首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
2.
Anti-inflammatory cytokines   总被引:46,自引:0,他引:46  
Opal SM  DePalo VA 《Chest》2000,117(4):1162-1172
The anti-inflammatory cytokines are a series of immunoregulatory molecules that control the proinflammatory cytokine response. Cytokines act in concert with specific cytokine inhibitors and soluble cytokine receptors to regulate the human immune response. Their physiologic role in inflammation and pathologic role in systemic inflammatory states are increasingly recognized. Major anti-inflammatory cytokines include interleukin (IL)-1 receptor antagonist, IL-4, IL-6, IL-10, IL-11, and IL-13. Specific cytokine receptors for IL-1, tumor necrosis factor-alpha, and IL-18 also function as proinflammatory cytokine inhibitors. The nature of anti-inflammatory cytokines and soluble cytokine receptors is the focus of this review. The current and future therapeutic uses of these anti-inflammatory cytokines are also reviewed.  相似文献   

3.
Rapid development of colitis in NSAID-treated IL-10-deficient mice   总被引:5,自引:0,他引:5  
BACKGROUND & AIMS: Interleukin (IL)-10 is an anti-inflammatory and immune regulatory cytokine. IL-10-deficient mice (IL-10(-/-)) develop chronic inflammatory bowel disease (IBD), indicating that endogenous IL-10 is a central regulator of the mucosal immune response. Prostaglandins are lipid mediators that may be important mediators of intestinal inflammation. In this study we assessed the role of prostaglandins in the regulation of mucosal inflammation in the IL-10(-/-) mouse model of IBD. METHODS: Prostaglandin (PG) synthesis was inhibited with nonselective or cyclooxygenase (COX)-isoform selective inhibitors. Severity of inflammation was assessed histologically. Cytokine production was assessed by ribonuclease protection analysis and enzyme-linked immunosorbent assay. PGE(2) levels were assessed by enzyme immunoassay. COX-1 and COX-2 expression was assessed by Western blot analysis. RESULTS: Nonsteroidal anti-inflammatory drug (NSAID) treatment of wild-type mice had minimal effect on the colon. In contrast, NSAID treatment of 4-week-old IL-10(-/-) mice resulted in rapid development of colitis characterized by infiltration of the lamina propria with macrophages and interferon gamma-producing CD4(+) T cells. Colitis persisted after withdrawal of the NSAID. NSAID treatment decreased colonic PGE(2) levels by 75%. Treatment of IL-10(-/-) mice with sulindac sulfone (which does not inhibit PG production) did not induce colitis whereas the NSAID sulindac induced severe colitis. COX-1- or COX-2-selective inhibitors used alone did not induce IBD in IL-10(-/-) mice. However, the combination of COX-1- and COX-2-selective inhibitors did induce colitis. CONCLUSIONS: NSAID treatment of IL-10(-/-) mice results in the rapid development of severe, chronic IBD. Endogenous PGs are important inhibitors of the development of intestinal inflammation in IL-10(-/-) mice.  相似文献   

4.
Fujita S  Seino K  Sato K  Sato Y  Eizumi K  Yamashita N  Taniguchi M  Sato K 《Blood》2006,107(9):3656-3664
Bacterial infection triggers host inflammation through the activation of immune cells, leading to the elimination of bacteria. However, the regulatory mechanisms of the host inflammatory response remain unknown. Here we report that a subset of potent tolerogenic dendritic cells (DCs), regulatory DCs (DC(regs)), control the systemic inflammatory response. Unlike normal DCs, which produced proinflammatory cytokines in response to bacterial lipopolysaccharide (LPS), DC(regs) produced fewer proinflammatory cytokines and instead preferentially produced interleukin-10 (IL-10), and these events involved the expression of IkappaBNS and Bcl-3 as well as cyclic AMP (cAMP)-mediated activation of protein kinase A (PKA). In addition, DC(regs) not only suppressed LPS-induced production of proinflammatory cytokines in macrophages, but also reduced their serum levels in mice. Furthermore, DC(regs) protected mice against the lethality induced by experimental endotoxemia and bacterial peritonitis. The inhibitory effect of DC(regs) against inflammatory responses involved the production of IL-10. On the other hand, naturally existing tolerogenic DC subsets producing IL-10, CD11c(low)CD45RB(high) DCs, also suppressed LPS-induced host inflammatory responses. Thus, a subset of tolerogenic DCs act as potential regulators of the host inflammatory response, and they might have preventive and therapeutic potential for the treatment of systemic as well as local inflammatory diseases.  相似文献   

5.
Chong MM  Metcalf D  Jamieson E  Alexander WS  Kay TW 《Blood》2005,106(5):1668-1675
The balance between pro- and anti-inflammatory cytokines modulates inflammation. Intracellular inhibitors of signaling, in turn, contribute to the negative regulation of cytokines. One of these inhibitors is suppressor of cytokine signaling-1 (SOCS-1). Socs1(-/-) mice die by 3 weeks of age with inflammation and fatty necrosis of the liver. Here, cre/loxP deletion of Socs1 was used to investigate the contribution of specific cells/tissues to inflammatory disease. Mice with SOCS-1 deficiency in myeloid and lymphoid cells, but not lymphoid alone, became ill at 50 to 250 days of age. These mice developed splenomegaly and T-cell/macrophage infiltration of many organs, including liver, lung, pancreas, and muscle. There were also abnormally high levels of the proinflammatory cytokines interferon gamma (IFN-gamma), tumor necrosis factor (TNF), and interleukin-12 (IL-12), and activated T cells circulating in these mice. Socs1(null) T cells were found to be hypersensitive to multiple cytokines, including IL-1, IL-2, and IL-12, resulting in IFN-gamma production without requiring T-cell receptor (TCR) ligation. Additionally, Socs1(null) macrophages produced excessive amounts of IL-12 and TNF in response to other cytokines, including IFN-gamma. A dysregulated cytokine network between T cells and macrophages is thus associated with this inflammatory disease. These findings indicate that SOCS-1 is critical in both T cells and macrophages for preventing uncontrolled inflammation.  相似文献   

6.
Salt-inducible kinase (SIK), a 776 amino acids-protein, contains a kinase domain in the NH2-terminal 278 amino acid residues, and the biological functions of its COOH-terminal half have yet to be clarified. Here we describe the roles played by several domains in the SIK molecule. K56, an amino acid residue found in a region similar to the ATP-binding loop of other protein kinases, was essential for carrying out the SIKs phosphorylation reaction. An SNF-1 homology domain (SNH), identified at a peptide stretch from the 317th to the 346th residues, and conserved among all the sucrose-nonfermenting-1 protein kinase (SNF-1) family protein kinases, was important to maintain the SIKs protein conformation in the cells. S577, an amino acid residue found in one of three consensus PKA-dependent phosphorylation motifs, was indeed phosphorylated by PKA. The phosphorylated SIK was found to move out of the nucleus to the cytoplasm.  相似文献   

7.
8.
Neutrophils are the predominant inflammatory cells found in the vaginal discharge of patients with a Trichomonas vaginalis infection. Neutrophils have a shorter life span than other leucocytes. Our previous study indicated that live T. vaginalis alters Mcl-1 expression and caspase-3 activation, thereby inducing apoptosis of human neutrophils. However, it was previously unknown that the apoptotic neutrophils brought about by T. vaginalis can influence vaginal inflammation. Thus, human monocyte-derived macrophages (HMDM) were incubated with T. vaginalis -induced apoptotic neutrophils. Cytokine production and phagocytosis by HMDM were evaluated by ELISA and myeloperoxidase stain, respectively. HMDM showed increased anti-inflammatory cytokine production (IL-10) and decreased levels of pro-inflammatory cytokines, such as TNF-α and IL-6, compared with macrophages alone.
Therefore, these results suggest that apoptotic neutrophils caused by T. vaginalis may lead to the resolution of vaginal inflammation by anti-inflammatory cytokine production in the human macrophages.  相似文献   

9.
受微环境变化的影响,巨噬细胞分为经典激活的巨噬细胞(M1)和非经典激活的巨噬细胞(M2).M1型巨噬细胞可释放如肿瘤坏死因子α(TNF-α)和IL-1β等促炎因子加重炎症反应,也可因极化的增多发挥抗炎作用.M2型巨噬细胞分为M2a、M2b和M2c 3种亚型,M2a及M2b型巨噬细胞主要产生炎性细胞因子如ID4和IL-13,M2c型巨噬细胞主要产生抗炎细胞因子如IL-10并有很强的吞噬功能.细胞因子、趋化因子和免疫调节细胞影响着M1型和M2型巨噬细胞的平衡.巨噬细胞不同的极化在支气管哮喘发生与发展中起到重要的作用.  相似文献   

10.
11.
Alterations of the mucosal immune system in inflammatory bowel disease   总被引:9,自引:0,他引:9  
The normal intestinal immune system is under a balance in which proinflammatory and anti-inflammatory cells and molecules are carefully regulated to promote a normal host mucosal defense capability without destruction of intestinal tissue. Once this careful regulatory balance is disturbed, nonspecific stimulation and activation can lead to increased amounts of potent destructive immunologic and inflammatory molecules being produced and released. The concept of balance and regulation of normal mucosal immune and inflammatory events is indicative of how close the intestine is to developing severe inflammation. The normal intestinal mucosal immune system is constantly stimulated by lumenal contents and bacteria. The stimulatory molecules present in the intestinal lumen that activate and induce subsequent mucosal immunologic and inflammatory events include bacterial cell wall products, such as peptidoglycans and lipopolysaccharides, as well as other chemotactic and toxic bacterial products that are produced by the many different types of bacteria within the gastrointestinal tract. These highly stimulatory bacterial cell wall products are capable of activating macrophages and T lymphocytes to release potent proinflammatory cytokines, including interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). IL-1, IL-6, and TNF-α increase the presence of human leukocyte antigen (HLA) class II antigen-presenting molecules on the surfaces of epithelial cells, endothelial cells, macrophages, and B cells, thus increasing their ability to present lumenal antigens and bacterial products. The proinflammatory cytokines IL-1 and TNF-α also increase the ability of epithelial cells, endothelial cells, macrophages, and fibroblasts to secrete potent chemotactic cytokines, such as interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), which serve to increase the movement of macrophages and granulocytes from the circulation into the inflamed mucosa. Thus, through lumenal exposure to potent, nonspecific stimulatory bacterial products, the state of activation of the intestinal immune system and mucosal inflammatory pathways are markedly up-regulated. This raises the question of whether there is a deficiency in effective down-regulation through the absence of normally suppressive cytokines such as interleukin-10 (IL-10), transforming growth factor-β (TGF-β), interleukin-4 (IL-4), and IL-1 receptor antagonist. Normally, the turning off of the active and destructive immunologic and inflammatory events should occur following the resolution of a bacterial or viral infection that has been appropriately defended against and controlled by the mucosal immune system. In inflammatory bowel disease (IBD), however, the down-regulatory events and processes that should turn off the immunologic and inflammatory protective processes, once the pathogenic agent has been cleared, appear to be deficient or only partially effective. We may find that we ultimately are dealing with disease processes that have more than one genetic or cellular basis. The improved understanding of the immunopathophysiology of IBD will allow exploration of novel immunologic and genetic approaches, such as gene replacement therapy, administration of a suppressor cytokine or an altered cell surface antigen, the administration ofhumanized monoclonal antibodies directed against proinflammatory cytokines, or the development of newer strategies against fundamenial cell biologic mechanisms such as adhesion molecules.  相似文献   

12.
BACKGROUND: Alveolitis and the production of proinflammatory cytokines are known features of sarcoidosis. Because of the usually spontaneous resolution of alveolitis despite local secretion of mediators causing inflammation and granuloma formation, we hypothesized that downmodulating mechanisms such as anti-inflammatory cytokines might be involved in this process. OBJECTIVE: Investigation of the secretion of the macrophage deactivating cytokines interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta) by alveolar macrophages in untreated sarcoidosis of the lung. METHODS: Fourteen consecutive and untreated patients with pulmonary sarcoidosis and 18 volunteers underwent bronchoscopy. Alveolar macrophages (AM) were obtained by bronchoalveolar lavage and the secretion of IL-10 and TGF-beta was studied. RESULTS: Spontaneous IL-10 production by AM was found in 6 of 14 patients and in 2 of 18 controls. The IL-10 level of lipopolysaccharide-stimulated AM was significantly higher in patients. Monocytes secreted significantly more IL-10 than AM, but there was no difference between sarcoid and control monocytes. No difference was found in the secretion of TGF-beta between patients and controls. CONCLUSION: Increased local secretion of IL-10 - but not TGF-beta - may represent a downmodulating mechanism involved in the spontaneous resolution of alveolitis in sarcoidosis.  相似文献   

13.
Immunosuppressant drugs, such as methotrexate, are able to inhibit cytokine production and leukocyte migration to inflammatory foci; therefore, they could modify the establishment of inflammation in adipose tissue during obesity. Thus, we studied the effects of methotrexate in vivo on high-fat diet induced-obesity in mice and in vitro in isolated and co-cultured adipocytes and macrophages. Obese mice treated with methotrexate presented reduced serum levels of TNF-α, insulin and glucose, and an improvement of insulin sensitivity. Adipose tissue from these mice produced less proinflammatory (TNF-α, IL-6, leptin) and more anti-inflammatory adipokines (adiponectin and IL-10) associated with reduced macrophage infiltration and inflammation. Cytokine inhibition was also confirmed in isolated and co-cultured adipocytes and macrophages. Methotrexate presented anti-lipolytic effect in vivo and, in vitro through adenosine release. Drugs that combine anti-lipolytic effect and the ability to control inflammation in adipose tissue could play a role in the control of insulin resistance and other pathologies associated with obesity.  相似文献   

14.

Aims/hypothesis

Salt-inducible kinases (SIKs) are related to the metabolic regulator AMP-activated protein kinase (AMPK). SIK2 is abundant in adipose tissue. The aims of this study were to investigate the expression of SIKs in relation to human obesity and insulin resistance, and to evaluate whether changes in the expression of SIKs might play a causal role in the development of disturbed glucose uptake in human adipocytes.

Methods

SIK mRNA and protein was determined in human adipose tissue or adipocytes, and correlated to clinical variables. SIK2 and SIK3 expression and phosphorylation were analysed in adipocytes treated with TNF-α. Glucose uptake, GLUT protein levels and localisation, phosphorylation of protein kinase B (PKB/Akt) and the SIK substrate histone deacetylase 4 (HDAC4) were analysed after the SIKs had been silenced using small interfering RNA (siRNA) or inhibited using a pan-SIK-inhibitor (HG-9-91-01).

Results

We demonstrate that SIK2 and SIK3 mRNA are downregulated in adipose tissue from obese individuals and that the expression is regulated by weight change. SIK2 is also negatively associated with in vivo insulin resistance (HOMA-IR), independently of BMI and age. Moreover, SIK2 protein levels and specific kinase activity display a negative correlation to BMI in human adipocytes. Furthermore, SIK2 and SIK3 are downregulated by TNF-α in adipocytes. Silencing or inhibiting SIK1–3 in adipocytes results in reduced phosphorylation of HDAC4 and PKB/Akt, less GLUT4 at the plasma membrane, and lower basal and insulin-stimulated glucose uptake in adipocytes.

Conclusion/interpretation

This is the first study to describe the expression and function of SIKs in human adipocytes. Our data suggest that SIKs might be protective in the development of obesity-induced insulin resistance, with implications for future treatment strategies.
  相似文献   

15.
16.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two mediators synthesized by immune cells, specially under inflammatory and antigen stimulation conditions. Reports have shown that neuropeptides attenuate the deleterious consequences of septic shock both by down-regulating the production of proinflammatory mediators and by stimulating the production of anti-inflammatory cytokines by activated macrophages. In this study, we used a knockout for the PACAP receptor (PAC1(-/-)) to demonstrate an important protective role for PAC1 receptor in endotoxic shock. Moreover, our results indicate that PAC1 receptor acts in vivo as an anti-inflammatory receptor, at least in part, by attenuating lipopolysaccharide (LPS)-induced production of proinflammatory IL-6, which appears to be the main cytokine regulating the expression of the majority of the acute phase protein genes, which are an important deleterious component of septic shock. Besides, our findings point to endogenously produced VIP and PACAP as participants of the natural anti-inflammatory machinery. Because VIP and PACAP are two attractive candidates for the development of therapies against acute and chronic inflammatory diseases, septic shock, and autoimmune diseases, this paper represents a contribution to the understanding of the mechanism of action of these anti-inflammatory agents.  相似文献   

17.
18.
19.
20.
Unfractionated heparin (UFH) and low-molecular weight heparin (LMWH) are well defined anticoagulant agents. Recent data suggest that both LMWH and UFH may also have potent anti-inflammatory properties; however, their mechanism of action responsible for the anti-inflammatory effect is not yet fully elucidated. This study was designed to assess the effect of LMWH and UFH on human monocytes production of inflammatory markers and nuclear translocation of nuclear factor (NF)-kappaB. Cultured monocytes were pretreated for 15 min with LMWH or UFH (10 microg and 1 microg/million cells) before stimulation with lipopolysaccharide (LPS) at a dose of 1 ng/million cells. Proinflammatory cytokines tumour necrosis factor (TNF)-alpha, interleukin (IL)-8, IL-6 and IL-1beta release were subsequently measured by enzyme-linked immunosorbent assay at 6 h, and nuclear translocation of the proinflammatory NF-kappaB was assessed at 2 h. Treatment with pharmacological doses of LMWH and UFH significantly attenuated LPS-induced production of TNF-alpha, IL-8, IL-6 and IL-1beta as well as NF-kappaB translocation. These results indicate equivalent and significant heparin anti-inflammatory properties at low doses on monocyte-mediated immune response. The inhibition of NF-kappaB activation certainly represents one of the mechanisms by which heparin exerts its anti-inflammatory effect. LMWH and UFH therefore appear as potential therapeutic inhibitors of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号