首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to examine the mechanical properties of 5-mm-thick AA7075-T651 alloy using three different welding velocities, 50, 75 and 100 mm/min, and four various sets of tool rotation speeds: 400, 600, 800 and 1000 rpm. All obtained joints were defect-free. In all cases, the values of UTS exceeded 400 MPa, corresponding to 68.5% minimum joint efficiency. The highest value of 447.7 MPa (76.7% joint efficiency) was reported for the joint produced via 400 rpm tool rotation speed and 100 mm/min welding velocity. The SZ microstructure of the strongest joint was characterized by a 5.2 ± 1.7 μm grain size and microhardness of approximately 145 HV0.1. The TMAZ/HAZ interface was identified as the low-hardness zone (105–115 HV0.1, depending on parameters), where the failure of the tensile samples takes place. The fracture mechanism is dominated by a transgranular ductile rupture with microvoid coalescence.  相似文献   

2.
The main purpose of this research was to enhance the mechanical properties of friction stir welds (FSW) in the dissimilar aluminum alloys 6061-T6 and 7075-T651. The welded workpiece has tensile residual stress due to the influence of the thermal conductivity of dissimilar materials, resulting in crack initiation and less fatigue strength. The experiment started from the FSW process using the 2k full factorial with the response surface methodology (RSM) and central composite design (CCD) to investigate three factors. The experiment found that the optimal rotation speed and feed rate values were 979 and 65 mm/min, respectively. Then, the post-weld heat treatment process (PWHT) was applied. Following this, the 2k full factorial was used to investigate four factors involved in the deep rolling process (DR). The experiment found that the optimal deep rolling pressure and deep rolling offset values were 300 bar and 0.2 mm, respectively. Moreover, mechanical property testing was performed with a sequence of four design types of workpieces: FSW, FSW-PWHT, FSW-DR, and FSW-PWHT-DR. It was found that the FSW-PWHT-DR workpiece had an increase in tensile strength of up to 26.29% and increase in fatigue life of up to 129.47% when compared with the FSW workpieces, as well as a maximum compressive residual stress of −414 MPa.  相似文献   

3.
Friction Stir Welding (FSW) is a solid-state bonding technique. There are many direct and indirect factors affecting the mechanical and microstructural properties of the FSW joints. Tool offset, tilt angle, and plunge depth are determinative tool positioning in the FSW process. Investigating the effect of these factors simultaneously with other parameters such as process speeds (rotational speed and translational speed) and tool geometry leads to a poor understanding of the impact of these factors on the FSW process. Because the three mentioned parameters have the same origin, they should be studied separately from other process parameters. This paper investigates the effects of tilt angle, plunge depth, and tool offset on Ultimate Tensile Stress (UTS) of joints between AA6061-T6 and AA7075-T6. To design the experiments, optimization, and statistical analysis, Response Surface Methodology (RSM) has been used. Experimental tests were carried out to find the maximum achievable UTS of the joint. The optimum values were determined based on the optimization procedure as 0.7 mm of tool offset, 2.7 degrees of tilt angle, and 0.1 mm of plunge depth. These values resulted in a UTS of 281 MPa. Compared to the UTS of base metals, the joint efficiency of the optimized welded sample was nearly 90 percent.  相似文献   

4.
In the present study, 2198 Al-Cu-Li alloys were successfully friction stir welded by using various welding speed ranges of 90~180 mm/min with an invariable rotation speed of 950 r/min. The effect of welding speed on microstructure evolution and mechanical properties of the joints was investigated. The results show that, with the welding speed decreasing, the size of the nugget zone (NZ) first increases and then decreases due to different welding temperatures. At a welding speed of 150 mm/min, the size of the NZ in all joints is the biggest and the “S” curve disappears. The equiaxed grains are finer, attributed to a higher degree of dynamic recrystallization, and a larger number of fine reprecipitated phase (δ’, β’ phases) particles are dispersively distributed in the NZ. Correspondingly, the joints have the highest tensile properties, and the tensile strength, yield strength and elongation are, respectively, 406 MPa, 289 MPa and 7.2%. However, compared to the base material, the tensile properties of all joints are reduced because a greater amount of δ’ and β’ phases particles are dissolved in the NZ. Only the joints produced at 150 mm/min are fractured in the TMAZ with detected deep dimples and tearing ridges, and a significant necking phenomenon is observed, which indicates a complete ductile fracture mode.  相似文献   

5.
Friction stir spot welding (FSSW) is one of the important variants of the friction stir welding (FSW) process. FSSW has been developed mainly for automotive applications where the different thickness sheets spot welding is essential. In the present work, different thin thickness sheets (1 mm and 2 mm) of AA6082-T6 were welded using FSSW at a constant dwell time of 3 s and different rotation speeds of 400, 600, 800, and 1000 rpm. The FSSW heat input was calculated, and the temperature cycle experience during the FSSW process was recorded. Both starting materials and produced FSSW joints were investigated by macro- and microstructural investigation, a hardness test, and a tensile shear test, and the fractured surfaces were examined using a scanning electron microscope (SEM). The macro examination showed that defect-free spot joints were produced at a wide range of rotation speeds (400–1000 rpm). The microstructural results in terms of grain refining of the stir zone (SZ) of the joints show good support for the mechanical properties of FSSW joints. It was found that the best welding condition was 600 rpm for achieving different thin sheet thicknesses spot joints with the SZ hardness of 95 ± 2 HV0.5 and a tensile shear load of 4300 ± 30 N.  相似文献   

6.
This study focuses on the properties and process parameters dictating behavioural aspects of friction stir welded Aluminium Alloy AA6061 metal matrix composites reinforced with varying percentages of SiC and B4C. The joint properties in terms of mechanical strength, microstructural integrity and quality were examined. The weld reveals grain refinement and uniform distribution of reinforced particles in the joint region leading to improved strength compared to other joints of varying base material compositions. The tensile properties of the friction stir welded Al-MMCs improved after reinforcement with SiC and B4C. The maximum ultimate tensile stress was around 172.8 ± 1.9 MPa for composite with 10% SiC and 3% B4C reinforcement. The percentage elongation decreased as the percentage of SiC decreases and B4C increases. The hardness of the Al-MMCs improved considerably by adding reinforcement and subsequent thermal action during the FSW process, indicating an optimal increase as it eliminates brittleness. It was seen that higher SiC content contributes to higher strength, improved wear properties and hardness. The wear rate was as high as 12 ± 0.9 g/s for 10% SiC reinforcement and 30 N load. The wear rate reduced for lower values of load and increased with B4C reinforcement. The microstructural examination at the joints reveals the flow of plasticized metal from advancing to the retreating side. The formation of onion rings in the weld zone was due to the cylindrical FSW rotating tool material impression during the stirring action. Alterations in chemical properties are negligible, thereby retaining the original characteristics of the materials post welding. No major cracks or pores were observed during the non-destructive testing process that established good quality of the weld. The results are indicated improvement in mechanical and microstructural properties of the weld.  相似文献   

7.
The refill friction stir spot welding (refill FSSW) process is a solid-state joining process to produce welds without a keyhole in spot joint configuration. This study presents a thermo-mechanical model of refill FSSW, validated on experimental thermal cycles for thin aluminium sheets of AA7075-T6. The temperatures in the weld centre and outside the welding zone at selected points were recorded using K-type thermocouples for more accurate validation of the thermo-mechanical model. A thermo-mechanical three-dimensional refill FSSW model was built using DEFORM-3D. The temperature results from the refill FSSW numerical model are in good agreement with the experimental results. Three-dimensional material flow during plunging and refilling stages is analysed in detail and compared to experimental microstructure and hardness results. The simulation results obtained from the refill FSSW model correspond well with the experimental results. The developed 3D numerical model is able to predict the thermal cycles, material flow, strain, and strain rates which are key factors for the identification and characterization of zones as well for determining joint quality.  相似文献   

8.
The present study investigates the effect of two parameters of process type and tool offset on tensile, microhardness, and microstructure properties of AA6061-T6 aluminum alloy joints. Three methods of Friction Stir Welding (FSW), Advancing Parallel-Friction Stir Welding (AP-FSW), and Retreating Parallel-Friction Stir Welding (RP-FSW) were used. In addition, four modes of 0.5, 1, 1.5, and 2 mm of tool offset were used in two welding passes in AP-FSW and RP-FSW processes. Based on the results, it was found that the mechanical properties of welded specimens with AP-FSW and RP-FSW techniques experience significant increments compared to FSW specimens. The best mechanical and microstructural properties were observed in the samples welded by RP-FSW, AP-FSW, and FSW methods, respectively. Welded specimens with the RP-FSW technique had better mechanical properties than other specimens due to the concentration of material flow in the weld nugget and proper microstructure refinement. In both AP-FSW and RP-FSW processes, by increasing the tool offset to 1.5 mm, joint efficiency increased significantly. The highest weld strength was found for welded specimens by RP-FSW and AP-FSW processes with a 1.5 mm tool offset. The peak sample of the RP-FSW process (1.5 mm offset) had the closest mechanical properties to the base metal, in which the Yield Stress (YS), ultimate tensile strength (UTS), and elongation percentage (E%) were 76.4%, 86.5%, and 70% of base metal, respectively. In the welding area, RP-FSW specimens had smaller average grain size and higher hardness values than AP-FSW specimens.  相似文献   

9.
Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.  相似文献   

10.
The present paper aims to analyze the influence of process parameters (tool traverse speed and tool rotational speed) on the macrostructure, microhardness, and mechanical properties of dissimilar friction stir welded (FSW) butt joints. Nine combinations of FSW parameters welded joints of aluminum alloys 7020-T651 and 5083-H111 were characterized. Plates in 5 mm thickness were welded using the FSW method as dissimilar joints with three values of tool rotation parameters (400, 800, and 1200 rpm) and three welding speeds (100, 200, 300 mm/min). The macroscopic observations revealed various shapes of the stir zone and defects resulting from excess and insufficient heat input. Microfractographic analysis and tensile test results showed that the samples made with the FSW parameters of 800 rpm and 200 mm/min had the best strength properties: UTS = 303 MPa, YS = 157 MPa, and A = 11.6 %. Moreover, for all welds at welding speed 100 mm/min, the joint efficiency reached 95%.  相似文献   

11.
This article aims to study water-cooling effects on residual stress friction stir welding (FSW) of AA6068-T6 aluminum alloy. For this reason, the FSW and submerged FSW processes are simulated by computational fluid dynamic (CFD) method to study heat generation. The increment hole drilling technique was used to measure the residual stress of welded samples. The simulation results show that materials softening during the FSW process are more than submerged. This phenomenon caused the residual stress of the joint line in the submerged case to be lower than in the regular FSW joint. On the other hand, the results revealed that the maximum residual stresses in both cases are below the yielding strength of the AA6068-T6 aluminum alloy. The results indicated that the residual stress along the longitudinal direction of the joint line is much larger than the transverse direction in both samples.  相似文献   

12.
Friction stir welding (FSW) as a solid-state process is an excellent candidate for high softening temperature materials welding; however, extending the tool life is required to make the process cost-effective. This work investigates the use of a high pin to shoulder ratio (65%) tungsten carbide (WC) tool for friction stir welding of 5 mm thick 2205 DSS to extend the tool life of this low-cost tool material. In addition, the effect of FSW parameters in terms of rotational rates, travel speeds, and downward forces on the microstructural features and mechanical properties of the welded joints were investigated. Characterization in terms of visual inspection, macro and microstructures, hardness, and tensile testing was conducted. The obtained results indicated that the combined rotational rate, travel speed, and downward force parameters govern the production of defect-free joints. The 2205 DSS friction stir welds show an enhancement in hardness compared to the base material. The stir zone showed a significantly refined grain structure of ferrite and austenite with the reduction in the average grain size from 8.8 µm and 13.3 µm for the base material to 2.71 µm and 2.24 µm, respectively. Moreover, this joint showed higher yield strength and ultimate tensile strength compared to the DSS as-received material.  相似文献   

13.
The aim of this research was the selection of friction stir welding (FSW) parameters for joining stiffening elements (Z-stringers) to a thin-walled structure (skin) made of 1 mm-thick EN AW-2024 T3 aluminium alloy sheets. Overlapping sheets were friction stir welded with variable values of welding speed, pin length (plunge depth), and tool rotational speed. The experimental research was carried out based on a three-factor three-level full factorial Design of Experiments plan (DoE). The load capacity of the welded joints was determined in uniaxial tensile/pure shear tests. Based on the results of the load capacity of the joint and the dispersion of this parameter, multi-criteria optimisation was carried out to indicate the appropriate parameters of the linear FSW process. The optimal parameters of the FSW process were determined based on a regression equation assessed by the Fisher–Senecor test. The vast majority of articles reviewed concern the optimisation of welding parameters for only one selected output parameter (most often joint strength). The aim of multi-criteria optimisation was to determine the most favourable combination of parameters in terms of both the smallest dispersion and highest load capacity of the joints. It was found that an increase in welding speed at a given value of pin length caused a decrease in the load capacity of the joint, as well as a significant increase in the dispersion of the results. The use of the parameters obtained as a result of multi-criteria optimisation will allow a minimum load capacity of the joints of 5.38 kN to be obtained with much greater stability of the results.  相似文献   

14.
Friction stir lap welding (FSLW) is expected to join the hybrid structure of aluminum alloy and steel. In this study, the Al-Mg-Si aluminum alloy and 301L stainless steel were diffusion bonded by FSLDW with the addition of 0.1 mm thick pure Zn interlayer, when the tool pin did not penetrate the upper aluminum sheet. The characteristics of lap interface and mechanical properties of the joint were analyzed. Under the addition of Zn interlayer, the diffusion layer structure at lap interface changed from continuous to uneven and segmented. The components of the diffusion layer were more complex, including Fe-Al intermetallic compounds (IMCs), Fe-Zn IMCs and Al-Zn eutectic. The largely changed composition and thickness of uneven and segmented diffusion layer at the lap interface played a significant role in the joint strength. The tensile shear load of Zn-added joint was 6.26 kN, increasing by 41.3% than that of Zn-not-added joint. These two joints exhibited interfacial shear fracture, while the Zn interlayer enhanced the strength of diffusion bonding by extending the propagation path of cracks.  相似文献   

15.
In the present study, 8 mm-thick 5251 aluminum alloy was self-reacting friction stir welded (SRFSW) employing an optimized friction stir tool to analyze the effect of welding speed from 150 to 450 mm/min on the microstructure and mechanical properties at a constant rotation speed of 400 rpm. The results indicated that high-quality surface finish and defect-free joints were successfully obtained under suitable process parameters. The microhardness distribution profiles on the transverse section of joint exhibited a typical “W” pattern. The lowest hardness values located at the heat-affected zone (HAZ) and the width of the softened region decreased with increasing welding speed. The tensile strength significantly decreased due to the void defect, which showed mixed fracture characteristics induced by the decreasing welding speed. The average tensile strength and elongation achieved by the SRFSW process were 242.61 MPa and 8.3% with optimal welding conditions, and the fracture surface exhibited a typical toughness fracture mode.  相似文献   

16.
The microstructure and texture of materials significantly influence the mechanical properties and fracture behavior; the effect of microstructure in different zones of friction stir-welded joints of 7A52 aluminum alloy on fracture behavior was investigated in this paper. The microstructural characteristics of sections of the welded joints were tested using the electron backscattered diffraction (EBSD) technique. The results indicate that the fracture is located at the advancing side of the thermomechanically affected zone (AS-TMAZ) and the stir zone (SZ) interface. The AS-TMAZ microstructure is vastly different from the microstructure and texture of other areas. The grain orientation is disordered, and the grain shape is seriously deformed under the action of stirring force. The grain size grows unevenly under the input of friction heat, resulting in a large amount of recrystallization, and there is a significant difference in the Taylor factor between adjacent grains and the AS-TMAZ–SZ interface. On the contrary, there are fine and uniform equiaxed grains in the nugget zone, the microstructure is uniform, and the Taylor factor is small at adjacent grains. Therefore, the uneven transition of microstructure and texture in the AS-TMAZ and the SZ provide conditions for crack initiation, which become the weak point of mechanical properties.  相似文献   

17.
In order to ensure a quality welded joint, and thus safe operation and high reliability of the welded part or structure achieved by friction stir welding, it is necessary to select the optimal welding parameters. The parameters of friction stir welding significantly affect the structure of the welded joint, and thus the mechanical properties of the welded joint. Investigation of the influence of friction stir welding parameters was performed on 6-mm thick plates of aluminum alloy AA2024 T351. The quality of the welded joint is predominantly influenced by the tool rotation speed n and the welding speed v. In this research, constant tool rotation speed was adopted n = 750 rpm, and the welding speed was varied (v = 73, 116 and 150 mm/min). By the visual method and radiographic examination, imperfections of the face and roots of the welded specimens were not found. This paper presents the performed experimental tests of the macro and microstructure of welded joints, followed by tests of micro hardness and fracture behavior of Friction Stir Welded AA2024-T351 joints. It can be concluded that the welding speed of v = 116 mm/min is favorable with regard to the fracture behavior of the analysed FSW-joint.  相似文献   

18.
Friction drilling is a non-conventional hole-making process suitable for thin-section, ductile metals. During friction drilling, heat is generated due to tool rotation and the resulting flow of metal creates a bushing on the exit side of the hole. The bushing offers a longer engagement length for any subsequent thread making process. The threaded holes in this study were created by friction drilling and thread forming in 6082-T6 aluminium alloy. Four scenarios of the threaded holes were created with four levels of rotation rates of friction drilling processes (2000 rpm to 4000 rpm) and the mechanical properties of the threaded holes were compared. It was shown that 3000–3500 rpm is the optimum range of the rotation rate that achieved the higher load-bearing capacities (i.e., resistance to thread stripping) of 5.0–5.5 kN. In addition, the regions close to the thread surfaces in all scenarios were found to have experienced localised hardening to a hardness from 113 HV to around 125 HV.  相似文献   

19.
Among the emerging new welding techniques, friction stir welding (FSW) is used frequently for welding high-strength aluminum alloys that are difficult to weld by conventional fusion-welding techniques. This paper investigated the effects of tool-positioning factors on the maximum temperature generated in the dissimilar FSW joint of AA6061-T6 and AA7075-T6 aluminum alloys. Three factors of plunge depth, tool offset, and tilt angle were used as the input parameters. Numerical simulation of the FSW process was performed in ABAQUS software using the coupled Eulerian–Lagrangian (CEL) approach. Central composite design (CCD) based on response surface methodology (RSM) was used to analyze and design the experiments. Comparison of the numerical and experimental results showed that numerical simulations were in good agreement with the experimental ones. Based on the statistical model results, plunge depth, tilt angle, and tool offset were the most significant factors on maximum process temperature, respectively. It was found that increasing the plunge depth caused a sharp increase in the maximum process temperature due to increased contact surfaces and the frictional interaction between the tool and workpiece.  相似文献   

20.
The present paper aims to compare the microstructural and mechanical properties of CK45 carbon steel plates, joined by friction stir (FSW) and tungsten inert gas (TIG) welding methods. Besides visual inspection, the welded joints and the base material were subsequently evaluated in respect of optical microstructures, hardness and tensile properties. Sound joints could be accomplished using both the FSW and TIG welding methods through proper selection of process parameters and the filler metal. The influence of a water-cooling system on the FSW and various filler metals on the quality of TIG welding were further assessed. Both the FS welded sample as well as TIG welded samples with two different filler metals ER70S-6 and ER80S-B2 exhibited brittle behavior that could be mitigated through optimized water cooling and use of R60 filler metal. A drastic reduction of brittle martensite phase constituent in the microstructure corroborated significant improvements in mechanical properties of the welded zones for both the FSW sample as well as TIG welded samples with R60 filler metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号