首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary 1. Effects of caffeine on cytosolic Ca2+ level ([Ca2+]cyt), measured simultaneously with muscle tension using fura-2-Ca2+ fluorescence, were examined in isolated smooth muscle of rat aorta. 2. Caffeine (20 mmol/l) induced a large transient increase in [Ca2+]cyt followed by a plateau which was higher than resting level. However, muscle tension showed a transient increase followed by a decrease to or below the resting level. In Ca2+-free solution, caffeine induced only a transient increase in both [Ca2+]cyt, and muscle tension. 3. At low temperature (22°C), high K+ (72.7 mmol/l) induced sustained increase in both [Ca2+]cyt and muscle tension which were smaller than those observed at 37°C. At 22°C, however, caffeine-induced transient changes were greater than those observed at 37°C. 4. Ryanodine (10 mol/l) inhibited the transient changes due to caffeine but showed little effects on the sustained changes due to high K+. 5. During the sustained increase in [Ca2+]cyt induced by noradrenaline (10 gmmol/l) or high K+ (140 mmol/l), addition of caffeine transiently increased [Ca2+]cyt followed by a decrease to a level slightly lower than that before the addition of caffeine. In contrast to this, muscle tension transiently increased and then decreased to or below the resting level. 6. These results suggest that caffeine-induced contraction is due to the release of Ca2+ from cellular store. Caffeine also has an inhibitory effect which is partly attributable to decrease in [Ca2+ cyt, and partly to the decrease in the sensitivity to Ca2+ of the contractile elements.Send offprint requests to H. Ozaki at the above address  相似文献   

2.
3.
Norepinephrine and KCl induced a concentration-dependent increase in the cytosolic Ca2+ level [( Ca2+]cyt) measured either by intracellular fura 2-Ca2+ fluorescence or by 45Ca2+ uptake. Muscle contraction in isolated rat aortic strips was also increased although a greater contraction was induced by norepinephrine than by KCl at the same [Ca2+]cyt. This result suggests that the contraction of vascular smooth muscle is regulated by [Ca2+]cyt and also by other factor(s).  相似文献   

4.
The mechanism of the long-term inhibitory effect of a dihydropyridine Ca2+ channel blocker, nisoldipine, on contraction and cytosolic Ca2+ level ([Ca2+]i) was examined in isolated rat aorta. Nisoldipine inhibited the [Ca2+]i and muscle tension induced by high K+. The inhibitory effects were antagonized by a Ca2+ channel activator, 100 nM Bay k8644, and by a high concentration of Ca2+ (6.5 mM). Ultraviolet light, which has been shown to decompose dihydropyridines, attenuated the effects of nisoldipine. After nisoldipine had been removed from muscle bath, the inhibitory effect faded away slowly. The residual inhibitory effects on [Ca2+]i and muscle tension were antagonized by Bay k8644, high Ca2+ and ultraviolet light. These results suggest that the inhibitory effect of nisoldipine is caused by a decrease in [Ca2+]i as a result of inhibition of L-type Ca2+ channels, and that the residual inhibitory effects are caused by the same mechanism as the inhibitory effects of nisoldipine, namely the tight binding of nisoldipine to Ca2+ channels even after washout.  相似文献   

5.
Endothelin induced rapid increase followed by a decrease in cytosolic Ca2+ [( Ca2+]i) and a slow increase in muscle tension in the vascular smooth muscle strip of rat carotid artery. Thus, the endothelin-induced contraction was smaller, and it became gradually greater than high K-induced contraction at a given [Ca2+]i. In Ca2+-free solution, endothelin induced a transient increase in [Ca2+]i and a sustained contraction. These results suggest that endothelin-induced contraction is due to the increase in [Ca2+]i, the time-dependent change in Ca2+-sensitivity of contractile elements, and the mechanism which is independent of the increment in [Ca2+]i.  相似文献   

6.
Ca2+ localization and sensitivity in vascular smooth muscle   总被引:14,自引:0,他引:14  
An increase in cytosolic Ca2+ level ([Ca2+]i) is a prerequisite for smooth muscle contraction. Simultaneous measurements of [Ca2+]i and muscle tension give direct information on the Ca2+ regulation of smooth muscle. The photoprotein aequorin and the fluorescent Ca2+ indicator fura-2 are widely used for this purpose. Although there are some inconsistencies between the results obtained with these two indicators, comparison between [Ca2+]i and muscle tension in vascular smooth muscle indicates that stimulation of alpha-adrenoceptors increases, whereas stimulation of beta-adrenoceptors decreases, both the Ca2+ sensitivity of contractile elements and [Ca2+]i. Thus, as Hideaki Karaki explains, contractility of vascular smooth muscle may be regulated not only by [Ca2+]i but also by the Ca2+ sensitivity of the contractile elements.  相似文献   

7.
1. LP-805 (0.1-10 microM) caused the reduction in norepinephrine (NE)-and serotonin (5-HT)-induced maximum response, a parallel shift of the concentration-response curve for prostaglandin F2 alpha (PGF2 alpha), in a concentration-dependent manner, but not K(+)-induced maximum response. 2. In Ca(2+)-free solution, LP-805 (0.1-10 microM) markedly inhibited the phasic contraction induced by 0.3 microM NE and the contraction induced by Ca2+ (0.1-2 mM) in the presence of 0.3 microM NE, in a concentration-dependent manner. Similar results were obtained in the presence of 5-HT (10 microM) or PGF2 alpha (10 microM). 3. In fura-2 loaded strips, ryanodine (10 microM) and LP-805 (10 microM) abolished 1 microM NE- and 30 microM 5-HT-induced phasic contractions, and inhibited the increase in cytosolic Ca2+ levels by both the agonists in the absence of external Ca2+, but had no influence on the following sustained contractions. 4. The effects of LP-805 on PGF2 alpha-induced Ca2+ transient and large sustained contraction were similar to those of ryanodine. 5. These results suggest that a vasodilatory effect of LP-805 might account for inhibiting the mobilization of external Ca2+ through receptor mediated passway and the Ca2+ release from a ryanodine sensitive Ca2+ store.  相似文献   

8.
The effects of monensin, an activator of Na(+)/H(+) exchanger (NHE), on capacitative Ca(2+) entry (CCE) were investigated using A7r5 cells. Capacitative Ca(2+) entry was induced by elevation of extracellular Ca(2+) concentrations of A7r5 cells in which stored Ca(2+) had been depleted by previous administration of thapsigargin. Capacitative Ca(2+) entry was abolished by pretreatment of the cells with SKF-96365 (1-[beta-(3-[4-methoxyphenyl]propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride) but was not affected by pretreatment with verapamil. Monensin significantly increased capacitative Ca(2+) entry. On the other hand, 5-hydroxytryptamine-induced inositol monophosphate accumulation and subsequent intracellular Ca(2+) release from its stores were significantly inhibited by monensin, while thapsigargin-induced Ca(2+) release was not affected by monensin. These results suggest that monensin has diverse actions on capacitative Ca(2+) entry and agonist-induced release of stored Ca(2+) in vascular smooth muscle cells.  相似文献   

9.
10.
The effects of trimebutine maleate on cytosolic free Ca2+ and force transitions in the guinea-pig taenia cecum were studied by fura-2 fluorometry and tension recording. The addition of 80 mM K+ induced a transient increase in cytosolic free Ca2+ concentration ([Ca2+]i) and tension, followed by a sustained increase. Trimebutine (10 microM) suppressed both [Ca2+]i elevation and tension development. The tonic responses were more potently inhibited than the phasic responses. Phasic components gradually increased as the added K+ increased (10-40 mM). The relationship between the peak increases in [Ca2+]i and tension was not affected by trimebutine (10 microM). This means that trimebutine does not affect the Ca2+ sensitivity of contractile elements. In a high K+ and Ca(2+)-free medium, carbachol (10 microM) or caffeine (30 mM) caused transient [Ca2+]i elevation and tension development in the smooth muscle. Trimebutine (10 microM) decreased the amplitude of both responses. Trimebutine (10 microM) inhibited the spontaneous fluctuations in [Ca2+]i and motility of taenia cecum in the presence of tetrodotoxin (TTX; 0.3 microM). These results suggest that trimebutine has two types of inhibitory actions on intestinal smooth muscle; one, the inhibition of Ca2+ influx through voltage-dependent calcium channels, and the other, the inhibition of Ca2+ release from intracellular storage sites.  相似文献   

11.
《General pharmacology》1994,25(4):691-695
1. Intracellular actin filament organization of gastric smooth muscle cells of the guinea pig in primary culture was examined with rhodamine-labelled phalloidin using a confocal laser fluorecence microscope.2. The resting cells, both in the presence and absence of Ca2+, showed an even distribution of microfilamentous actin fibers.3. The characteristic image of the stimulated cells with 10 μM acetylcholine in the presence of 1.8 mM Ca2+ was that the actin filaments were located only on the periphery of the cell.4. The characteristic image of the cells stimulated as above, but in the absence of Ca2+, was that the actin filaments were unevenly distributed in the cell.5. The characteristic image of the cells stimulated in the presence of 1 μM Ca2+, which inhibits the above contraction, was pultaceous with the actin filaments absent, indicating severing of actin filaments by a Ca2+-activated system, such as gelsolin.  相似文献   

12.
A 50-min treatment of longitudinal smooth muscle of guinea-pig ileum with propylbenzilylcholine mustard (PrBCM, 3 x 10(-6) M) irreversibly inhibited the responses elicited by carbachol. However, a 90-min treatment with PrBCM had no further significant inhibitory effect on the responses to carbachol, suggesting that there are two subtypes of muscarinic cholinoceptors, PrBCM-sensitive and PrBCM-insensitive receptors. Carbachol caused a rapid increase in cytosolic Ca2+ concentrations ([Ca2+]i), which was followed by a rapid increase in muscle tension in both untreated and PrBCM-treated preparations. There was a positive correlation between [Ca2+]i (R340/380) and tension developed in response to carbachol. A regression line for the two responses was obtained in each preparation. The slope of the line obtained with untreated preparations was steeper than that obtained with PrBCM-treated preparations. These data suggest that, upon activation, PrBCM-sensitive receptors use cytosolic Ca2+ more effectively than PrBCM-insensitive receptors.  相似文献   

13.
The inhibitory effects of a hypotensive agent, cadralazine and its metabolite, ISF-2405, on the level of cytosolic Ca2+ ([Ca2+]cyt) and on contractions were examined in isolated vascular smooth muscle. Cadralazine slightly inhibited the transient norepinephrine-induced contraction in rabbit aorta and canine femoral, renal and mesenteric arteries and saphenous vein, and prostaglandin F2 alpha-induced contractions in canine basilar and coronary arteries. In contrast, ISF-2405 inhibited the contractions induced by prostaglandin F2 alpha in canine basilar and coronary arteries and those induced by norepinephrine in canine renal and femoral arteries and rabbit aorta. In aorta, ISF-2405 inhibited the increase in [Ca2+]cyt and muscle tension caused by norepinephrine. A Ca2+ channel blocker, verapamil, inhibited the norepinephrine-stimulated increase in [Ca2+]cyt more potently than it inhibited the increase in muscle tension, and ISF-2405 inhibited the verapamil-resistant part of the contraction. In Ca2(+)-free solution, norepinephrine induced transient increases in [Ca2+]cyt and muscle tension. ISF-2405 inhibited these changes. However, ISF-2405 did not inhibit the transient contraction induced by caffeine in the aorta. These results suggest that cadralazine is metabolized to ISF-2405 and inhibits vascular smooth muscle contraction by inhibiting receptor-mediated Ca2+ influx, Ca2+ release and Ca2+ sensitization of contractile elements.  相似文献   

14.
Role of h1 calponin on Ca2+-sensitivity of smooth muscle contraction was investigated using h1 calponin gene-deficient mice (CP -/-) and wild type mice (CP +/+). PGF2. induced a comparable force in intact aorta of CP +/+ and CP -/-. DPB showed similar effects to PGF2alpha. In membrane-permeabilized ileal smooth muscle, PDBu enhanced Ca2+-sensitivity of contraction comparably in CP +/+ and CP -/-. GTPgamma-S showed similar effects. Our results suggest that h1 calponin does not regulate Ca2+-sensitivity in the contractile mechanism of smooth muscle.  相似文献   

15.
库容性Ca~(2+)内流介导大鼠远端结肠平滑肌收缩   总被引:8,自引:4,他引:8  
目的探讨库容性Ca2+内流(capac itative Ca2+entry,CCE)是否参与大鼠远端结肠平滑肌兴奋-收缩偶联过程。方法利用器官离体装置、张力换能器、Powerlab 4/25T数据采集分析系统测定远端结肠平滑肌的张力。结果毒胡萝卜素(thapsigargin,TG,10 nmol.L-1~1μmol.L-1)诱导结肠平滑肌条产生持续的张力性收缩,不同浓度TG所致的同步收缩反应张力不同。在无钙Krebs液(包含1 mmol.L-1EDTA)中使用TG将肌条培养35 m in后,再加入Ca2+2.5mmol.L-1,比未使用TG处理的肌条产生的收缩张力明显提高(99%±28%vs70%±8%)。且TG耗竭胞内钙库后再复钙所致的收缩效应,不受L型钙通道阻断剂verapam il影响,但可被SOC通道阻断剂La3+减弱。结论TG耗竭胞内钙库后再复钙诱导的大鼠远端结肠平滑肌收缩反应由CCE介导,提示CCE是提供大鼠远端结肠平滑肌收缩的激活信号Ca2+的来源之一,参与完成结肠平滑肌兴奋-收缩偶联过程。  相似文献   

16.
The effects of isoquinoline derivatives, HA1077 (1-[5-isoquinolinesulfonyl]-homopiperazine) and H-7 (1-[5-isoquinoline-sulfonyl]-2-methylpiperazine), on cytosolic Ca2+ levels ([Ca2+]i) and muscle tension were examined in vascular smooth muscle of rat aorta. High K+ (72.7 mM) and norepinephrine (1 μM) induced a sustained contraction with a sustained increase in [Ca2+]i. HA1077 and H-7 (3–10 μM) inhibited the increse in muscle tension more strongly than the increase in [Ca2+]i. Verapamil (10 μM) completely inhibited the increase in [Ca2+]i and the contraction induced by K+ whereas it inhibited the increase in [Ca2+]i more strongly than the contraction due to norepinephrine. The verapamil-insensitive portion of the norepinephrine-induced contraction was inhibited by HA1077 or H-7. In Ca2+-free solution, 0.1 μM norepinephrine induced a transient increase in [Ca2+]i and muscle tension. The transient contraction was inhibited by 10 μM HA1077 or 10 μM H-7 without inhibiting the increase in [Ca2+]i. 12-Deoxyphorbol 13-isobutyrate (DPB) (1 μM) caused a sustained contraction, and this contraction was inhibited by HA1077 and H-7 at similar concentrations needed to inhibit the contractions induced by high K+ or norepinephrine. In rabbit mesenteric artery permeabilized with Staphylococcus aureus -toxin, 100 μM HA1077 and 100 μM H-7 inhibited the contraction induced by 0.3 μM Ca2+. These results suggest that the inhibitory effects of isoquinoline derivatives, HA1077 and H-7, are due to a decrease in [Ca2+]i and in the Ca2+ sensitivity of contractile elemenst in vascular smooth muscle.  相似文献   

17.
On isolated rat vas deferens both papaverine and verapamil show a non competitive antagonism against norepinephrine and a competitive antagonism against Ca2+. Verapamil is nearly 100 times more active than papaverine. On the main pulmonary artery and on the thoracic aorta of the rabbit, verapamil shows a competitive antagonism against both norepinephrine and Ca2+ but it is more effective (almost 100 times) against Ca2+ than norepinephrine. Papaverine also shows a competitive antagonism against norepinephrine but a non competitive antagonism against Ca2+. The contrasting results obtained on rat vas deferens and rabbit vessels might be due to: 1) mechanism(s) of action of the agonist; 2) properties of the biological object as far concerns receptor activation and mechanism(s) of excitation-contraction coupling; 3) mechanism(s) of action of spasmolytic drugs. All these factors act in a cooperative way in determining the quality and the quantity of the observed responses.  相似文献   

18.
1. In smooth muscle, both Ca2+ release from the sarcoplasmic reticulum (SR) and Ca2+ influx across the plasma membrane are responsible for the increase in the cytosolic Ca2+ level ([Ca2+]i). To understand further the role of SR on smooth muscle contraction, the effects of an inhibitor of the SR Ca2+ pump, cyclopiazonic acid (CPA 10 microM), an inhibitor of the Ca(2+) -induced Ca2+ release, ryanodine, (10 microM), and an activator of the Ca(2+) -induced Ca2+ release, caffeine (20 mM), on [Ca2+]i and contractile force were examined in the ferret portal vein loaded with a photoprotein, aequorin. 2. CPA induced a small increase in the aequorin signal reaching a maximum at 7 min. Several minutes after the increase in the aequorin signal, muscle tension increased reaching a maximum at 21.5 min. In contrast, ryanodine changed neither the aequorin signal nor contraction. In the presence of ryanodine, caffeine induced a sustained increase in the aequorin signal and transient contraction. After washing ryanodine and caffeine, the aequorin signal and muscle tone returned to their respective control levels. After treatment with ryanodine and caffeine, the second addition of caffeine was almost ineffective whereas CPA still increased the aequorin signal and muscle tension. 3. In the presence of external Ca2+, noradrenaline (NA, 10 microM) induced a transient increase followed by a sustained increase in the aequorin signal and sustained contraction. In contrast, KCl (70 mM) induced sustained increases in the aequorin signal and sustained contraction. In Ca(2+) -free solution, NA induced a small transient increase in the aequorin signal and a small transient contraction. These changes were inhibited in the presence of CPA or on pretreatment of the muscle with ryanodine and caffeine. These results suggest that CPA or ryanodine and caffeine depleted Ca2+ in SR. High K+ was ineffective in the absence of external Ca2+. 4. In the presence of external Ca2+ and CPA, NA and high K+ induced larger aequorin signals than in the absence of CPA, whereas the magnitude and shape of the contractions did not change. In contrast, pretreatment with ryanodine and caffeine did not have such an effect. In the muscle pretreated with ryanodine and caffeine, CPA changed the responses to high K+ and NA in a similar manner to that in the muscle without the pretreatment with ryanodine and caffeine. 5. Dissociation of contraction from [Ca2+]i as measured with aequorin suggests that NA and high K+ increase Ca2+ in two compartments: a compartment containing contractile elements (contractile compartment) and another compartment unrelated to contractile elements (non-contractile compartment). Because CPA augmented the stimulant-induced increase in aequorin signal without changing contraction, the non-contractile compartment may be located near the SR and the CPA-sensitive SR Ca2+ pump may regulate the Ca2+ level in this compartment. However, because CPA changed neither the magnitude nor shape of the contractions in the presence of external Ca2+, the SR Ca2+ pump may have little effect on regulation of Ca2+ level in the contractile compartment. Furthermore, the release of Ca2+ from SR seems to have little effect on the increase in the contractile Ca2+ because ryanodine and caffeine changed neither the aequorin signals nor contractions induced by NA and high K+ in the presence of external Ca2+ in the ferret portal vein.  相似文献   

19.
Dibutyryl cyclic AMP and forskolin inhibited the contraction induced by norepinephrine (NE) more strongly than the high K(+)-induced contraction in isolated rat aorta. These inhibitors inhibited the 45Ca2+ influx stimulated by NE but not that by high K+, and they inhibited NE-induced inositol monophosphate accumulation. These results suggest that cAMP inhibits NE-induced contraction, at least partly, by inhibiting the alpha-adrenoceptor-mediated signal transduction and high K(+)-induced contraction by decreasing Ca2+ sensitivity but not Ca2+ influx.  相似文献   

20.
1. Inhibitory effects of a novel smooth muscle relaxant, KT-362 (5-[3-([2-(3,4-dimethoxyphenyl)-ethyl]amino)-1-oxopropyl]-2,3,4,5- tetrahydro-1,5-benzothiazepine fumarate), on contraction and the cytosolic Ca2+ level ([Ca2+]cyt) in isolated vascular smooth muscle of rat aorta were examined. 2. KT-362 inhibited the contractions induced by high K+ and noradrenaline. The inhibitory effect was antagonized by an increase in external Ca2+ concentration. A Ca2+ channel activator, Bay K 8644, did not change the effect of KT-362 on high K+-induced contraction. 3. [Ca2+]cyt, measured with fura-2-Ca2+ fluorescence, increased during the contractions induced by high K+ or noradrenaline. KT-362 decreased [Ca2+]cyt and muscle tension stimulated by high K+ or noradrenaline. By contrast, a Ca2+ channel blocker, verapamil, inhibited the noradrenaline-induced increase in [Ca2+]cyt with only partial inhibition of the noradrenaline-induced contraction and KT-362 inhibited the verapamil-insensitive portion of the contraction without changing [Ca2+]cyt. 4. In a Ca2(+)-free solution, noradrenaline and caffeine induced a transient contraction following a transient increase in [Ca2+]cyt. KT-362 inhibited the increments due to noradrenaline but not those induced by caffeine. 5. These results suggest that KT-362 inhibits vascular smooth muscle contraction by inhibiting Ca2+ channels, receptor-mediated Ca2+ mobilization, and receptor-mediated Ca2+ sensitization of contractile elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号