首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background and Purpose

Non-small cell lung cancer (NSCLC) is one of the most commonly diagnosed malignancies in the world. Small-molecule inhibitors of the EGF receptor''s tyrosine kinase domain (TKIs), including gefitinib and erlotinib, have been widely used for treating NSCLC. Unfortunately, nearly all patients after initially experiencing a marked improvement while on these drugs, eventually progress to acquire resistance to TKIs. Because there is no effective therapeutic strategy to treat TKI-resistant NSCLC, we evaluated the effects of luteolin, a naturally occurring flavanoid, on T790M mutant NSCLC cells.

Experimental Approach

The effect of luteolin on the viability of NSCLC and normal cell lines was investigated using the Cell Counting Kit-8 (CCK-8) assay. Luteolin-induced apoptosis was assessed by bivariate FITC-annexin V/PI assay, and Western blots were used to measured apoptotic proteins. Co-immunoprecipitation was used to determine the effect of luteolin on the interaction between Hsp90 and mutant EGF receptors. The effect of luteolin on the Akt/mTOR pathway was studied using Western blotting analysis. Its anti-tumour efficacy in vivo was examined in a mouse xenograft model.

Key Results

Luteolin exerted significant anti-tumourigenic effects on the EGF receptor L858R/T790M mutation and erlotinib-resistant NSCLC both at the cellular and animal levels. Mechanistically, luteolin induced degradation of the EGF receptor by inhibiting the association of Hsp90 with the mutant EGF receptor, and, therefore, prevented PI3K/Akt/mTOR signalling, which resulted in NSCLC cell apoptosis.

Conclusion and Implications

Luteolin may be a potential candidate for NSCLC therapy, especially for treatment of patients with acquired erlotinib-resistant NSCLC.  相似文献   

2.

Aim:

Blockade of EGFR by EGFR tyrosine kinase inhibitors such as erlotinib is insufficient for effective treatment of human pancreatic cancer due to independent activation of the Akt pathway, while amiloride, a potassium-sparing diuretic, has been found as a potential Akt inhibitor. The aim of this study was to investigate the anticancer effects of combined amiloride with erlotinib against human pancreatic cancer cells in vitro.

Methods:

Cell proliferation, colony formation, cell cycle and apoptosis were analyzed in 4 human pancreatic cancer cell lines Bxpc-3, PANC-1, Aspc-1 and CFPAC-1 treated with erlotinib or amiloride alone, or in their combination. The synergistic analysis for the effects of combinations of amiloride and erlotinib was performed using Chou-Talalay''s combination index isobolographic method.

Results:

Amiloride (10, 30, and 100 μmol/L) concentration-dependently potentiated erlotinib-induced inhibition of cell proliferation and colony formation in the 4 pancreatic cancer cell lines. Isobolographic analysis confirmed that combinations of amiloride and erlotinib produced synergistic cytotoxic effects. Amiloride significantly potentiated erlotinib-induced G0/G1 cell-cycle arrest and apoptosis in Bxpc-3 and PANC-1 cells. Amiloride inhibited EGF-stimulated phorsphorylation of AKT, and significantly enhanced erlotinib-induced downregulation of phorsphorylation of EGFR, AKT, PI3K P85 and GSK 3β in Bxpc-3 and PANC-1 cells.

Conclusion:

Amiloride sensitizes human pancreatic cancer cells to erlotinib in vitro through inhibition of the PI3K/AKT signaling pathway. Treatment of pancreatic cancer patients with combination of erlotinib and amiloride merits further investigation.  相似文献   

3.

BACKGROUND AND PURPOSE

The purpose of the current study was to assess a novel anti-cancer drug, MPT0B014, which is not a substrate for the P-glycoprotein (P-gp) transporter, alone and in combination with erlotinib, against human non-small cell lung cancer (NSCLC).

EXPERIMENTAL APPROACH

Cytotoxicity in human NSCLC cell lines was assessed by sulforhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Cell cycle phase distributions were estimated with FACScan flow cytometry. Protein expression was detected by Western blotting analysis. Efflux of rhodamine 123 or calcein-acetoxymethylester was used to study the P-gp profile. The A549 xenograft model in mice was used to assess in vivo anti-tumour activity.

KEY RESULTS

MPT0B014 showed potent anti-proliferative activity against A549, H1299 and H226 cells. It induced G2/M arrest with down-regulation of Cdc (Tyr15) and Cdc25C, and up-regulation of cyclin B1, phospho-Cdc2 (Thr161) and Aurora A/B. P-gp-overexpressing National Cancer Institute/Adriamycin-Resistant cells were also sensitive to B014. B014-induced loss of Mcl-1 was accompanied by activation of caspases-3, -7, -8 and -9, and initiation of apoptosis. B014 in combination with erlotinib caused significant tumour inhibition in vitro and in vivo.

CONCLUSIONS AND IMPLICATIONS

MPT0B014 exerted cytotoxicity against human NSCLC cell lines with little susceptibility to P-gp. Combined with the EGF receptor inhibitor, erlotinib, MPT0B014 exerted significant growth inhibition of A549 cells both in vitro and in vivo. B014 could be useful as an anti-cancer agent.  相似文献   

4.
Aim: To investigate the effects of a novel dithiocarbamate derivative TM208 on human breast cancer cells as well as the pharmacoki- netic characteristics of TM208 in human breast cancer xenograft mice. Methods: Human breast cancer MCF-7 and MDA-MB-231 cells were treated with TM208 or a positive control drug tamoxifen. Cell pro- liferation was examined using SRB and colony formation assays. Cell apoptosis was analyzed with Annexin V-FITC/PI staining assay. Protein expression was examined with Western blot, ELISA and immunohistochemical analyses. MCF-7 breast cancer xenograft nude mice were orally administered TM208 (50 or 150 mg.k$1〈1-1) or tamoxifen (50 mg.kgl〈t-~) for 18 d. On d 19, the tumors were collected for analyses. Blood samples were collected from the mice treated with the high dose of TM208, and plasma concentrations of TM208 were measured using LC-MS/MS. Results: Treatment of MCF-7 and MDA-MB-231 cells with TM208 dose-dependently inhibited the cell proliferation and colony formation in vitro (the IC~o values were 36.38+3.77 and 18.13+0.76 pmol/L, respectively). TM208 (20-150pmol/L) dose-dependently induced apoptosis of both the breast cancer cells in vitro. In MCF-7 breast cancer xenograft nude mice, TM208 administration dose-depend- ently reduced the tumor growth, but did not result in the accumulation of TM208 or weight loss. TM208 dose-dependently inhibited the phosphorylation of EGFR and ERK1/2 in both the breast cancer cells in vitro as well as in the MCF-7 xenograft tumor. Conclusion: Inhibition of EGFR autophosphorylation plays an important role in the anticancer effect of TM208 against human breast cancer.  相似文献   

5.

AIMS

There is increasing evidence that erlotinib exposure correlates well with treatment outcome. In this report we present a case of therapeutic drug monitoring of erlotinib in a patient with a gastric ulcer, treated with the proton pump inhibitor pantoprazole. This agent may cause an unwanted, but not always unavoidable, interaction since absorption of erlotinib is pH dependent.

METHODS

Erlotinib trough concentrations were monitored in a patient during treatment with orally and intravenously administered pantoprazole.

RESULTS

Erlotinib trough concentrations were diminished during high dose intravenously administered pantoprazole, but returned to normal when the dose was reduced and pantoprazole was administered orally.

CONCLUSIONS

More studies are needed to assess the dose dependency of the interaction between pantoprazole and erlotinib. Furthermore, we advise to monitor closely erlotinib plasma concentrations and adjust the erlotinib dose accordingly when a clinically relevant interaction is suspected and no proper dosing guidelines are available.  相似文献   

6.

Aim:

To establish and characterize primary lung cancer cell lines from Chinese population.

Methods:

Lung cancer specimens or pleural effusions were collected from Chinese lung cancer patients and cultured in vitro with ACL4 medium (for non-small cell lung carcinomas (NSCLC)) or HITES medium (for small cell lung carcinomas (SCLC)) supplemented with 5% FBS. All cell lines were maintained in culture for more than 25 passages. Most of these cell lines were further analyzed for oncogenic mutations, karyotype, cell growth kinetics, and tumorigenicity in nude mice.

Results:

Eight primary cell lines from Chinese lung cancer patients were established and characterized, including seven NSCLC cell lines and one SCLC cell line. Five NSCLC cell lines were found to harbor epidermal growth factor receptor (EGFR) kinase domain mutations.

Conclusion:

These well-characterized primary lung cancer cell lines from Chinese population provide a unique platform for future studies of the ethnic differences in lung cancer biology and drug response.  相似文献   

7.

BACKGROUND AND PURPOSE

AM251 is an inverse agonist of the cannabinoid 1 receptor (CB1R) that can exert ‘off-target’ effects in vitro and in CB1R knock-out mice. AM251 is also potent at modulating tumour cell growth, suggesting that growth factor-mediated oncogenic signalling could be regulated by AM251. Since dysregulation of the EGF receptor has been associated with carcinogenesis, we examined AM251 regulation of EGF receptor (EGFR) expression and function.

EXPERIMENTAL APPROACH

The various biological functions of AM251 were measured in CB1R-negative human cancer cells. Pharmacological and genetic approaches were used to validate the data.

KEY RESULTS

The mRNA levels for EGFR and its associated ligands, including HB-EGF, were induced several fold in PANC-1 and HCT116 cells in response to AM251. This event was associated with enhanced expression of EGFR on the cell surface with concomitant increase in EGF-induced cellular responses in AM251-treated cells. Exposure to XCT790, a synthetic inverse agonist of the orphan nuclear oestrogen-related receptor α (ERRα), also induced EGFR and HB-EGF expression to the same extent as AM251, whereas pretreatment with the ERRα-selective agonist, biochanin A, blunted AM251 actions. AM251 promoted the degradation of ERRα protein without loss of the corresponding mRNA. Knock-down of ERRα by siRNA-based approach led to constitutive induction of EGFR and HB-EGF levels, and eliminated the biological responses of AM251 and XCT790. Finally, AM251 displaced diethylstilbestrol prebound to the ligand-binding domain of ERRα.

CONCLUSIONS AND IMPLICATIONS

AM251 up-regulates EGFR expression and signalling via a novel non-CB1R-mediated pathway involving destabilization of ERRα protein in selected cancer cell lines.  相似文献   

8.

Aim:

The tumor suppressor in lung cancer-1 (TSLC1) is a candidate tumor suppressor of lung cancer, and frequently inactivated in primary non-small cell lung cancer (NSCLC). In this study, we investigated the effects of TSLC1 mediated by a dual-regulated oncolytic adenovirus on lung cancer, and the mechanisms underlying the antitumor actions.

Methods:

The recombinant virus Ad·sp-E1A(Δ24)-TSLC1 was constructed by inserting the TSLC1 gene into the dual-regulated Ad·sp-E1A(Δ24) vector, which contained the survivin promoter and a 24 bp deletion within E1A. The antitumor effects of Ad·sp-E1A(Δ24)-TSLC1 were evaluated in NCI-H460, A549, and H1299 lung cancer cell lines and the normal fibroblast cell line MRC-5, as well as in A549 xenograft model in nude mice. Cell viability was assessed using MTT assay. The expression of TSLC1 and activation of the caspase signaling pathway were detected by Western blot analyses. The tumor tissues from the xenograft models were examined using H&E staining, IHC, TUNEL, and TEM analyses.

Results:

Infection of A549 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced high level expression of TSLC1. Furthermore, the Ad·sp-E1A(Δ24)-TSLC1 virus dose-dependently suppressed the viability of NCI-H460, A549, and H1299 lung cancer cells, and did not affect MRC-5 normal fibroblast cells. Infection of NCI-H460, A549, and H1299 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced apoptosis, and increased activation of caspase-8, caspase-3 and PARP. In A549 xenograft model in nude mice, intratumoral injection of Ad·sp-E1A(Δ24)-TSLC1 significantly suppressed the tumor volume, and increased the survival rate (from less than 15% to 87.5% at d 60). Histological studies showed that injection of Ad·sp-E1A(Δ24)-TSLC1 caused tumor cell apoptosis and virus particle propagation in tumor tissues.

Conclusion:

The oncolytic adenovirus Ad·sp-E1A(Δ24)-TSLC1 exhibits specific antitumor effects, and is a promising agent for the treatment of lung cancer.  相似文献   

9.

Aim:

To examine the antitumor effect of 4′-chloro-3,5-dihydroxystilbene, a resveratrol derivative, on lung adenocarcinoma A549 cells.

Methods:

The cytotoxic IC50 was determined by direct cell counting. Flow cytometry, monodansylcadaverine (MDC) staining, transfection, Western blot and a proteasome activity assay were used to study the cellular mechanism of 4′-chloro-3,5-dihydroxystilbene. A xenograft nude mouse model was used to analyze the antitumor effect in vivo.

Results:

4′-Chloro-3,5-dihydroxystilbene induced a rapid and persistent increase in the intracellular reactive oxygen species in the cells, but the cell death could not be inhibited by two antioxidant agents. The derivative caused sub-G1 formation, a decrease in the mitochondria membrane potential and poly (ADP-ribose) polymerase degradation, and the caspase inhibitor Z-VAD-FMK could partially prevent cell death. It also induced a significant increase in intracellular acidic vacuoles, LC3-II formation and intracellular GFP-LC3 aggregation. An autophagic inhibitor partially reversed cell death. Additionally, 4′-chloro-3,5-dihydroxystilbene induced the accumulation of ubiquitinated conjugates and inhibited proteasome activity in cells. In an in vivo study, 4′-chloro-3,5-dihydroxystilbene retarded tumor growth in nude mice.

Conclusion:

These data suggest that the resveratrol derivative 4′-chloro-3,5-dihydroxystilbene could be developed as an anti-tumor compound.  相似文献   

10.
Aim: Lapatinib is a dual inhibitor of EGFR and human epidermal growth factor receptor 2 (HER2), and used to treat advanced breast cancer. To overcome its poor water solubility, we constructed lapatinib-incorporated lipoprotein-like nanoparticles (LTNPs), and evaluated the particle characteristics and possible anti-breast cancer mechanisms.
Methods: LTNPs (lapatinib bound to albumin as a core, and egg yolk lecithin forming a lipid corona) were prepared. The particle characteristics were investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The uptake and subcellular localization of LTNPs, as well as the effects of LTNPs on cell cycle were examined in BT-474 human breast cancer cells in vitro. Mice bearing BT-474 subcutaneous xenograft were intravenously injected with coumarin-6 loaded LTNPs (30 mg/kg) to study the targeting mechanisms in vivo.
Results: The LTNPs particles were generally spherical but flexible under TEM and AFM, and approximately 62.1 nm in size with a zeta potential of 22.80 mV. In BT-474 cells, uptake of LTNPs was mediated by endosomes through energy-dependent endocytosis involving clathrin-dependent pinocytosis and macropinocytosis, and they could effectively escape from endosomes to the cytoplasm. Treatment of BT-474 cells with LTNPs (20 μg/mL) induced a significant cell arrest at G0/G1 phase compared with the same concentration of lapatinib suspension. In mice bearing BT-474 xenograft, intravenously injected LTNPs was found to target and accumulate in tumors, and colocalized with HER2 and SPRAC (secreted protein, acidic and rich in cysteine).
Conclusion: LTNPs can be taken up into breast cancer cells through specific pathways in vitro, and targeted to breast cancer xenograft in vivo via enhanced permeability and retention effect and SPARC.  相似文献   

11.

Objectives

Bevacizumab has been approved by the US Food and Drug Administration as a first-line therapy for metastatic non-small-cell lung cancer (NSCLC), in combination with carboplatin and paclitaxel. A single Latin American center experience was reviewed to determine the safety and efficacy of adding bevacizumab to first-line chemotherapy in a local population.

Methods

We retrospectively identified patients with non-squamous NSCLC treated with bevacizumab plus chemotherapy combinations as first-line chemotherapy between July 1, 2006, and January 30, 2011, at Sirio Libanes Hospital in Sao Paulo, Brazil. We collected data on patient characteristics, treatment combinations, toxicities, response to treatment, and survival. Overall survival (OS) and progression-free survival (PFS) were calculated by Kaplan-Meier analysis, and prognostic factors were identified by the Cox regression model.

Results

A total of 56 patients were included in the final analysis (median age 62.4 years; 70% male). In 35 patients (62.5%), bevacizumab was combined with carboplatin and paclitaxel, and in 16 patients (28.6%), it was combined with pemetrexed and carboplatin. The response rate evaluated by the reference clinical team reached 74.5%, the median PFS was 5.3 months, and the median OS was 14.8 months. In multivariate analysis, use of maintenance therapy was the only predictive factor for OS (hazard ratio 6.85, 95% confidence interval 2.94–15.22). No treatment-related deaths were identified, and the overall incidence of grade 3–4 non-hematologic toxicities was 16%.

Conclusion

Our results confirm the efficacy and safety data of bevacizumab first-line combinations for NSCLC in a Brazilian population.  相似文献   

12.
Aim: To assess the synergistic actions of lidamycin (LDM) and chloroquine (CQ), a lysosomal enzyme inhibitor, in human non-small cell lung cancer (NSCLC) cells, and to elucidate the potential mechanisms. Methods: Human NSCLC cell lines A549 and H460 were treated with CQ and/or LDM. Cell proliferation was analyzed using MTI- assay and apoptosis was quantified using flow cytometry. Western blotting was used to detect the protein levels of caspase 3, PARP, Bcl-2, Bax, p53, LC3-1 and LC3-11. A H460 cell xenograft model in BALB/c nude mice was used to evaluate the anticancer efficacy of CQ and LDM in vivo. Results: Both LDM and CQ concentration-dependently suppressed the proliferation of A549 and H460 ceils in vitro (the ICso values of LDM were 1.70±0.75 and 0.043±0.026 nmol/L, respectively, while the IC50 values of CQ were 71.3±6.1 and 55.6±12.5 pmol/L, respectively). CQ sensitized both NSCLC cell lines to LDM, and the majority of the coefficients of drug interaction (CDIs) for combination-doses were less than 1. The ratio of apoptosis of H460 cells induced by a combined treatment of CQ and LDM (77.0%±5.2%) was significantly higher than those caused by CQ (23.1%±4.2%) or by LDM (65.1%±4.1%) alone. Furthermore, the combined treatment markedly increased the cleaved PARP and cleaved caspase 3 in H460 cells, which were partly reversed by pretreatment with the caspase inhibitor zVAD.fmk, zVAD.fmk also partially reversed the inhibitory effect of the combination treatment on the proliferation of H460 cells. The combination therapy group had a notable increase in expression of Bax and a very slight decrease in expression of Bcl-2 and p53 protein. LDM alone scarcely affected the level of LC3-11 in H460 cells, but slightly reduced CQ-induced LC3-11 expression. 3-MA, an autophagy inhibitor also sensitized H460 cells to LDM. In nude mice bearing H460 cell xenograft, administration of LDM (25 pg/kg, iv) and CQ (60 mg/kg, ip) suppressed tumor growth by 57.14% and 73.02%, respectively. Conclusion: The synergistic anticancer effect of LDM and CQ in vitro results from activation of a caspase-dependent and p53- independent apoptosis pathway as well as inhibition of cytoprotective autophagy.  相似文献   

13.
Ye B  Xie Y  Qin ZH  Wu JC  Han R  He JK 《Acta pharmacologica Sinica》2011,32(11):1397-1401

Aim:

To assess the cytotoxic effect of crotoxin (CrTX), a potent neurotoxin extracted from the venom of the pit viper Crotalus durissus terrificus, in human lung adenocarcinoma A549 cells and investigated the underlying mechanisms.

Methods:

A549 cells were treated with gradient concentrations of CrTX, and the cell cycle and apoptosis were analyzed using a flow cytometric assay. The changes of cellular effectors p53, caspase-3 and cleaved caspase-3, total P38MAPK and pP38MAPK were investigated using Western blot assays. A549 xenograft model was used to examine the inhibition of CrTX on tumor growth in vivo.

Results:

Treatment of A549 cells with CrTX (25–200 μg/mL) for 48 h significantly inhibited the cell growth in a dose-dependent manner (IC50=78 μg/mL). Treatment with CrTX (25 μg/mL) for 24 h caused G1 arrest and induced cell apoptosis. CrTX (25 μg/mL) significantly increased the expression of wt p53, cleaved caspase-3 and phospho-P38MAPK. Pretreatment with the specific P38MAPK inhibitor SB203580 (5 μmol/L) significantly reduced CrTX-induced apoptosis and cleaved caspase-3 level, but G1 arrest remained unchanged and highly expressed p53 sustained. Intraperitoneal injection of CrTX (10 μg/kg, twice a week for 4 weeks) significantly inhibited A549 tumor xenograft growth, and decreased MVD and VEGF levels.

Conclusion:

CrTX produced significant anti-tumor effects by inducing cell apoptosis probably due to activation of P38MAPK and caspase-3, and by cell cycle arrest mediated by increased wt p53 expression. In addition, CrTX displayed anti-angiogenic effects in vivo.  相似文献   

14.
Abstract

Background:

Two new agents have recently been licensed as maintenance therapy for advanced non-small-cell lung cancer (NSCLC) by the US Food and Drug Administration. This paper aims to systematically review the evidence from all available clinical trials of erlotinib and pemetrexed as maintenance therapy for advanced NSCLC.  相似文献   

15.
Aim: To evaluate the relationship between epidermal growth factor receptor (EGFR) mutations and serum carcinoembryonic antigen (CEA) levels in Chinese nonsmokers with pulmonary adenocarcinoma. Methods: We sequenced exons 18-21 of the EGFR gene in 98 cases. The patients were divided into two groups based on their pre- treatment serum CEA levels (below or above 5 n~/mL) for analyzing the correlations with EGFR mutations. Results: Sixty-seven cases harbored EGFR mutations. The rates of EGFR mutations and exon 19 mutations in the high-CEA group (78.2% and 49.1%, respectively) were significantly higher than those in the Iow-CEA group (55.8% and 20.9%, respectively). Serum CEA levels were found to be the only independent predictor of EGFR mutation (OR 2.837; 95% CI: 1.178-6.829) and exon 19 mutation (OR 3.618; 95% CI: 1.319-9.918). Furthermore, a higher serum CEA level was associated with a higher EGFR mutation rate and a higher exon 19 mutation rate: patients with serum CEA levels 〈5 ng/mL, 〉5 and 〈20 ng/mL, 〉20 ng/mL showed the EGFR mutation rate of 55.8%, 74.1%, 82.1%, respectively, and the exon :19 mutation rate of 20.9%, 40.7%, 57.1%, respectively. Patients with EGFR mutations displayed a significantly higher incidence of abnormal serum CEA levels (〉5 ng/mL) than patients without EGFR mutations (64.2% vs 38.7%). Conclusion: Elevated serum CEA levels predict the presence of EGFR gene mutations in Chinese nonsmokers with pulmonary adenocarcinoma.  相似文献   

16.

Background and purpose:

Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells.

Experimental approach:

We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively.

Key results:

Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes.

Conclusion and implications:

This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death.  相似文献   

17.
Aim: To develop a novel 3D-QSAR approach for study of the epidermal growth factor receptor tyrosine kinase (EGFR TK) and its inhibi- tors. Methods: One hundred thirty nine EGFR TK inhibitors were classified into 3 clusters. Ensemble docking of these inhibitors with 19 EGFR TK crystal structures was performed. Three protein structures that showed the best recognition of each cluster were selected based on the docking results. Then, a novel QSAR (ensemble-QSAR) building method was developed based on the ligand conforma- tions determined by the corresponding protein structures. Results: Compared with the 3D-QSAR model, in which the ligand conformations were determined by a single protein structure, ensemble-QSAR exhibited higher R2 (0.87) and Q2 (0.78) values and thus appeared to be a more reliable and better predictive model. Ensemble-QSAR was also able to more accurately describe the interactions between the target and the ligands. Conclusion: The novel ensemble-QSAR model built in this study outperforms the traditional 3D-QSAR model in rationality, and provides a good example of selecting suitable protein structures for docking prediction and for building structure-based QSAR using available protein structures.  相似文献   

18.

Aim:

To investigate the effects of 3,4,4′-trihydroxy-trans-stilbene (3,4,4′-THS), an analogue of resveratrol, on human non-small-cell lung cancer (NSCLC) cells in vitro.

Methods:

Cell viability of NSCLC A549 cells was determined by MTT assay. Cell apoptosis was evaluated using flow cytometry and TUNEL assay. Cell necrosis was evaluated with LDH assay. The expression of apoptosis- or autophagy-associated proteins was measured using Western blotting. The formation of acidic compartments was detected using AO staining, neutral red staining and Lysotracker-Red staining. LC3 punctae were analyzed with fluorescence microscopy.

Results:

Treatment with 3,4,4′-THS (10-80 μmol/L) concentration-dependently inhibited the cell viability. It did not cause cell necrosis, but induced apoptosis accompanied by up-regulation of cleavaged PARP, caspase3/9 and Bax, and by down-regulation of Bcl-2 and surviving. It also increased the formation of acidic compartments, LC3-II accumulation and GFP-LC3 labeled autophagosomes in the cells. It inhibited the mTOR-dependent pathway, but did not impair autophagic flux. 3,4,4′-THS-induced cell death was enhanced by the autophagy inhibitors 3-MA (5 mmol/L) or Wortmannin (2 μmol/L). Moreover, 3,4,4′-THS treatment elevated the ROS levels in the cells, and co-treatment with 3-MA further elevated the ROS levels. 3,4,4′-THS-induced apoptosis and autophagy in the cells was attenuated by NAC (10 mmol/L)

Conclusion:

3,4,4′-THS induces both apoptosis and autophagy in NSCLC A549 cells in vitro. Autophagy inhibitors promote 3,4,4′-THS-induced apoptosis of A549 cells, thus combination of 3,4,4′-THS and autophagy inhibitor provides a promising strategy for NSCLC treatment.  相似文献   

19.

Aim:

To ascertain the effects of erlotinib on CYP3A, to investigate the amplitude and kinetics of erlotinib-mediated inhibition of seven major CYP isoforms in human liver microsomes (HLMs) for evaluating the magnitude of erlotinib in drug-drug interaction in vivo.

Methods:

The activities of 7 major CYP isoforms (CYP1A2, CYP2A6, CYP3A, CYP2C9, CYP2D6, CYP2C8, and CYP2E1) were assessed in HLMs using HPLC or UFLC analysis. A two-step incubation method was used to examine the time-dependent inhibition of erlotinib on CYP3A.

Results:

The activity of CYP2C8 was inhibited with an IC50 value of 6.17±2.0 μmol/L. Erlotinib stimulated the midazolam 1′-hydroxy reaction, but inhibited the formation of 6β-hydroxytestosterone and oxidized nifedipine. Inhibition of CYP3A by erlotinib was substrate-dependent: the IC50 values for inhibiting testosterone 6β-hydroxylation and nifedipine metabolism were 31.3±8.0 and 20.5±5.3 μmol/L, respectively. Erlotinib also exhibited the time-dependent inhibition on CYP3A, regardless of the probe substrate used: the value of KI and kinact were 6.3 μmol/L and 0.035 min−1 for midazolam; 9.0 μmol/L and 0.045 min−1 for testosterone; and 10.1 μmol/L and 0.058 min−1 for nifedipine.

Conclusion:

The inhibition of CYP3A by erlotinib was substrate-dependent, while its time-dependent inhibition on CYP3A was substrate-independent. The time-dependent inhibition of CYP3A may be a possible cause of drug-drug interaction, suggesting that attention should be paid to the evaluation of erlotinib''s safety, especially in the context of combination therapy.  相似文献   

20.

Aim:

We have reported novel anticancer bioactive peptides (ACBPs) that show tumor-suppressive activities in human gastric cancer, leukemia, nasopharyngeal cancer, and gallbladder cancer. In this study, we investigated the effects of ACBPs on human colorectal cancer and the underlying mechanisms.

Methods:

Cell growth and apoptosis of human colorectal tumor cell line HCT116 were measured using cell proliferation assay and flow cytometry, respectively. The expression levels of PARP, p53 and Mcl1A were assessed with Western blotting and immunohistochemistry. For evaluation of the in vivo antitumor activity of ACBPs, HCT116 xenograft nude mice were treated with ACBPs (35 μg/mL, ip) for 10 days.

Results:

Treatment of HCT116 cells with ACBPs (35 μg/mL) for 4–6 days significantly inhibited the cell growth. Furthermore, treatment of HCT116 cells with ACBPs (35 μg/mL) for 6–12 h significantly enhanced UV-induced apoptosis, increased the expression of PARP and p53, and decreased the expression of Mcl-1. Administration of ACBPs did not change the body weight of HCT116 xenograft nude mice, but decreased the tumor growth by approximately 43%, and increased the expression of PARP and p53, and decreased the expression of Mcl-1 in xenograft mouse tumor tissues.

Conclusion:

Administration of ACBPs inhibits human colorectal tumor cell growth and induces apoptosis in vitro and in vivo through modulating the PARP-p53-Mcl-1 signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号