetized for surgery using standardized sevoflurane-nitrous oxide-based anesthesia. The relationships between SE, RE, or Bispectral Index (BIS) and (1) a modified Observer's Assessment of Alertness/Sedation Scale, (2) non-steady state end-tidal concentration of sevoflurane, (3) steady state end-tidal concentration of sevoflurane, and (4) hemodynamic values were calculated using prediction probability, nonlinear regression, and correlation coefficients, as appropriate. The performances of SE, RE, and BIS were compared. RESULTS: The prediction probability values (+/- SEM) of SE, RE, and BIS versus the modified Observer's Assessment of Alertness/Sedation Scale in the induction phase were 0.83 +/- 0.06, 0.88 +/- 0.06, and 0.87 +/- 0.08 for children and 0.76 +/- 0.08,0.79 +/- 0.08, and 0.73 +/- 0.10 for infants; values in the emergence phase were 0.68 +/- 0.05, 0.74 +/- 0.04, and 0.64 +/- 0.05 for children and 0.64 +/- 0.07, 0.69 +/- 0.06, and 0.72 +/- 0.06 for infants, respectively. SE, RE, and BIS values were inversely proportionally related to the end-tidal concentration of sevoflurane for children, but for infants, the correlation was much less clear. No significant correlations were found between SE, RE, or BIS values and the hemodynamic values. CONCLUSIONS: Spectral Entropy may be a useful tool for measuring the level of hypnosis in anesthetized children and seems to perform as well as BIS. In infants, the clinical usefulness of both these electroencephalogram-derived methods must be evaluated in further controlled studies.  相似文献   

10.
Chen X  Tang J  White PF  Wender RH  Ma H  Sloninsky A  Kariger R 《Anesthesia and analgesia》2002,95(6):1669-74, table of contents
The patient state index (PSI), a quantitative electroencephalographic index, has been recently introduced into clinical practice as a monitor for assessing consciousness during sedation and general anesthesia. We designed this observational study to compare the sensitivity and specificity of the PSI with that of the bispectral index (BIS) with respect to their ability to predict the loss of consciousness and emergence from anesthesia, as well as to assess changes in IV (propofol) and inhaled (desflurane) anesthetics during the maintenance period. Twenty consenting patients scheduled for elective laparoscopic surgical procedures were enrolled in this prospective clinical study. Anesthesia was induced with propofol 2 mg/kg IV and fentanyl 1 micro g/kg IV, and tracheal intubation was facilitated with cisatracurium 0.3 mg/kg IV. Desflurane 4% in combination with nitrous oxide 60% in oxygen was administered for the maintenance of anesthesia. Comparative PSI and BIS values were obtained at specific time intervals during the induction, maintenance, and emergence periods. The changes in these indices were recorded after the administration of propofol (20 mg IV) or with 2% increases or decreases in the inspired concentration of desflurane during the maintenance period. With logistic regression models, both the BIS and PSI were found to be effective as predictors of unconsciousness (i.e., failed to respond to verbal stimuli) (P < 0.01). The PSI also correlated with the BIS during both the induction of (r = 0.78) and emergence from (r = 0.73) general anesthesia. However, the area under the receiver operating characteristic curve for detection of consciousness indicated a better performance with the PSI (0.95 +/- 0.04) than the BIS (0.79 +/- 0.04). During the maintenance period, the PSI values were comparable to the BIS in response to changes in propofol and desflurane but displayed greater interpatient variability. Finally, the PSI (versus BIS) values were less interfered with by the electrocautery unit during surgery (16% versus 65%, respectively). In conclusion, the PSI may prove to be a viable alternative to the BIS for evaluating consciousness during the induction of and emergence from general anesthesia, as well as for titrating the administration of propofol and desflurane during the maintenance period. However, further studies with the PSA device are needed to determine its role in anesthesia. IMPLICATIONS: The patient state index could be a useful alternative to the bispectral index for assessing level of consciousness during the induction of and emergence from anesthesia, as well as for titrating IV and volatile anesthetics during surgery.  相似文献   

11.
White PF  Tang J  Ma H  Wender RH  Sloninsky A  Kariger R 《Anesthesia and analgesia》2004,99(5):1429-35; table of contents
New disposable electrodes, the PSArray and XP sensor, have been developed for the patient state analyzer (PSA) and the bispectral index (BIS) monitors, respectively. We designed this clinical study to compare the sensitivity and specificity of the patient state index (PSI) with the BIS during the perioperative period when the new electrode sensors were used. Twenty-two consenting patients scheduled for elective laparoscopic procedures were enrolled in this prospective study. The elapsed time to apply electrodes and obtain a baseline index value was recorded, as were the comparative PSI and BIS values at specific time intervals during the induction, maintenance, and emergence periods in patients who were administered a standardized general anesthetic. In addition, the changes in these indices were recorded after a bolus dose of propofol (20 mg IV) or a 2% increase or decrease in the inspired concentration of desflurane during the maintenance period. The total elapsed time to obtain an index value was similar with both devices (66 +/- 32 s versus 72 +/- 41 s for the PSA and BIS, respectively). By using logistic regression models, both the BIS and PSI were found to be equally effective as predictors of unconsciousness (i.e., failure to respond to verbal stimuli). The PSI also correlated with the BIS during both the induction of (R = 0.85) and the emergence from (R = 0.74) general anesthesia. The area under the receiver operating characteristic curve for detection of consciousness also indicated a similar performance with the PSI (0.98 +/- 0.05) and the BIS (0.97 +/- 0.05). During the maintenance period, the PSI values tended to be lower than the BIS value; however, the responses to changes in propofol and desflurane were similar. Finally, the PSI (versus BIS) values showed less interference from the electrocautery unit during the operation (31% versus 73%, respectively). Although the list price of the PSArray(2) disposable electrode strip (USD $24.95) was higher than that of the BIS XP sensor (USD $17.50), the average sale price (USD $14.95) was identical for both electrode systems. Therefore, we conclude that the PSA monitor with the PSArray(2) is a cost-effective alternative to the BIS monitor with the XP sensor for evaluating consciousness during the induction of and emergence from general anesthesia, as well as for titrating propofol and desflurane during the maintenance period.  相似文献   

12.
目的 评价反应熵和状态熵监测全麻患者镇静水平的准确性.方法 择期行腹部手术患者20例,ASAⅠ或Ⅱ级,入室后监测反应熵(RE)、状态熵(SE)及脑电双频谱指数(BIS),静脉注射异丙酚、维库溴铵和芬太尼麻醉诱导,气管插管后机械通气,吸入七氟烷、间断静脉注射维库溴铵和芬太尼维持麻醉.分别于入室时、意识消失前10min、意识消失即刻、气管插管时、手术1 h、意识恢复前10 min、意识恢复即刻、拔管后10 min时记录RE、SE和BIS.结果 RE、SE和BIS在意识改变前后差异均有统计学意义(P<0.05),RE、SE和BIS判断意识消失的临界值分别为76、73和68,灵敏度分别为94%、95%和92%,特异度分别为92%、94%和9l%,临界值判断意识消失的准确度分别为93%、95%、94%;判断意识恢复的临界值分别为82、75和70,灵敏度分别为95%、95%和91%,特异度分别为93%、96%和93%,临界值判断意识恢复的准确度分别为98%、96%和97%.结论 熵指数能够准确地监测全麻患者镇静水平.  相似文献   

13.
Bispectral index and spectral entropy in neuroanesthesia   总被引:1,自引:0,他引:1  
Spectral Entropy (SpEn) is an alternative tool to the bispectral index (BIS) for monitoring depth of hypnosis. SpEn measures response entropy (RE) and state entropy (SE). This open-label prospective study was designed to evaluate SpEn and BIS in 20 patients undergoing elective supratentorial neurosurgery with craniotomy and resection of brain tumors. SpEn and BIS were obtained continuously by Datex Ohmeda M-entropy module S/5 (Helsinki, Finland) and Aspect Medical System BIS (Newton), respectively. Total intravenous anesthesia was performed in all patients by Fresenius Vial infusion system (Brezins, France) to maintain a plasma concentration of propofol of 2.5 to 5 microg mL(-1) and sufentanil of 0.2 to 0.4 etag mL(-1). SpEn, BIS, the estimated propofol effect-site concentrations (Ce), the mean arterial pressure (MAP), and the heart rate (HR) were recorded during 12 specific events: induction of anesthesia, patient stop counting, loss of blinking reflex, intubation, mayfield pinning, craniotomy, termination of propofol infusion, recovery of blinking reflex, coughing, limb movement, order execution, and extubation. Stated that prediction probability or P(K) represents an indicator probability to predict correctly the rank order of an arbitrary pair of distinct observed indices of depth of hypnosis (ie, clinical settings and SpEn indices, or BIS, Ce, MAP, HR), PK of BIS, SE, RE, and Ce provided a better depth of hypnosis than MAP and HR; RE being the best for rapidity, SE for sensitivity, and BIS for specificity. There is good correlation between the 3 hypnosis indices and Ce. This study demonstrates that SpEn provides a reproducible hypnosis index for patients undergoing supratentorial neurosurgical procedures.  相似文献   

14.
Recently, bispectral index (BIS) values were demonstrated to be different for various anesthetics as a result of differential effects on electroencephalographic (EEG) signals. Entropy is similar to the BIS monitor, as both process raw EEG to derive a number. We hypothesized that entropy may also be anesthetic agent-specific. Thirty adult patients undergoing spinal surgery were randomized to receive halothane, isoflurane, or sevoflurane. Entropy indices were recorded at various minimum alveolar concentration (MAC) values—0.5, 0.75, 1.0 and 1.5—both during wash-in and wash-out of the agent. Heart rate (HR), mean arterial blood pressure (MAP), response entropy (RE), and state entropy (SE) were noted. Statistical analysis was done using a one-way analysis-ofvariance test. P values less than 0.05 were considered significant. Ten patients in each group completed the study. The demographics and baseline values of HR, MAP, RE, and SE were comparable in all three groups. During the study period, for a given MAC value, both RE and SE remained low in the isoflurane and sevoflurane groups compared to the halothane group. For a given MAC, the RE and SE were comparable during wash-in and wash-out phases. Halothane produced higher entropy values as compared to isoflurane and sevoflurane at equivalent MAC levels.  相似文献   

15.
BIS and Entropy in the elderly   总被引:1,自引:0,他引:1  
Arnold G  Kluger M  Voss L  Sleigh J 《Anaesthesia》2007,62(9):907-912
The interaction of many poorly defined, physiological, pharmacological, and pathological factors make titration of general anaesthesia in the elderly difficult. There may be a potential clinical benefit using the processed electroencephalogram (EEG) to monitor hypnotic level in this population. We prospectively studied 16 patients aged over 65 years having hip fractures repaired under general anaesthesia by experienced anaesthetists blinded to Bispectral Index (BIS(XP)) and Entropy values. Pre-induction EEG indices did not correlate with age or mini-mental state examination (MMSE). During maintenance of anaesthesia, BIS(XP) and Response Entropy (RE) values were within the recommended range of 40-60, 45% and 32% of the total time, respectively. BIS(XP) and Response Entropy (RE) values were above 60 for 11% and 13% of the total time, respectively, and below 40 for 44% and 55% of the total time, respectively. BIS(XP) correlated well with RE in 12 patients, but in the other four patients there was a difference of more than 20 points between BIS(XP) and RE.  相似文献   

16.
BACKGROUND: Analogous to the Bispectral Index (BIS) monitor, the auditory evoked potential monitor provides an electroencephalographic-derived index (AAI), which is alleged to correlate with the central nervous system depressant effects of anesthetic drugs. This clinical study was designed to test the hypothesis that intraoperative cerebral monitoring guided by either the BIS or the AAI value would facilitate recovery from general anesthesia compared with standard clinical monitoring practices alone in the ambulatory setting. METHODS: Sixty consenting outpatients undergoing gynecologic laparoscopic surgery were randomly assigned to one of three study groups: (1) control (standard practice), (2) BIS guided, or (3) AAI guided. Anesthesia was induced with 1.5-2.5 mg/kg propofol and 1-1.5 microg/kg fentanyl given intravenously. Desflurane, 3%, in combination with 60% nitrous oxide in oxygen was administered for maintenance of general anesthesia. In the control group, the inspired desflurane concentration was varied based on standard clinical signs. In the BIS- and AAI-guided groups, the inspired desflurane concentrations were titrated to maintain BIS and AAI values in targeted ranges of 50-60 and 15-25, respectively. BIS and AAI values, hemodynamic variables, and the end-tidal desflurane concentration were recorded at 5-min intervals during the maintenance period. The emergence times and recovery times to achieve specific clinical endpoints were recorded at 1- to 10-min intervals. The White fast-track and modified Aldrete recovery scores were assessed on arrival in the PACU, and the quality of recovery score was evaluated at the time of discharge home. RESULTS: A positive correlation was found between the AAI and BIS values during the maintenance period. The average BIS and AAI values (mean +/- SD) during the maintenance period were significantly lower in the control group (BIS, 41 +/- 10; AAI, 11 +/- 6) compared with the BIS-guided (BIS, 57 +/- 14; AAI, +/- 11) and AAI-guided (BIS, 55 +/- 12; AAI, 20 +/- 10) groups. The end-tidal desflurane concentration was significantly reduced in the BIS-guided (2.7 +/- 0.9%) and AAI-guided (2.6 +/- 0.9%) groups compared with the control group (3.6 +/- 1.5%). The awakening (eye-opening) and discharge times were significantly shorter in the BIS-guided (7 +/- 3 and 132 +/- 39 min, respectively) and AAI-guided (6 +/- 2 and 128 +/- 39 min, respectively) groups compared with the control group (9 +/- 4 and 195 +/- 57 min, respectively). More importantly, the median [range] quality of recovery scores was significantly higher in the BIS-guided (18 [17-18]) and AAI-guided (18 [17-18]) groups when compared with the control group (16 [10-18]). CONCLUSION: Compared with standard anesthesia monitoring practice, adjunctive use of auditory evoked potential and BIS monitoring can improve titration of desflurane during general anesthesia, leading to an improved recovery profile after ambulatory surgery.  相似文献   

17.
Background: Analogous to the Bispectral Index(R) (BIS(R)) monitor, the auditory evoked potential monitor provides an electroencephalographic-derived index (AAI), which is alleged to correlate with the central nervous system depressant effects of anesthetic drugs. This clinical study was designed to test the hypothesis that intraoperative cerebral monitoring guided by either the BIS or the AAI value would facilitate recovery from general anesthesia compared with standard clinical monitoring practices alone in the ambulatory setting.

Methods: Sixty consenting outpatients undergoing gynecologic laparoscopic surgery were randomly assigned to one of three study groups: (1) control (standard practice), (2) BIS guided, or (3) AAI guided. Anesthesia was induced with 1.5-2.5 mg/kg propofol and 1-1.5 [mu]g/kg fentanyl given intravenously. Desflurane, 3%, in combination with 60% nitrous oxide in oxygen was administered for maintenance of general anesthesia. In the control group, the inspired desflurane concentration was varied based on standard clinical signs. In the BIS- and AAI-guided groups, the inspired desflurane concentrations were titrated to maintain BIS and AAI values in targeted ranges of 50-60 and 15-25, respectively. BIS and AAI values, hemodynamic variables, and the end-tidal desflurane concentration were recorded at 5-min intervals during the maintenance period. The emergence times and recovery times to achieve specific clinical endpoints were recorded at 1- to 10-min intervals. The White fast-track and modified Aldrete recovery scores were assessed on arrival in the PACU, and the quality of recovery score was evaluated at the time of discharge home.

Results: A positive correlation was found between the AAI and BIS values during the maintenance period. The average BIS and AAI values (mean +/- SD) during the maintenance period were significantly lower in the control group (BIS, 41 +/- 10; AAI, 11 +/- 6) compared with the BIS-guided (BIS, 57 +/- 14; AAI, 18 +/- 11) and AAI-guided (BIS, 55 +/- 12; AAI, 20 +/- 10) groups. The end-tidal desflurane concentration was significantly reduced in the BIS-guided (2.7 +/- 0.9%) and AAI-guided (2.6 +/- 0.9%) groups compared with the control group (3.6 +/- 1.5%). The awakening (eye-opening) and discharge times were significantly shorter in the BIS-guided (7 +/- 3 and 132 +/- 39 min, respectively) and AAI-guided (6 +/- 2 and 128 +/- 39 min, respectively) groups compared with the control group (9 +/- 4 and 195 +/- 57 min, respectively). More importantly, the median [range] quality of recovery scores was significantly higher in the BIS-guided (18 [17-18]) and AAI-guided (18 [17-18]) groups when compared with the control group (16 [10-18]).  相似文献   


18.
Entropy   总被引:1,自引:0,他引:1  
The concept of entropy, originally derived from thermodynamics, has been successfully applied to EEG analysis. Various entropy algorithms have been used in clinical studies, but until now a commercially available monitor exists only for spectral entropy. By calculating two distinct values for the EEG dominated part of the spectrum (state entropy, SE) and the total spectrum (response entropy, RE), the M-Entropy module claims to provide useful information regarding the cortical state of the patient as well as an indirect measure of adequacy of analgesia. Generally, entropy has been studied for quantification of anaesthetic drug effect for various GABA-ergic i.v. induction agents and volatile anaesthetics like propofol and sevoflurane and overall was found comparable to the current clinical gold standard bispectral index (BIS). Entropy guidance may not be used during ketamine or nitrous oxide administration, since there is no reliable correlation to the patient's state of consciousness. The usefulness of RE as a surrogate for increased EMG activity due to painful stimulation has not been proven so far.  相似文献   

19.
Autoregressive modeling with exogenous input of middle-latency auditory evoked potentials (A-Line AEP index, AAI) has been developed for monitoring depth of anesthesia. We investigated the prediction of recovery and dose-response relationship of desflurane and AAI or bispectral index (BIS) values. Twenty adult men scheduled for radical prostatectomy were recruited. To minimize opioid effects, analgesia was provided by a concurrent epidural in addition to the general anesthetic. Electrodes for AAI and BIS monitoring and a headphone for auditory stimuli were applied. Propofol and remifentanil were used for anesthetic induction. Maintenance of anesthesia was with desflurane only. For comparison to AAI and BIS monitor parameters, pharmacokinetic models for desflurane and propofol distribution and effect-site concentrations were used to predict clinical end-points (Prediction probability P(K)). Patients opened their eyes at an AAI value of 47 +/- 20 and a BIS value of 77 +/- 14 (mean +/- sd), and the prediction probability for eye opening was P(K) = 0.81 for AAI, P(K) = 0.89 for BIS, and P(K) = 0.91 for desflurane effect-site concentration. The opening of eyes was best predicted by the calculated desflurane effect-site concentration. The relationship between predicted desflurane effect-site concentration versus AAI and BIS was calculated by nonlinear regression analysis (r = 0.75 for AAI and r = 0.80 for BIS). The correlation between BIS and clinical end-points of anesthesia or the desflurane effect-compartment concentration is better than for the AAI.  相似文献   

20.
We assessed the effect of propofol on the auditory steady-state response (ASSR), bispectral (BIS) index, and level of consciousness in two experiments. In Experiment 1, propofol was infused in 11 subjects to obtain effect-site concentrations of 1, 2, 3, and 4 microg/mL. The ASSR and BIS index were recorded during baseline and at each concentration. The ASSR was evoked by monaural stimuli. Propofol caused a concentration-dependent decrease of the ASSR and BIS index values (r(2) = 0.76 and 0.93, respectively; P<0.0001). The prediction probability for loss of consciousness was 0.89, 0.96, and 0.94 for ASSR, BIS, and arterial blood concentration of propofol, respectively. In Experiment 2, we compared the effects of binaural versus monaural stimulus delivery on the ASSR in six subjects during awake baseline and propofol-induced unconsciousness. During baseline, the ASSR amplitude with binaural stimulation (0.47+/-0.13 microV, mean +/- SD) was significantly (P<0.002) larger than with monaural stimulation (0.35+/-0.11 microV). During unconsciousness, the amplitude was 0.09+/-0.09 microV with monaural and 0.06+/-0.04 microV with binaural stimulation (NS). The prediction probability for loss of consciousness was 0.97 (0.04 SE) for monaural and 1.00 (0.00 SE) for binaural delivery. We conclude that the ASSR and BIS index are attenuated in a concentration-dependent manner by propofol and provide a useful measure of its sedative and hypnotic effect. BIS was easier to use and slightly more sensitive. The ASSR should be recorded with binaural stimulation. The ASSR and BIS index are both useful for assessing the level of consciousness during sedation and hypnosis with propofol. However, the BIS index was simpler to use and provided a more sensitive measure of sedation. Implications: We have compared two methods for predicting whether the amount of propofol given to a human subject is sufficient to cause unconsciousness, defined as failure to respond to a simple verbal command. The two methods studied are the auditory steady-state response, which measures the electrical response of the brain to sound, and the bispectral index, which is a number derived from the electroencephalogram. The results showed that both methods are very good predictors of the level of consciousness; however, bispectral was easier to use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号