首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microneedles for transdermal drug delivery   总被引:35,自引:0,他引:35  
The success of transdermal drug delivery has been severely limited by the inability of most drugs to enter the skin at therapeutically useful rates. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery, especially for macromolecules. Using the tools of the microelectronics industry, microneedles have been fabricated with a range of sizes, shapes and materials. Most drug delivery studies have emphasized solid microneedles, which have been shown to increase skin permeability to a broad range of molecules and nanoparticles in vitro. In vivo studies have demonstrated delivery of oligonucleotides, reduction of blood glucose level by insulin, and induction of immune responses from protein and DNA vaccines. For these studies, needle arrays have been used to pierce holes into skin to increase transport by diffusion or iontophoresis or as drug carriers that release drug into the skin from a microneedle surface coating. Hollow microneedles have also been developed and shown to microinject insulin to diabetic rats. To address practical applications of microneedles, the ratio of microneedle fracture force to skin insertion force (i.e. margin of safety) was found to be optimal for needles with small tip radius and large wall thickness. Microneedles inserted into the skin of human subjects were reported as painless. Together, these results suggest that microneedles represent a promising technology to deliver therapeutic compounds into the skin for a range of possible applications.  相似文献   

2.
The birth of microneedles, an array of needles sufficiently long to penetrate epidermis but small enough to do not cause skin injury and pain feeling, has offered a highly promising solution for non-invasive delivery of protein and peptide drugs, a long-cherished desire over eighty years. However, the attempts to develop clinically feasible microneedle transdermal delivery methods encountered series of difficulties, for which a decade research efforts have yet to result in a single product. Microneedles may be incorporated into devices as skin pre-treatment tools, skin microinjectors as well as transdermal patches by their functions in drug delivery. They may also be categorized to insoluble solid microneedles, hollow microneedles, soluble/degradable solid microneedles and phase-transition microneedles by their structure and forming materials. This review article is aimed to update the progress and discuss the technical challenges raised in developing protein/peptide loaded microneedle patches.  相似文献   

3.
微针经皮给药技术   总被引:1,自引:0,他引:1  
微针是介于皮下注射和透皮贴剂之间的一种给药方式,利用在皮肤角质层产生的微小孔道来显著增加药物的经皮吸收。综述微针经皮给药技术的研究进展,介绍制造微针的材料和方法、微针的给药方式及其在经皮给药系统中的应用。  相似文献   

4.
Objectives One of the thrust areas in drug delivery research is transdermal drug delivery systems (TDDS) due to their characteristic advantages over oral and parenteral drug delivery systems. Researchers have focused their attention on the use of microneedles to overcome the barrier of the stratum corneum. Microneedles deliver the drug into the epidermis without disruption of nerve endings. Recent advances in the development of microneedles are discussed in this review for the benefit of young scientists and to promote research in the area. Key findings Microneedles are fabricated using a microelectromechanical system employing silicon, metals, polymers or polysaccharides. Solid coated microneedles can be used to pierce the superficial skin layer followed by delivery of the drug. Advances in microneedle research led to development of dissolvable/degradable and hollow microneedles to deliver drugs at a higher dose and to engineer drug release. Iontophoresis, sonophoresis and electrophoresis can be used to modify drug delivery when used in concern with hollow microneedles. Microneedles can be used to deliver macromolecules such as insulin, growth hormones, immunobiologicals, proteins and peptides. Microneedles containing ‘cosmeceuticals’ are currently available to treat acne, pigmentation, scars and wrinkles, as well as for skin tone improvement. Summary Literature survey and patents filled revealed that microneedle‐based drug delivery system can be explored as a potential tool for the delivery of a variety of macromolecules that are not effectively delivered by conventional transdermal techniques.  相似文献   

5.
Transdermal drug delivery has exhaustively been studied over the past decades due to its multiple advantages over other administration routes; however, drugs that can be administered by this via are few owe to the stratum corneum permeability properties. Recently, several strategies to bypass the upper-layer skin barrier have been developed. One of the latest advances in this area has been the use of micro-scale needles, which painlessly pierce skin, increasing the passage of drugs with unfavourable skin permeability (i.e., low potent, hydrophilic, high molecular drugs) by several orders of magnitude, by bypassing the stratum corneum. Microneedles have shown to be safe and easy-to-use for drug administration, a nouvelle alternative to hypodermic needle injections, and an array in which drugs can be included to attain a controlled release as to achieve a higher drug delivery. Several works have demonstrated that such devices dramatically increase transdermal delivery of large molecules, thus nowadays microneedles have been regarded as a potential technology approach to be employed alone or with other enhancing methods such as electroporation and iontophoresis, as well as with different drug carriers (e.g., lipid vesicles, micro- and nanoparticles). Hence, this review is mainly focused on presenting the results obtained when combining microneedles with a variety of strategies to ease drug diffusion through skin, including physical enhancers and drug carrier systems.  相似文献   

6.
Despite the advantages of drug delivery through the skin, such as easy accessibility, convenience, prolonged therapy, avoidance of the liver first-pass metabolism and a large surface area, transdermal drug delivery is only used with a small subset of drugs because most compounds cannot cross the skin at therapeutically useful rates. Recently, a new concept was introduced known as microneedles and these could be pierced to effectively deliver drugs using micron-sized needles in a minimally invasive and painless manner. In this study, biocompatible polycarbonate (PC) microneedle arrays with various depths (200 and 500mum) and densities (45, 99 and 154ea/cm(2)) were fabricated using a micro-mechanical process. The skin permeability of a hydrophilic molecule, calcein (622.5D), was examined according to the delivery systems of microneedle, drug loading, depth of the PC microneedle, and density of the PC microneedle. The skin permeability of calcein was the highest when the calcein gel was applied to the skin with the 500mum-depth PC microneedle, simultaneously. In addition, the skin permeability of calcein was the highest when 0.1g of calcein gel was coupled to the 500mum-depth PC microneedle (154ea/cm(2)) as well as longer microneedles and larger density of microneedles. Taken together, this study suggests that a biocompatible PC microneedle might be a suitable tool for transdermal drug delivery system of hydrophilic molecules with the possible applications to macromolecules such as proteins and peptides.  相似文献   

7.
空心微针类似于微米级的注射针,具有注射给药和透皮给药的双重特点.作为一种新型的透皮给药技术,空心微针近年来在疫苗和胰岛素等生物大分子药物的递送方面显示出极大的潜力.笔者根据近年来国内外相关的研究报道,对空心微针的促透机制、常用制备材料及工艺和在透皮给药中的应用等进行归纳总结,以期为空心微针技术的研究和发展提供参考借鉴.  相似文献   

8.
与传统的口服和肠外给药途径相比,经皮给药系统作为一种非侵入性替代方法非常有吸引力。特别对于儿童患者,它有助于克服该群体特有的问题,如吞咽困难、口服制剂的适口性以及与针头相关的恐惧和疼痛。然而,儿童的皮肤屏障功能有效地限制了药物的经皮吸收。微针可突破皮肤最外层的角质层,增加经皮给药的药量。过去几十年,以微针为基础药物输送系统的研究取得了显著进展。与微针相关的研究论文呈指数级激增。本文概括了微针的分类及特点,讨论了微针在儿童经皮递药中的研究进展,最后对微针介导的儿童经皮递药的未来前景进行了简要展望。  相似文献   

9.
Purpose To characterize solid maltose microneedles and assess their ability to increase transdermal drug delivery. Materials and Methods Microneedles and microchannels were characterized using methylene blue staining and scanning electron microscopy. Diffusion pattern of calcein was observed using confocal scanning laser microscopy. Transepidermal water loss (TEWL) measurements were made to study the skin barrier recovery after treatment. Uniformity in calcein uptake by the pores was characterized and percutaneous penetration of nicardipine hydrochloride (NH) was studied in vitro and in vivo across hairless rat skin. Results Microneedles were measured to be 508.46 ± 9.32 μm long with a radius of curvature of 3 μm at the tip. They penetrated the skin while creating microchannels measuring about 55.42 ± 8.66 μm in diameter. Microchannels were visualized by methylene blue staining. Pretreatment with microneedles resulted in the migration of calcein into the microchannels. TEWL increased after pretreatment and uptake of calcein by the pores was uniform as measured by the pore permeability index values. NH in vitro transport across skin increased significantly after pretreatment (flux 7.05 μg/cm2/h) as compared to the untreated skin (flux 1.72 μg/cm2/h) and the enhanced delivery was also demonstrated in vivo in hairless rats. Conclusion Maltose microneedles were characterized and shown to create microchannels in the skin, which were also characterized and shown to improve the transdermal delivery of NH.  相似文献   

10.
Transdermal Delivery of Insulin Using Microneedles in Vivo   总被引:10,自引:0,他引:10  
PURPOSE: The purpose of this study was to design and fabricate arrays of solid microneedles and insert them into the skin of diabetic hairless rats for transdermal delivery of insulin to lower blood glucose level. METHODS: Arrays containing 105 microneedles were laser-cut from stainless steel metal sheets and inserted into the skin of anesthetized hairless rats with streptozotocin-induced diabetes. During and after microneedle treatment, an insulin solution (100 or 500 U/ml) was placed in contact with the skin for 4 h. Microneedles were removed 10 s, 10 min, or 4 h after initiating transdermal insulin delivery. Blood glucose levels were measured electrochemically every 30 min. Plasma insulin concentration was determined by radioimmunoassay at the end of most experiments. RESULTS: Arrays of microneedles were fabricated and demonstrated to insert fully into hairless rat skin in vivo. Microneedles increased skin permeability to insulin, which rapidly and steadily reduced blood glucose levels to an extent similar to 0.05-0.5 U insulin injected subcutaneously. Plasma insulin concentrations were directly measured to be 0.5-7.4 ng/ml. Higher donor solution insulin concentration, shorter insertion time, and fewer repeated insertions resulted in larger drops in blood glucose level and larger plasma insulin concentrations. CONCLUSIONS: Solid metal microneedles are capable of increasing transdermal insulin delivery and lowering blood glucose levels by as much as 80% in diabetic hairless rats in vivo.  相似文献   

11.
Introduction: The skin, as the largest organ, is a better option for drug delivery in many diseases. However, most transdermal delivery is difficult due to the low permeability of therapeutics across the various skin layers. There have been many innovations in transdermal drug delivery to enhance the therapeutic efficacy of the drugs administered. Microneedles (MN), micron sized needles, are of great interest to scientists as a new therapeutic vehicle through transdermal routes, especially for vaccines, drugs, small molecules, etc.

Areas covered: This review covers new insights into different types of MNs such as solid, hollow, coated and dissolving MNs (SMNs, HMNs, CMNs, and DMNs) for selected biomedical applications in detail. Specific focus has been given to CMNs and DMNs for vaccine and drug delivery applications with recent developments in new MNs covered.

Expert opinion: This review explores the feasibility of innovative MNs used as a drug delivery carrier. Because most of the SMNs and HMNs have many limitations, it is difficult to achieve therapeutic efficacy. Therefore, many scientists are investigating functional modifications of MNs through covalent and non-covalent methods, especially for CMNs and DMNs. The biomedical applications of MNs are growing and new exciting improvements could be achieved, thus resulting in better micro/nano technologies in the near future.  相似文献   

12.
微针有助于改善患者的用药依从性,提高药物的生物利用度.近年来,微针在疫苗接种、蛋白质和多肽给药、DNA给药、皮肤美容、眼科用药、局部麻醉、微量取样等领域均有应用.微针在胰岛素给药和局部麻醉中的研究已进入临床试验阶段,在皮肤美容、疫苗接种和蛋白质给药方面已有上市产品.  相似文献   

13.
目的:阐述微针在经皮给药领域的研究。方法:简述并分析微针的特点、研究应用、存在的问题以及今后研究的重点。结果:作为一种新型的经皮给药技术,微针可能成为一种较为理想的经皮给药载体。结论:随着研究成果逐渐走入市场,微针将会带来良好的社会效益和经济效益。  相似文献   

14.
不锈钢微针经皮给药的研究   总被引:2,自引:0,他引:2  
目的:将不锈钢微针阵列应用于经皮给药。考察离体大鼠皮肤经不同针形微针预处理相同时间、相同针形微针预处理不同时间后,模型药物鬼臼毒素经大鼠皮肤的透皮能力。方法:微针预处理大鼠皮肤后,用改进的Franz扩散池研究鬼臼毒素对皮肤的透皮速率。高效液相色谱法测定鬼臼毒素的含量。结果:皮肤经微针预处理后进行鬼臼毒素透皮,其透皮速率比未经微针处理时有明显提高。三角形微针、梯形微针、矛形微针对鬼臼毒素的促渗能力依次增强;三者所引起的鬼臼毒素在皮肤中的滞留量有显著差异。同种针形微针预处理皮肤时间越长,鬼臼毒素的透皮速率越大;但微针预处理时间对皮肤中的药物滞留量无显著影响。结论:微针用于药物经皮给药时,微针针形、微针的预处理时间对药物的经皮渗透具有重要影响。  相似文献   

15.
The purpose of this work was to investigate the in vitro transdermal delivery of low molecular weight heparin (LMWH). Hairless rat skin was mounted on Franz diffusion cells and treated with various enhancement strategies. Passive flux was essentially zero and remained low even after iontophoresis (0.065 U cm(-2) h(-1)) or application of ultrasound (0.058 U cm(-2) h(-1)). A significant increase in flux across tape stripped skin (4.0 U cm(-2) h(-1)) suggests the interaction of stratum corneum (SC) with LMWH which was confirmed using Differential Scanning Calorimetry and Fourier Transform-Infrared spectrophotometry. Maltose microneedles were then employed as a means to locally disrupt and bypass the SC. Transepidermal water loss (TEWL) and transcutaneous electrical resistance (TER) were measured to confirm the barrier disruption. Microneedles breached the SC resulting in increased TEWL, decreased TER and enhanced LMWH permeability (0.175 U cm(-2) h(-1)). Microneedles when used in conjunction with iontophoresis had a synergistic effect on LMWH delivery resulting in enhancement of flux by 14.7-fold as compared to iontophoresis used alone. Confocal laser scanning microscopy substantiated the evidence about LMWH interaction with SC. In conclusion, LMWH was shown to interact with SC and therefore tape stripping or microneedles dramatically increased its delivery due to disruption of the SC skin barrier.  相似文献   

16.
Purpose To develop a rational basis for designing coating solution formulations for uniform and thick coatings on microneedles and to identify coating strategies to form composite coatings, deliver liquid formulations, and control the mass deposited on microneedles. Materials and Methods Microneedles were fabricated using laser-cutting and then dip-coated using different aqueous, organic solvent-based or molten liquid formulations. The mass of riboflavin (vitamin B2) coated onto microneedles was determined as a function of coating and microneedle parameters. Coated microneedles were also inserted into porcine cadaver skin to assess delivery efficacy. Results Sharp-tipped microneedles, including pocketed microneedles, were fabricated. Excipients that reduced coating solution surface tension improved coating uniformity, while excipients that increased solution viscosity improved coating thickness. Evaluation of more than 20 different coating formulations using FDA approved excipients showed that hydrophilic and hydrophobic molecules could be uniformly coated onto microneedles. Model proteins were also uniformly coated on microneedles using the formulations identified in the study. Pocketed microneedles were selectively filled with solid or liquid formulations to deliver difficult-to-coat substances, and composite drug layers were formed for different release profiles. The mass of riboflavin coated onto microneedles increased with its concentration in the coating solution and the number of coating dips and microneedles in the array. Coatings rapidly dissolved in the skin without wiping off on the skin surface. Conclusions Microneedles and coating formulations can be designed to have a range of different properties to address different drug delivery scenarios.  相似文献   

17.
微针属于非侵入性经皮给药方式,显示出较高的生物利用度,避免了药物在胃肠道的降解和首过效应。微针材料的选择从不锈钢到硅再到陶瓷,虽各有优点,但均因生物相容性、皮内残留不降解的问题而逐渐被淘汰。聚合物因具有生物相容性、生物可降解、毒性较低、韧性良好和成本低等特点,逐渐成为微针制备的首选材料。聚合物制备微针后通过光学、机械力测试系统,皮肤模型及动物模型等表征手段来确认微针的安全有效。本文主要对微针制备中所使用的聚合物材料及微针表征的新进展进行综述,以期对微针的产业化研究提供借鉴。  相似文献   

18.
Polymer Microneedles for Controlled-Release Drug Delivery   总被引:5,自引:0,他引:5  
Purpose As an alternative to hypodermic injection or implantation of controlled-release systems, this study designed and evaluated biodegradable polymer microneedles that encapsulate drug for controlled release in skin and are suitable for self-administration by patients. Methods Arrays of microneedles were fabricated out of poly-lactide-co-glycolide using a mold-based technique to encapsulate model drugs—calcein and bovine serum albumin (BSA)—either as a single encapsulation within the needle matrix or as a double encapsulation, by first encapsulating the drug within carboxymethylcellulose or poly-l-lactide microparticles and then encapsulating drug-loaded microparticles within needles. Results By measuring failure force over a range of conditions, poly-lactide-co-glycolide microneedles were shown to exhibit sufficient mechanical strength to insert into human skin. Microneedles were also shown to encapsulate drug at mass fractions up to 10% and to release encapsulated compounds within human cadaver skin. In vitro release of calcein and BSA from three different encapsulation formulations was measured over time and was shown to be controlled by the encapsulation method to achieve release kinetics ranging from hours to months. Release was modeled using the Higuchi equation with good agreement (r2 ≥ 0.90). After microneedle fabrication at elevated temperature, up to 90% of encapsulated BSA remained in its native state, as determined by measuring effects on primary, secondary, and tertiary protein structure. Conclusions Biodegradable polymer microneedles can encapsulate drug to provide controlled-release delivery in skin for hours to months.  相似文献   

19.
ABSTRACT

Introduction

In the past, mathematical modeling of the transport of transdermal drugs has been primarily focused on the stratum corneum. However, the development of pharmaceutical technologies, such as chemical enhancers, iontophoresis, and microneedles, has led to two outcomes; an increase in permeability in the stratum corneum or the ability to negate the layer entirely. As a result, these outcomes have made the transport of a solute in the viable skin far more critical when studying transdermal drug delivery.  相似文献   

20.
The objective of this work was to modulate transdermal drug delivery by iontophoresis though skin microchannels created by microneedles. Calcein and human growth hormone were used as a model small and large molecule, respectively. In vitro permeation studies were performed on porcine ear skin under three different settings: (a) modulated iontophoresis alone, (b) pretreatment with microneedles and (c) combination of microneedles pretreatment and modulated iontophoresis. For modulated iontophoresis, 0.5 mA/cm(2) current was applied for 1h each at 2nd and 6th hour of the study. Methylene blue staining, calcein imaging and pore permeability index suggested maltose microneedles created uniform microchannels in skin. Application of iontophoresis provided two peaks in flux of 1.04 μg/(cm(2)h) at 4th hour and 2.09 μg/(cm(2)h) at 8th hour of study for calcein. These peaks in flux were significant higher when skin was pretreated with microneedles (p<0.05). Similarly, for human growth hormone, modulation in transdermal flux was achieved with combination of microneedles and iontophoresis. This combination also provided significant increase in cumulative amount of calcein and human growth hormone delivered as compared to microneedles or iontophoresis alone (p<0.05). Therefore, iontophoresis can be used to modulate drug delivery across skin microchannels created by microneedles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号