首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 4 毫秒
1.
In recent decades, microstructure and texture engineering has become an indispensable factor in meeting the rising demands in mechanical properties and forming behavior of aluminum alloys. Alloying elements, such as Fe and Mn in AlMg(Mn) alloys, affect the number density, size and morphology of both the primary and secondary phases, thus altering the grain size and orientation of the final annealed sheet by Zener pinning and particle stimulated nucleation (PSN). The present study investigates the grain size and texture of four laboratory processed AlMg(Mn) alloys with various Fe and Mn levels (see Part I). Common models for deriving the Zener-limit grain size are discussed in the light of the experimental data. The results underline the significant grain refinement by dispersoids in high Mn alloys and show a good correlation with the Smith–Zener equation, when weighting the volume fraction of the dispersoids with an exponent of 0.33. Moreover, for high Fe alloys a certain reduction in the average grain size is obtained due to pinning effects and PSN of coarse primary phases. The texture analysis focuses on characteristic texture transformations occurring with pinning effects and PSN. However, the discussion of the texture and typical PSN components is only possible in terms of trends, as all alloys exhibit an almost random distribution of orientations.  相似文献   

2.
Synergistic effect of TiB2 (in form of Al-5Ti-1B) and La on grain refining results in Al-2Cu alloy was investigated. α-Al grains are significantly refined by Al-5Ti-1B. When trace La is added to the melt, further refinement is exhibited. Average grain size and nucleation undercooling of α-Al reduce first and then almost remain unchanged with La addition. Satisfactory grain refining result achieves when La addition level reaches 600 ppm. When more than 600 ppm La is added to the melt, La-rich particles form and the effect of solute La left in matrix on the microstructure almost no longer changes. Theoretical calculation results demonstrate that solute La segregates to Al melt/TiB2 particles interface along with Ti and Cu prior to α-Al nucleation and the synergistic effect of La and TiB2 particles on grain refinement mainly attributes to the enhancement in the potency of TiB2 particles to heterogeneously nucleate α-Al by trace La addition.  相似文献   

3.
The first study of thin-walled aluminum-alloy tubes with underwater-laser-nozzle in situ melting technology was carried out. The study mainly covered the influence of the water environment on the laser melting process, melting appearance, geometric characteristics, microstructure, regional segregation and microhardness. During the transfer of the cladding environment from air to water, the uniformity of the cladding layer became poor, but excellent metallurgical bonding was still obtained. The dilution rate (D) decreased from 0.46 to 0.33, while the shape factor (S) increased from 4.38 to 5.98. For the in-air and underwater samples, the microstructure of the melting zone (MZ) and the cladding zone (CZ) were columnar dendrites and equiaxed grains, respectively. In addition, the microstructure of the overlapping zone (OZ) was composed of columnar dendrites and equiaxed grains. The underwater average grain size was smaller than that of in-air. In addition, the water environment was beneficial for reducing the positive segregation in the columnar dendrite region. Compared with the in-air cladding sample, the precipitated phases in the OZ of the underwater cladding sample reduced. Under the combined action of grain refinement and precipitated phase reduction, the microhardness value of the underwater OZ was higher than that of the in-air OZ.  相似文献   

4.
The tensile behaviour of the biocompatible alloy Mg-1Zn-0.2Ca (in wt.%) in the fine-grained state, obtained by severe plastic deformation via multiaxial isothermal forging, has been investigated in a wide range of temperatures (20 ÷ 300) °C and strain rates (5 × 10−4 ÷ 2 × 10−2) s−1 with the measurements of acoustic emission (AE). The dependences of mechanical properties, including the yield stress, ultimate strength, ductility, and the strain-hardening rate, on the test temperature and strain rate, were obtained and discussed. It is shown for the first time that an acoustic emission method is an effective tool for in situ monitoring of the dynamic recrystallisation (DRX) process. The specific behaviour of the acoustic emission spectral density reflected by its median frequency as a function of strain at various temperatures can serve as an indicator of the DRX process’s completeness.  相似文献   

5.
The evolution of austenite, acicular ferrite, upper bainite and martensite, and the nucleation of inclusions in the microstructure of high-strength steel deposited metals, was systematically investigated using three kinds of A5.28 E120C-K4 metal-cored wires with various rare earth Pr contents. Grain structure evolution in the process of high temperature, dispersoid characteristics of inclusions and the crystallographic characteristics of the microstructure were assessed. Compared with no addition of Pr6O11, adding 1%Pr6O11 resulted in refined, spheroidized and dispersed inclusions in the deposited metal, leading to an increase in the pinning forces on the grain boundary movement, promoting the formation of an ultra-fine grain structure with an average diameter of 41 μm. The inclusions in the deposited metals were Mn-Si-Pr-Al-Ti-O after Pr addition; the average size of the inclusions in the Pr-containing deposited metals was the smallest, while the number and density of inclusions was the highest. The size of effective inclusions (nucleus of acicular ferrite formation) was mainly in the range of 0.6–1.5 μm. In addition, the content of upper bainite decreased, while the percentage of acicular ferrite increased by 24% due to the increase in the number of effective inclusions in the Pr-containing deposited metals in this study. This study shows that the addition of 1% Pr6O11 is efficient in achieving fine interlaced multiphase with an ultrafine-grained structure, resulting in an enhancement of the impact toughness of the deposited metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号