首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to realize the self-centering, high energy consumption, and high ductility of the existing building structure through strengthening and retrofit of structure, a method of reinforced concrete (RC) beam strengthened by using Shape Memory Alloy (SMA) and Engineered Cementitious Composites (ECC) was proposed. Four kinds of specimens were designed, including one beam strengthened with enlarging section area of steel reinforced concrete, one beam strengthened with enlarging section area of SMA reinforced concrete, beam strengthened with enlarging section area of SMA reinforced ECC, and beam strengthened with enlarging section area of steel reinforced ECC; these specimens were manufactured for the monotonic cycle loading tests study on its bending behavior. The influence on the bearing capacity, energy dissipation performance, and self-recovery capacity for each test specimens with different strengthening materials were investigated, especially the bending behavior of the beams strengthened by SMA reinforced ECC. The results show that, compared with the ordinary reinforced concrete beams, strengthening existing RC beam with enlarging section area of SMA reinforced ECC can improve the self-recovery capacity, ductility, and deformability of the specimens. Finally, a revised design formula for the bending capacity of RC beams, strengthened with enlarging sections of ECC, was proposed by considering the tensile capacity provided by ECC, and the calculated values are in good agreement with the experimental value, indicating that the revised formula can be well applied to the beam strengthening with enlarging section of SMA-ECC Materials.  相似文献   

3.
4.
Fiber-reinforced polymers (FRPs) retrofit reinforced concrete (RC) structures. ABAQUS finite element software was used to perform numerical parametric analysis on a group of RC beams in this research. All specimens were retrofitted by FRP strips as an external retrofitting and experimentally tested up to previous researchers’ failure points. The range of subjects examined in these RC beams included cracking torque, ultimate torque, angle of twist, and the effect of using FRP on these subjects. We applied artificial neural networks (ANNs) to predict the structural behavior of RC beams under combined torsion and bending to develop the research accuracy. After testing, the ANN results were compared with the ABAQUS results. Consequently, a reasonable examination of the determined mathematical and trial results confirmed this study’s logical accuracy in predicting retrofitted RC beams’ structural behavior under combined loading.  相似文献   

5.
An innovative method for prestressing structural elements through the use of shape memory alloys (SMAs) is gaining increasing attention in research as this method does not require the use of mechanical anchorages for tendons. The activation of the memory effect by means of temperature variations (Joule effect) in effect produces high stresses in SMA components attached to concrete components as reported in the literature. This paper presents the work performed for the purpose of prestressing concrete hollow cylinders with the use of nickel–titanium (Ni–Ti) SMA wires. In the tests, a variety of hollow cylinders were made using the same concrete mix and with the same wall thickness (20 mm), but with different external diameters (200 mm, 250 mm, and 300 mm). Their prestressing was achieved by the means of Ni-Ti SMA wires of different diameters (1 mm, 2 mm, and 3 mm) wrapped around the cylinders. Longitudinal and circumferential strain during the thermal activation of the SMA wires by Joule heating was measured using gauges located on the internal surface of the hollow cylinders. The experimental protocol, recorded observations, and discussion of the effectiveness of the prestressing of concrete elements as a function of the test parameters are included in the text in detail. Comments on the conditions for effective prestressing of concrete cylinders with SMA wires are proposed in the conclusions of the paper.  相似文献   

6.
The durability of reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) is a worldwide concern in structural engineering. As an important part of the strengthened beam, the performance of the CFRP–concrete interface under hygrothermal environments is a delicate problem. In this paper, the fatigue behavior of CFRP-strengthened RC beams is analyzed by a theoretical model. In the model, CFRP–concrete interface degradation under hygrothermal environments is involved. Since interface debonding and rebar fracture induced by intermediate cracking are two typical failure modes, the damage models of rebar and the CFRP–concrete interface are established. Based on the theoretical model, the failure mode of CFRP-strengthened RC beams can be predicted, and fatigue life can be determined. The results showed that IC debonding is more likely to occur under hygrothermal environments. The accurate prediction of failure modes is essential for fatigue life prediction.  相似文献   

7.
Jong Wan Hu 《Materials》2014,7(2):1122-1141
In this paper, the superelastic shape memory alloy (SMA) slit damper system as an alternative design approach for steel structures is intended to be evaluated with respect to inelastic behavior simulated by refined finite element (FE) analyses. Although the steel slit dampers conventionally used for aseismic design are able to dissipate a considerable amount of energy generated by the plastic yielding of the base materials, large permanent deformation may occur in the entire structure. After strong seismic events, extra damage repair costs are required to restore the original configuration and to replace defective devices with new ones. Innovative slit dampers fabricated by superelastic SMAs that automatically recover their initial conditions only by the removal of stresses without heat treatment are introduced with a view toward mitigating the problem of permanent deformation. The cyclically tested FE models are calibrated to experimental results for the purpose of predicting accurate behavior. This study also focuses on the material constitutive model that is able to reproduce the inherent behavior of superelastic SMA materials by taking phase transformation between austenite and martensite into consideration. The responses of SMA slit dampers are compared to those of steel slit dampers. Axial stress and strain components are also investigated on the FE models under cyclic loading in an effort to validate the adequacy of FE modeling and then to compare between two slit damper systems. It can be shown that SMA slit dampers exhibit many structural advantages in terms of ultimate strength, moderate energy dissipation and recentering capability.  相似文献   

8.
9.
A textile reinforced concrete (TRC) system has been widely used for repair and strengthening of deteriorated reinforced concrete (RC) structures. This paper proposes an accelerated on-site installation method of a TRC system by grouting to strengthen deteriorated RC structures. Four RC slabs were strengthened with one ply of carbon textile grid and 20 mm-thick cementitious grout. The TRC strengthened slab specimens were tested under flexure and the test results were compared with those of an unstrengthened specimen and theoretical solutions. Furthermore, the TRC strengthened specimens experienced longer plastic deformation after steel yield than the unstrengthened specimen. The TRC strengthened specimens exhibited many fine cracks and finally failed by rupture of the textile. Therefore, TRC system with the proposed installation method can effectively be used for strengthening of deteriorated RC structural elements. The theoretically computed steel yield and ultimate loads overestimate the test data by 11% and 5%, respectively.  相似文献   

10.
The remarkable properties of shape memory alloys (SMA) are attracting significant technological interest in many fields of science and engineering. In this paper, a nonlinear dynamic analytical model is developed for a laminated beam with a shape memory alloy layer. The model is derived based on Falk’s polynomial model for SMAs combined with Timoshenko beam theory. In addition, axial velocity, axial pressure, temperature, and complex boundary conditions are also parameters that have been taken into account in the creation of the SMA dynamical equation. The nonlinear vibration characteristics of SMA laminated beams under 1:3 internal resonance are studied. The multi-scale method is used to solve the discretized modal equation system, the characteristic equation of vibration modes coupled to each other in the case of internal resonance, as well as the time-history and phase diagrams of the common resonance amplitude in the system are obtained. The effects of axial velocity and initial conditions on the nonlinear internal resonance characteristics of the system were also studied.  相似文献   

11.
In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.  相似文献   

12.
Owing to the world population aging, biomedical materials, such as shape memory alloys (SMAs) have attracted much attention. The biocompatible Ti–Au–Ta SMAs, which also possess high X–ray contrast for the applications like guidewire utilized in surgery, were studied in this work. The alloys were successfully prepared by physical metallurgy techniques and the phase constituents, microstructures, chemical compositions, shape memory effect (SME), and superelasticity (SE) of the Ti–Au–Ta SMAs were also examined. The functionalities, such as SME, were revealed by the introduction of the third element Ta; in addition, obvious improvements of the alloy performances of the ternary Ti–Au–Ta alloys were confirmed while compared with that of the binary Ti–Au alloy. The Ti3Au intermetallic compound was both found crystallographically and metallographically in the Ti–4 at.% Au–30 at.% Ta alloy. The strength of the alloy was promoted by the precipitates of the Ti3Au intermetallic compound. The effects of the Ti3Au precipitates on the mechanical properties, SME, and SE were also investigated in this work. Slight shape recovery was found in the Ti–4 at.% Au–20 at.% Ta alloy during unloading of an externally applied stress.  相似文献   

13.
In order to improve the deformation energy consumption and self-centering ability of reinforced concrete (RC) frame beam-column joints for main buildings of conventional islands in nuclear power plants, a new type of self-centering joint equipped with super-elastic shape memory alloy (SMA) bars and a steel plate as kernel components in the core area of the joint is proposed in this study. Four 1/5-scale frame joints were designed and manufactured, including two contrast joints (a normal reinforced concrete joint and a concrete joint that replaces steel bars with SMA bars) and two new model joints with different SMA reinforcement ratios. Subsequently, the residual deformation, energy dissipation capacity, stiffness degradation and self-centering performance of the novel frame joints were studied through a low-frequency cyclic loading test. Finally, based on the OpenSees finite element software platform, an effective numerical model of the new joint was established and verified. On this basis, varying two main parameters, the SMA reinforcement ratio and the axial compression ratio, a simulation was systematically conducted to demonstrate the effectiveness of the proposed joint in seismic performance. The results show that replacing ordinary steel bars in the beam with SMA bars not only greatly reduces the bearing capacity and stiffness of the joint, but also makes the failure mode of the joint brittle. The construction of a new type of joint with consideration of the SMA reinforcement and the steel plate can improve the bearing capacity, delay the stiffness degradation and improve the ductility and self-centering capability of the joints. Within a certain range, increasing the ratio of the SMA bars can further improve the ultimate bearing capacity and energy dissipation capacity of the new joint. Increasing or decreasing the axial compression ratio of column ends has little effect on the overall seismic performance of new joints.  相似文献   

14.
This work was carried out within the context of an R&D project on morphable polymer matrix composites (PMC), actuated by shape memory alloys (SMA), to be used for active aerodynamic systems in automotives. Critical issues for SMA–polymer integration are analyzed that are mostly related to the limited strength of metal–polymer interfaces. To this aim, materials with suitable thermo-mechanical properties were first selected to avoid premature activation of SMA elements during polymer setting as well as to avoid polymer damage during thermal activation of SMAs. Nonstandard samples were manufactured for both static and fatigue pullout tests under thermo-mechanical loading, which are made of SMA wires embedded in cylindrical resin blocks. Fully coupled thermo-mechanical simulations, including a special constitutive model for SMAs, were also carried out to analyze the stress and temperature distribution in the SMA–polymer samples as obtained from the application of both mechanical loads and thermal activation of the SMA wires. The results highlighted the severe effects of SMA thermal activation on adhesion strength due to the large recovery forces and to the temperature increase at the metal–polymer interface. Samples exhibit a nominal pullout stress of around 940 MPa under static mechanical load, and a marked reduction to 280 MPa was captured under simultaneous application of thermal and mechanical loads. Furthermore, fatigue run-out of 5000 cycles was achieved, under the combination of thermal activation and mechanical loads, at a nominal stress of around 200 MPa. These results represent the main design limitations of SMA/PMC systems in terms of maximum allowable stresses during both static and cyclic actuation.  相似文献   

15.
Nonlinear finite element (FE) analysis of reinforced concrete (RC) structures is characterized by numerous modeling options and input parameters. To accurately model the nonlinear RC behavior involving concrete cracking in tension and crushing in compression, practitioners make different choices regarding the critical modeling issues, e.g., defining the concrete constitutive relations, assigning the bond between the concrete and the steel reinforcement, and solving problems related to convergence difficulties and mesh sensitivities. Thus, it is imperative to review the common modeling choices critically and develop a robust modeling strategy with consistency, reliability, and comparability. This paper proposes a modeling strategy and practical recommendations for the nonlinear FE analysis of RC structures based on parametric studies of critical modeling choices. The proposed modeling strategy aims at providing reliable predictions of flexural responses of RC members with a focus on concrete cracking behavior and crushing failure, which serve as the foundation for more complex modeling cases, e.g., RC beams bonded with fiber reinforced polymer (FRP) laminates. Additionally, herein, the implementation procedure for the proposed modeling strategy is comprehensively described with a focus on the critical modeling issues for RC structures. The proposed strategy is demonstrated through FE analyses of RC beams tested in four-point bending—one RC beam as reference and one beam externally bonded with a carbon-FRP (CFRP) laminate in its soffit. The simulated results agree well with experimental measurements regarding load-deformation relationship, cracking, flexural failure due to concrete crushing, and CFRP debonding initiated by intermediate cracks. The modeling strategy and recommendations presented herein are applicable to the nonlinear FE analysis of RC structures in general.  相似文献   

16.
The use of adhesively bonded carbon fiber reinforced polymer (CFRP) materials to reinforce cracked steel elements has gained widespread acceptance in order to extend the lifespan of metallic structures. This allows an important reduction of the stress intensity factor (SIF) at the crack tip and thus a significant increase of the fatigue life. This paper deals with the assessment of the SIF for repaired cracked steel plates, using semi-empirical analysis and finite element analysis. Metallic plates with only one crack originating from a center hole were investigated. Virtual crack closure technique (VCCT) was used to define and evaluate the stress intensity factor at crack tip. The obtained modeling results are compared with experimental investigations led by the authors for different reinforcement configurations including symmetrical and non-symmetrical reinforcement, normal modulus and ultra-high-modulus CFRP plates, and pre-stressed CFRP plates. Results show that finite element model (FEM) analysis can obviously simulate the fatigue performance of the CFRP bonded steel plates with different reinforcement configurations. Moreover, a parametric analysis of the influence of the pre-stressing level was also conducted. The results show that an increase of the pre-stressing level results in an increase of the fatigue life of the element.  相似文献   

17.
Reinforced concrete (RC) structures necessitate strengthening for various reasons. These include ageing, deterioration of materials due to environmental effects, trivial initial design and construction, deficiency of maintenance, the advancement of design loads, and functional changes. RC structures strengthening with the carbon fiber reinforced polymer (CFRP) has been used extensively during the last few decades due to their advantages over steel reinforcement. This paper introduces an experimental approach for flexural strengthening of RC beams with Externally-Side Bonded Reinforcement (E-SBR) using CFRP fabrics. The experimental program comprises eight full-scale RC beams tested under a four-point flexural test up to failure. The parameters investigated include the main tensile steel reinforcing ratio and the width of CFRP fabrics. The experimental outcomes show that an increase in the tensile reinforcement ratio and width of the CFRP laminates enhanced the first cracking and ultimate load-bearing capacities of the strengthened beams up to 141 and 174%, respectively, compared to the control beam. The strengthened RC beams exhibited superior energy absorption capacity, stiffness, and ductile response. The comparison of the experimental and predicted values shows that these two are in good agreement.  相似文献   

18.
Many negative factors can influence the progressive collapse resistance of reinforced concrete (RC) frame structures. One of the most important factors is the corrosion of rebar within the structure. With increasing severity of corrosion, the duration, robustness, and mechanical performance can be greatly impaired. One specific side effect of rebar corrosion is the significant loss of protection against progressive collapse. In order to quantify the effects of rebar corrosion on load-resisting mechanisms (compressive arch action (CAA) and tensile catenary action (TCA)) of RC frames, a series of numerical investigations were carried out in this paper. The previous experimental results reported in the literature provide a benchmark for progressive collapse behavior as a sound condition and validate the proposed numerical model. Furthermore, based on the verified numerical model, the CAA and TCA with increasing corrosion and an elapsed time from 0 to 70 years are investigated. Comparing with the conventional empirical model, the proposed numerical model has shown the ability and feasibility in predicting the collapse resistance capacity in structures with corroded rebar. Therefore, this numerical modeling strategy provides comprehensive insights into the change of load-resisting mechanisms in these structures, which can be beneficial for optimizing the design.  相似文献   

19.
The static behavior of reinforced concrete (RC) beams plated with layers of fiber-reinforced composite material (FRP) is widely investigated in current literature, which deals with both its numerical modeling as well as experiments. Scientific interest in this topic is explained by the increasing widespread use of composite materials in retrofitting techniques, as well as the consolidation and upgrading of existing reinforced concrete elements to new service conditions. The effectiveness of these techniques is typically influenced by the debonding of the FRP at the interface with concrete, where the transfer of stresses occurs from one element (RC member) to the other (FRP strengthening). In fact, the activation of the well-known premature failure modes can be regarded as a consequence of high peak values of the interfacial interactions. Until now, typical applications of FRP structural plating have included cases of flexural or shear-flexural strengthening. Within this context, the present study aims at extending the investigation to the case of wall-systems with open cross-section under torsional loads. It includes the results of some numerical analyses carried out by means of a finite element approximation.  相似文献   

20.
A bond mechanism at the reinforcement-concrete interface is one of the key sources of the comprehensive functioning of reinforced concrete (RC) structures. In order to apprehend the bond mechanism, the study on bond stress and slip relation (henceforth referred as bond-slip) is necessary. On this subject, experimental and numerical investigations were performed on short RC tensile specimens. A double pull-out test with pre-installed electrical strain gauge sensors inside the modified embedded rebar was performed in the experimental part. Numerically, a three dimensional rib scale model was designed and finite element analysis was performed. The compatibility and reliability of the numerical model was verified by comparing its strain result with an experimentally obtained one. Afterwards, based on stress transfer approach, the bond-slip relations were calculated from the extracted strain results. The maximum disparity between experimental and numerical investigation was found as 19.5% in case of strain data and 7% for the bond-slip relation at the highest load level (110 kN). Moreover, the bond-slip curves at different load levels were compared with the bond-slip model established in CEB-fib Model Code 2010 (MC2010). Overall, in the present study, strain monitoring through the experimental tool and finite element modelling have accomplished a broader picture of the bond mechanism at the reinforcement-concrete interface through their bond-slip relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号